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SOME MULTI–DIMENSIONAL HARDY

TYPE INTEGRAL INEQUALITIES

L.-E. PERSSON AND E. P. USHAKOVA

(communicated by V. D. Stepanov)

Abstract. In this paper we prove some new results concerning multi-dimensional Hardy type
integral inequalities and also some corresponding limit Pólya–Knopp type inequalities.

1. Introduction

Let 1 � n < ∞ be a natural number and 0 < p, q < ∞. The n -dimensional
integral Hardy operator Hn, defined for any non-negative function f (y) on R

n
+ :=

{y = (y1, . . . , yn): y1, . . . , yn � 0} , is given by

(Hnf )(x) :=
∫ x1

0
. . .

∫ xn

0
f (y)dy, x1, . . . , xn > 0, (1.1)

where dy := dy1 . . . dyn. The problem to characterize weight functions w and v on R
n
+

so that the inequality of the form(∫
R

n
+

(Hnf )q (x)w(x)dx

) 1
q

� C

(∫
R

n
+

f p(y)v(y)dy

) 1
p

(1.2)

holds for all non-negative functions f on R
n
+ is considered in several works (see [1],

[3], [4], [7] and the references given there). The one-dimensional case is very well
studied but even in two dimensions there is only one result for the inequality (1.2) to
hold without any special restrictions on the weights, namely the following result of E.
Sawyer for 1 < p � q < ∞ :

THEOREM 1.1. [7, Theorem 1] Let n = 2 and 1 < p � q < ∞. Then the
inequality (1.2) holds for all non-negative functions f on R

2
+ if and only if

sup
t1,t2>0

W(t1, t2)
1
q V(t1, t2)

1
p′ < ∞, (1.3)
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sup
t1,t2>0

(∫ t1
0

∫ t2
0 V(x1, x2)qw(x1, x2)dx2dx1

) 1
q

V(t1, t2)
1
p

< ∞, (1.4)

and

sup
t1,t2>0

(∫∞
t1

∫∞
t2

W(x1, x2)p′v(x1, x2)1−p′dx2dx1

) 1
p′

W(t1, t2)
1
q′

< ∞, (1.5)

where p′ := p/(p − 1), q′ := q/(q − 1), W(t1, t2) :=
∫∞

t1

∫∞
t2

w(x1, x2)dx2dx1 and

V(t1, t2) :=
∫ t1

0

∫ t2
0 v(y1, y2)1−p′dy2dy1.

Note that in the one-dimensional case the conditions corresponding to (1.3)–(1.5)
are equivalent to each other (see [2]).

Moreover, it was recently discovered by A. Wedestig in her PhD thesis [8] (see
also [9]) that if the weight on the right hand is of product type, then, in fact, (1.2) can
be characterized by just one condition (or, more generally, just one of infinite possible
conditions).

THEOREM 1.2. [9, Theorem 1.1] Let n = 2, 1 < p � q < ∞, s1, s2 ∈
(1, p) and v(x1, x2) = v1(x1)v2(x2). Then the inequality (1.2) holds for all measurable
functions f if and only if AW(s1, s2) < ∞, where

AW(s1, s2) := sup
t1,t2>0

V1(t1)
s1−1

p V2(t2)
s2−1

p

×
(∫ ∞

t1

∫ ∞

t2

w(x1, x2)V1(x1)
q(p−s1)

p V2(x2)
q(p−s2)

p dx2dx1

) 1
q

and

V1(t1) :=
∫ t1

0
v1(x1)1−p′dx1, V2(t2) :=

∫ t2

0
v2(x2)1−p′dx2.

Moreover, if C is the best possible constant in (1.2), then

sup
1<s1,s2<p

⎛⎜⎝
(

p
p−s1

)p

(
p

p−s1

)p
+ 1

s1−1

⎞⎟⎠
1
p
⎛⎜⎝

(
p

p−s2

)p

(
p

p−s2

)p
+ 1

s2−1

⎞⎟⎠
1
p

AW(s1, s2)

� C � inf
1<s1,s2<p

AW(s1, s2)
(

p − 1
p − s1

) 1
p′
(

p − 1
p − s2

) 1
p′

.

Theorem 1.2 can be easily extended to n -dimensional case for any n > 2. Obviously,
in such situation we will have n parameters s1, . . . , sn in the definition of the constant
AW . This fact was used in [8] (see also [9]) for a corresponding characterization of the
weights v and w so that the following limit inequality of (1.2) holds:(∫

R
n
+

(Gnf )q (x)w(x)dx

) 1
q

� C

(∫
R

n
+

f p(y)v(y)dy

) 1
p

(1.6)



SOME MULTI-DIMENSIONAL HARDY TYPE INTEGRAL INEQUALITIES 303

with the multi-dimensional geometric mean operator Gn defined by

(Gnf )(x) := exp

(
1

x1. . .xn

∫ x1

0
. . .

∫ xn

0
log f (y)dy

)
, x1, . . . , xn > 0. (1.7)

THEOREM 1.3. [9, Theorem 3.1] Let n = 2, 0 < p � q < ∞ and s1, s2 > 1.
The inequality (1.6) holds for all positive measurable functions f on R

2
+ if and only if

DW(s1, s2) < ∞, where

DW(s1, s2) := sup
y1,y2>0

y
s1−1

p
1 y

s2−1
p

2

(∫ ∞

y1

∫ ∞

y2

x
− s1q

p
1 x

− s2q
p

2 u(x1, x2)dx2dx1

) 1
q

and

u(x1, x2) :=
[
exp

(
1

x1x2

∫ x1

0

∫ x2

0
log

1
v(t1, t2)

dt2dt1

)] q
p

w(x1, x2).

Moreover, the best possible constant C in (1.6) can be estimated in the following way:

sup
s1,s2>1

(
es1(s1 − 1)

es1(s1 − 1) + 1

) 1
p
(

es2(s2 − 1)
es2(s2 − 1) + 1

) 1
p

DW(s1, s2)

� C � inf
s1,s2>1

e(s1+s2−2)/pDW(s1, s2).

Note especially that there is no restriction concerning product type of someof theweights
in the conditions of Theorem 1.3 because of the special properties of the operator Gn

(see, for instance, [5]). Also this result can be given in a natural n -dimensional setting.
In Section 2. of this paper we prove some statements (see Lemmas 2.1–2.3), which

are needed later on but also partially generalize the necessary part of Theorem 1.1 to n
dimensions. Moreover, it is proved that also the natural end point condition in Theorem
1.2 can be used for a characterization of the weights so that (1.2) holds (see Theorem
2.1). This condition is natural since it obviously corresponds to the usual Muckenhoupt-
Bradley condition in dimension 1. Moreover, a corresponding weight characterization
is done by using a generalization of the Persson-Stepanov condition (see Theorem 2.2).
It is also proved that some similar results can be obtained if we instead assume that the
weight on the left hand side is of product type (see Theorems 2.4 and 2.5).

In Section 3. of this paper we prove some analogous multi-dimensional Hardy type
inequalities for the case 0 < q < p < ∞ when we alternately assume that the weight
on the right (or left) hand side in (1.2) is of product type (see Theorems 3.1–3.4).
Finally, in Section 4. we prove some natural corresponding limit inequalities (involving
the geometric mean operator (1.7)) of Theorems 2.2 and 3.2. However, for the case
0 < q < p < ∞ we have only obtained a sufficient condition.

Throughout this work an expression of the form 0 ·∞ is taken to be equal to zero.
The notation A � B means that A � cB with some constant c > 0 depending at
most on the dimension n and the parameters of summation p and q. Moreover, A ≈ B
means that A � B � A. The inverse function of a function h is denoted by h−1 . We
also use the symbols := and =: for introducing new quantities or notations and the
symbol � to note the end of a proof.
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2. Multi-dimensional Hardy type inequalities – the case 1 < p � q < ∞

In this and the next sections we deal with the inequality (1.2), where one of the
two weight functions v and w is of product type, that is where

v(y) = v(y1, . . . , yn) = v1(y1) . . . vn(yn) (2.1)

or
w(x) = w(x1, . . . , xn) = w1(x1) . . .wn(xn). (2.2)

Conditions (2.1) and (2.2) are satisfied, for instance, by a power function of n variables.
In this Section we obtain new necessary and sufficient conditions for the validity

of (1.2) in the case 1 < p � q < ∞ and when (2.1) is satisfied. The same problem is
considered here with the assumption (2.2). Our estimates are n -dimensional analogies
of well known Muckenhoupt-Mazya-Rozin-typeand Persson-Stepanov-type criteria for
the one-dimensional integral Hardy inequality (see [2], [4] and [6]).

In the next preliminary Lemmas we state some necessary conditions for the in-
equality (1.2) to hold in the case 1 < p � q < ∞ without of any restrictions on the
weight functions w and v. These Lemmas are useful in our proofs later on but also
of independent interest because they indicate the problem to extend Theorem 1.1 to
n -dimensional case.

LEMMA 2.1. Let 1 < p � q < ∞ and assume that the inequality (1.2) holds for
all measurable functions f on R

n
+ with a finite constant C, which is independent on

f . Then

sup
ti>0

i=1,...,n

W(t1, . . . , tn)
1
q V(t1, . . . , tn)

1
p′ < ∞, (2.3)

where

W(t1, . . . , tn) :=W(t) =
∫ ∞

t1

. . .

∫ ∞

tn

w(x)dx

and

V(t1, . . . , tn) := V(t) =
∫ t1

0
. . .

∫ tn

0
v(y)1−p′dy.

Proof. For t = (t1, . . . , tn) such that ti > 0, i = 1, . . . , n, we take a test function

f t(y) :=χ[0,t1](y1) . . .χ[0,tn ](yn)v(y)1−p′ (2.4)

and put it into the inequality (1.2). Then we have that

C �

(∫
R

n
+

(∫ x1

0 . . .
∫ xn

0 f t(y)dy
)q

w(x)dx
) 1

q

(∫
R

n
+

f p
t (y)v(y)dy

) 1
p

�

(∫∞
t1

. . .
∫∞

tn
w(x)dx

) 1
q
(∫ t1

0 . . .
∫ tn

0 v(y)1−p′dy
)

(∫ t1
0 . . .

∫ tn
0 v(y)1−p′dy

) 1
p

= W(t)
1
q V(t)

1
p′ .

Thus, (2.3) follows by taking the supremum over all ti > 0, i = 1, . . . , n. �
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LEMMA 2.2. Let 1 < p � q < ∞ and suppose that the inequality (1.2) holds
for all measurable functions f on R

n
+ with some finite constant C independent on f .

Then

sup
ti>0

i=1,...,n

V(t1, . . . , tn)
− 1

p

(∫ t1

0
. . .

∫ tn

0
w(x)V(x)qdx

) 1
q

< ∞. (2.5)

Proof. This statement follows evidently by substituting into the inequality (1.2)
the function f t(y) (see (2.4)) for t = (t1, . . . , tn) such that ti > 0, i = 1, . . . , n. �

LEMMA 2.3. Let 1 < p � q < ∞ and assume that the inequality (1.2) holds
for all measurable functions f on R

n
+ with some finite constant C independent on f .

Then

sup
ti>0

i=1,...,n

W(t1, . . . , tn)
− 1

q′
(∫ ∞

t1

. . .

∫ ∞

tn

v(x)1−p′W(x)p′dx
) 1

p′
< ∞. (2.6)

Proof. By duality the inequality (1.2) is equivalent to the inequality(∫
R

n
+

(H∗
n g)p′ (x)v1−p′(x)dx

) 1
p′

� C

(∫
R

n
+

gq′(y)w1−q′(y)dy

) 1
q′

(2.7)

with the dual operator H∗
n defined by

(H∗
n g)(x) :=

∫ ∞

x1

. . .

∫ ∞

xn

g(y)dy, x1, . . . , xn > 0. (2.8)

Now (2.6) follows by substituting into the inequality (2.7) the function

gt(y) := χ[t1,∞)(y1) . . . χ[tn,∞)(yn)w(y)

for t = (t1, . . . , tn) such that ti > 0, i = 1, . . . , n, and taking supremum. �

REMARK 2.1. Note that for n = 2 the statements of Lemmas 2.1–2.3 follow from
Theorem 1.1.

The first main theorem in this Section reads:

THEOREM 2.1. Let 1 < p � q < ∞ and the weight function v be of product
type (2.1). Then the inequality (1.2) holds for all measurable functions f on R

n
+ with

some finite constant C, which is independent on f , if and only if AMn < ∞, where

AMn := sup
ti>0

i=1,...,n

W(t1, . . . , tn)
1
q V1(t1)

1
p′ . . .Vn(tn)

1
p′ (2.9)

and

Vi(ti) :=
∫ ti

0
vi(xi)1−p′dxi, i = 1, . . . , n.

Moreover, C ≈ AMn with constants of equivalence depending only on the parameters
p, q and the dimension n.
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Proof. The necessary part of the proof follows from Lemma 2.1 while the suffi-
ciency can be obtained from the n -dimensional extension of Theorem 1.2 and from the
following Lemma 2.4. �

LEMMA 2.4. Let

AWn := AWn(s1, . . . , sn) := sup
ti>0

i=1,...,n

V1(t1)
s1−1

p . . . Vn(tn)
sn−1

p

×
(∫ ∞

t1

. . .

∫ ∞

tn

w(x)V1(x1)
q(p−s1)

p . . . Vn(xn)
q(p−sn )

p dx
) 1

q

,

where si ∈ (1, p), i = 1, . . . , n. Then

AWn � AMn . (2.10)

Proof. Let n = 2 and s1 = s2 = 1+p
2 . Then

AW2 = sup
t1,t2>0

V1(t1)
1

2p′ V2(t2)
1

2p′
(∫ ∞

t1

∫ ∞

t2

w(x1, x2)V1(x1)
q

2p′ V2(x2)
q

2p′ dx2dx1

) 1
q

.

Since

Vi(xi)
q

2p′ =
q

2p′

∫ xi

0
vi(yi)1−p′Vi(yi)

q
2p′ −1

dyi, i = 1, 2,

we have that

V1(x1)
q

2p′ V2(x2)
q

2p′ ≈
([∫ t1

0
+
∫ x1

t1

]
v1(y1)1−p′V1(y1)

q
2p′ −1

dy1

)
×
([∫ t2

0
+
∫ x2

t2

]
v2(y2)1−p′V2(y2)

q
2p′ −1

dy2

)
=

∫ t1

0
v1(y1)1−p′V1(y1)

q
2p′ −1

dy1

∫ t2

0
v2(y2)1−p′V2(y2)

q
2p′ −1

dy2

+
∫ x1

t1

v1(y1)1−p′V1(y1)
q

2p′ −1
dy1

∫ x2

t2

v2(y2)1−p′V2(y2)
q

2p′ −1
dy2

+
∫ t1

0
v1(y1)1−p′V1(y1)

q
2p′ −1

dy1

∫ x2

t2

v2(y2)1−p′V2(y2)
q

2p′ −1
dy2

+
∫ x1

t1

v1(y1)1−p′V1(y1)
q

2p′ −1
dy1

∫ t2

0
v2(y2)1−p′V2(y2)

q
2p′ −1

dy2

=: I11 + I22 + I12 + I21.

Thus, ∫ ∞

t1

∫ ∞

t2

w(x1, x2)V1(x1)
q

2p′ V2(x2)
q

2p′ dx2dx1

≈
∫ ∞

t1

∫ ∞

t2

w(x1, x2) [I11 + I22 + I12 + I21] dx2dx1

=: J11 + J22 + J12 + J21.
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Clearly that

V1(t1)
1

2p′ V2(t2)
1

2p′ [J11]
1
q � AM2 .

Further

J22 =
∫ ∞

t1

∫ ∞

t2

w(x1, x2)
(∫ x1

t1

v1(y1)1−p′V1(y1)
q

2p′ −1
dy1

)
×
(∫ x2

t2

v2(y2)1−p′V2(y2)
q

2p′ −1
dy2

)
dx2dx1

=
∫ ∞

t1

∫ ∞

t2

v1(y1)1−p′V1(y1)
q

2p′ −1
v2(y2)1−p′V2(y2)

q
2p′ −1

×
(∫ ∞

y1

∫ ∞

y2

w(x1, x2)dx2dx1

)
dy2dy1

� Aq
M2

∫ ∞

t1

V1(y1)
− q

2p′ −1
v1(y1)1−p′dy1

∫ ∞

t2

V2(y2)
− q

2p′ −1
v2(y2)1−p′dy2

� Aq
M2

V1(t1)
− q

2p′ V2(t2)
− q

2p′ .

Hence,

V1(t1)
1

2p′ V2(t2)
1

2p′ [J11]
1
q � AM2 .

The terms with J12 and J21 are estimated analogously. The method works for any
n > 2 by induction. �

REMARK 2.2. The condition AMn < ∞ may be regarded as a natural end point of
the conditions given in Theorem 1.2 and also as a natural generalization of the usual
Muckenhoupt-Bradley condition in one dimension.

The alternative criterion for the Hardy inequality (1.2) to hold with product type
weight v satisfying (2.1) in the case 1 < p � q < ∞ is stated by the following

THEOREM 2.2. Let 1 < p � q < ∞ and the weight function v be of product
type (2.1). Then the inequality (1.2) holds for all measurable functions f on R

n
+ with

some finite constant C, which is independent on f , if and only if APSn < ∞, where

APSn := sup
ti>0

i=1,...,n

V1(t1)
− 1

p . . . Vn(tn)
− 1

p

×
(∫ t1

0
. . .

∫ tn

0
w(x)V1(x1)q . . . Vn(xn)qdx

) 1
q

. (2.11)

Moreover, C ≈ APSn with constants of equivalence depending only on the parameters
p, q and n.

Proof. The necessary part follows from Lemma 2.2. The proof of the sufficiency
can be obtained from Theorem 2.1 and the following Lemma 2.5. �
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LEMMA 2.5. We have
AMn � APSn . (2.12)

Proof. Let n = 2. Suppose first that V1(∞) = V2(∞) = ∞. Then∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1 =
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)qV1(x1)−qdx1dx2

= q
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)q

(∫ ∞

x1

V1(y1)−q−1dV1(y1)
)

dx1dx2

= q
∫ ∞

t2

∫ ∞

t1

V1(y1)−q−1

(∫ y1

t1

w(x1, x2)V1(x1)qdx1

)
dV1(y1)dx2

� q
∫ ∞

t1

V1(y1)−q−1
∫ ∞

t2

V2(x2)qV2(x2)−q

(∫ y1

0
w(x1, x2)V1(x1)qdx1

)
dx2dV1(y1)

� q2
∫ ∞

t1

∫ ∞

t2

V1(y1)−q−1V2(y2)−q−1

×
(∫ y2

0

∫ y1

0
w(x1, x2)V1(x1)qV2(x2)qdx1dx2

)
dV2(y2)dV1(y1)

� q2Aq
PS2

∫ ∞

t1

∫ ∞

t2

V1(y1)
− q

p′ −1
V2(y2)

− q
p′ −1

dV2(y2)dV1(y1)

= (p′)2Aq
PS2

V1(t1)
− q

p′ V2(t2)
− q

p′ .

Thus, we get that

V1(t1)
1
p′ V2(t2)

1
p′
(∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1

) 1
q

� APS2 .

Further, suppose that Vi(∞) < ∞ for all i = 1, 2. Note that

Vi(xi)−q = Vi(∞)−q + q
∫ ∞

xi

Vi(yi)−q−1dVi(yi), i = 1, 2. (2.13)

Therefore,∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1

=
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)qV2(x2)qV1(x1)−qV2(x2)−qdx1dx2

= V1(∞)−qV2(∞)−q
∫ ∞

t1

∫ ∞

t2

w(x1, x2)V1(x1)qV2(x2)qdx2dx1

+ qV1(∞)−q
∫ ∞

t1

∫ ∞

t2

w(x1, x2)V1(x1)qV2(x2)q

(∫ ∞

x2

V2(y2)−q−1dV2(y2)
)

dx2dx1

+ qV2(∞)−q
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)qV2(x2)q

(∫ ∞

x1

V1(y1)−q−1dV1(y1)
)

dx1dx2
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+ q2
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)qV2(x2)q

×
(∫ ∞

x1

∫ ∞

x2

V1(y1)−q−1V2(y2)−q−1dV2(y2)dV1(y1)
)

dx1dx2

=: J11 + J12 + J21 + J22.

Obviously that

J11 � V1(∞)−qV2(∞)−q
∫ ∞

0

∫ ∞

0
w(x1, x2)V1(x1)qV2(x2)qdx2dx1

� Aq
PS2

V1(∞)
− q

p′ V2(∞)
− q

p′ .

By changing the order of integration we have that

J12 � qV1(∞)−q
∫ ∞

0

∫ ∞

t2

w(x1, x2)V1(x1)qV2(x2)q

×
(∫ ∞

x2

V2(y2)−q−1dV2(y2)
)

dx2dx1

� qV1(∞)−q
∫ ∞

0

∫ ∞

t2

V2(y2)−q−1

×
(∫ y2

0
w(x1, x2)V1(x1)qV2(x2)qdx2

)
dV2(y2)dx1

= qV1(∞)−q
∫ ∞

t2

V2(y2)−q−1

×
(∫ y2

0

∫ ∞

0
w(x1, x2)V1(x1)qV2(x2)qdx2dx1

)
dV2(y2)

� qAq
PS2

V1(∞)
− q

p′
∫ ∞

t2

V2(y2)
− q

p′ −1
dV2(y2)

= p′Aq
PS2

[
V1(∞)

− q
p′ V2(t2)

− q
p′ − V1(∞)

− q
p′ V2(∞)

− q
p′
]

.

Analogously,

J21 � p′Aq
PS2

[
V1(t1)

− q
p′ V2(∞)

− q
p′ − V1(∞)

− q
p′ V2(∞)

− q
p′
]

.

By changing the order of integration we have for J22 that

J22 � q2
∫ ∞

t1

∫ ∞

t2

(∫ y1

0

∫ y2

0
w(x1, x2)V1(x1)qV2(x2)qdx2dx1

)
×V1(y1)−q−1V2(y2)−q−1dV2(y2)dV1(y1)

� (p′)2Aq
PS2

[
V1(t1)

− q
p′ V2(t2)

− q
p′ − V1(∞)

− q
p′ V2(t2)

− q
p′

−V1(t1)
− q

p′ V2(∞)
− q

p′ + V1(∞)
− q

p′ V2(∞)
− q

p′
]

.
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Therefore, it follows that

V1(t1)
1
p′ V2(t2)

1
p′ [J11 + J12 + J21 + J22]

1
q � (p′)

2
q APS2 .

Consider now one of the mixed cases when V1(∞) = ∞ and V2(∞) < ∞. Write∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1 =
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)qV1(x1)−qdx1dx2

= q
∫ ∞

t2

∫ ∞

t1

w(x1, x2)V1(x1)q

(∫ ∞

x1

V1(y1)−q−1dV1(y1)
)

dx1dx2

� q
∫ ∞

t2

∫ ∞

t1

V1(y1)−q−1

(∫ y1

0
w(x1, x2)V1(x1)qdx1

)
dV1(y1)dx2.

Further, by using (2.13) with i = 2 we get that∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1

� q
∫ ∞

t1

V1(y1)−q−1
∫ ∞

t2

(∫ y1

0
w(x1, x2)V1(x1)qdx1

)
V2(x2)qV2(x2)−qdx2dV1(y1)

= qV2(∞)−q
∫ ∞

t1

V1(y1)−q−1
∫ ∞

t2

(∫ y1

0
w(x1, x2)V1(x1)qdx1

)
V2(x2)qdx2dV1(y1)

+q2
∫ ∞

t1

V1(y1)−q−1
∫ ∞

t2

(∫ y1

0
w(x1, x2)V1(x1)qdx1

)
V2(x2)q

×
(∫ ∞

x2

V2(y2)−q−1dV2(y2)
)

dx2dV1(y1)

� qV2(∞)−q
∫ ∞

t1

V1(y1)−q−1

(∫ ∞

0

∫ y1

0
w(x1, x2)V1(x1)qV2(x2)qdx1dx2

)
dV1(y1)

+q2
∫ ∞

t1

V1(y1)−q−1
∫ ∞

t2

V2(y2)−q−1

×
(∫ y1

0

∫ y2

0
w(x1, x2)V1(x1)qV2(x2)qdx2dx1

)
dV2(y2)dV1(y1)

� (p′)2Aq
PS2

V1(t1)
− q

p′ V2(t2)
− q

p′ .

Hence, it yields that

V1(t1)
1
p′ V2(t2)

1
p′
(∫ ∞

t1

∫ ∞

t2

w(x1, x2)dx2dx1

) 1
q

� (p′)
2
q APS2 .

The case V1(∞) < ∞, V2(∞) = ∞ can be proved analogously. The proof for n = 2
is complete. For any n > 2 the statement of Lemma follows by induction. �

Further we discuss the inequality (1.2) with the left hand side weight function
of product type. In particular, in Theorems 2.4 and 2.5 we state a Muckenhoupt-
type and Persson-Stepanov-type criteria for the inequality (1.2) to hold in the case
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1 < p � q < ∞ with the left hand side weight w to be of product type (2.2). The
proofs of these results are analogous to the proofs of Theorems 2.1, 2.2 and based on
some statements formulated below. The first of them is dual to n -dimensional extension
of Theorem 1.2 and reads:

THEOREM 2.3. Let 1 < q′ � p′ < ∞, si ∈ (1, q′), i = 1, . . . , n, and the weight
function w be of product type (2.2) Then the inequality (2.7) holds for all measurable
functions g if and only if A∗

Wn
< ∞, where

A∗
Wn

:= A∗
Wn

(s1, . . . , sn) := sup
ti>0

i=1,...,n

W1(t1)
s1−1

q′ . . . Wn(tn)
sn−1

q′

×
(∫ t1

0
. . .

∫ tn

0
v(x)1−p′W1(x1)

p′(q′−s1)
q′ . . . Wn(xn)

p′(q′−sn)
q′ dx

) 1
p′

and

W(ti) :=
∫ ∞

ti

wi(xi)dxi, i = 1, . . . , n.

Moreover, C ≈ A∗
Wn

with constants of equivalence depending only on the parameters
p, q and n.

The following two auxiliary statements are similar to Lemmas 2.4 and 2.5, respec-
tively.

LEMMA 2.6. Let

A∗
Mn

:= sup
ti>0

i=1,...,n

W1(t1)
1
q . . . Wn(tn)

1
q V(t1, . . . , tn)

1
p′ .

Then
A∗

Wn
� A∗

Mn
. (2.14)

LEMMA 2.7. Let

A∗
PSn

:= sup
ti>0

i=1,...,n

W1(t1)
− 1

q′ . . .Wn(tn)
− 1

q′

×
(∫ ∞

t1

. . .

∫ ∞

tn

v(x)1−p′W1(x1)p′ . . . Wn(xn)p′dx
) 1

p′
.

Then
A∗

Mn
� A∗

PSn
. (2.15)

Now by passing to the dual inequality (2.7) of (1.2) we can get a Muckenhoupt-
type and Persson-Stepanov-type criteria for (1.2) with the left hand side weight w of
product type (2.2). The necessity in the proofs of these results follow from Lemmas
2.1 and 2.3, while the sufficient parts can be proved in the similar ways as in Theorems
2.1 and 2.2 but by using Theorem 2.3, Lemmas 2.6 and 2.7 instead of Theorem 1.2,
Lemmas 2.4 and 2.5, respectively.
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THEOREM 2.4. Let 1 < p � q < ∞ and the weight function w be of product
type (2.2). Then the inequality (1.2) holds for all measurable functions f on R

n
+ with

some finite constant C, which is independent on f , if and only if A∗
Mn

< ∞. Moreover,
C ≈ A∗

Mn
with constants of equivalence depending only on the parameters p, q and

n.

THEOREM 2.5. Let 1 < p � q < ∞ and the weight function w be of product
type. Then the inequality (1.2) holds for all measurable functions f on R

n
+ with some

finite constant C, which is independent on f , if and only if A∗
PSn

< ∞. Moreover,
C ≈ A∗

PSn
with constants of equivalence depending only on the parameters p, q and

n.

3. Multi-dimensional Hardy type inequalities – the case 1 < q < p < ∞

In this Section we will prove the similar results as in the previous Section but in
the case 1 < q < p < ∞. Let us introduce the following n -dimensional versions of
the Mazya-Rozin and Persson-Stepanov conditions in this case:

BMRn :=

(∫
R

n
+

W(t)
r
q V1(t1)

r
q′ . . . Vn(tn)

r
q′ dV1(t1) . . . dVn(tn)

) 1
r

,

BPSn :=

(∫
R

n
+

(∫ t1

0
. . .

∫ tn

0
w(x)V1(x1)q . . . Vn(xn)qdx

) r
q

× V1(t1)
− r

q . . . Vn(tn)
− r

q dV1(t1) . . . dVn(tn)
) 1

r
.

The following comparison between these constants is useful later on but also of inde-
pendent interest.

LEMMA 3.1. We have
BPSn � BMRn . (3.1)

Proof. It yields that∫ t1

0
. . .

∫ tn

0
w(x)V1(x1)q . . .Vn(xn)qdx

= qn
∫ t1

0
. . .

∫ tn

0
w(x)

×
(∫ x1

0
. . .

∫ xn

0
V1(y1)q−1 . . . Vn(yn)q−1dVn(yn) . . . dV1(y1)

)
dx

� qn
∫ t1

0
. . .

∫ tn

0
W(y)V1(y1)q−1 . . . Vn(yn)q−1dVn(yn) . . . dV1(y1)

[applying Hölder’s inequality with the exponents r/q and p/q ]
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= qn
∫ t1

0
. . .

∫ tn

0

{
W(y)V1(y1)

(q−1)+ q
2p . . . Vn(yn)

(q−1)+ q
2p

}
× V1(y1)

− q
2p . . . Vn(yn)

− q
2p dVn(yn) . . . dV1(y1)

� qn

(∫ t1

0
. . .

∫ tn

0
W(y)

r
q V1(y1)

(q−1+ q
2p ) r

q . . . Vn(yn)
(q−1+ q

2p ) r
q dVn(yn) . . .

× V1(y1))
q
r

(∫ t1

0
. . .

∫ tn

0
V1(y1)−

1
2 . . . Vn(yn)−

1
2 dVn(yn) . . . V1(y1)

) q
p

= qn2
qn
p

(∫ t1

0
. . .

∫ tn

0
W(y)

r
q V1(y1)

r
q′ + r

2p . . .

× Vn(yn)
r
q′ + r

2p dVn(yn) . . . dV1(y1)
) q

r
V1(t1)

q
2p . . . Vn(tn)

q
2p .

Hence, we obtain that

Br
PSn

� q
rn
q 2

rn
p

∫
R

n
+

(∫ t1

0
. . .

∫ tn

0
W(y)

r
q V1(y1)

r
q′ + r

2p . . .

× Vn(yn)
r
q′ + r

2p dVn(yn) . . . dV1(y1)
)

× V1(t1)
r
2p− r

q . . . Vn(tn)
r
2p− r

q dV1(t1) . . . dVn(tn).

Therefore, by changing the order of integration, we get that

Br
PSn

� q
rn
q 2

rn
p

∫
R

n
+

W(y)
r
q V1(y1)

r
q′ + r

2p . . . Vn(yn)
r
q′ + r

2p

×
(∫ ∞

y1

. . .

∫ ∞

yn

V1(t1)
r
2p− r

q . . . Vn(tn)
r
2p− r

q dVn(tn) . . . dV1(t1)
)

× dV1(y1) . . . dVn(yn) � q
rn
q 2

rn
p

(
2p
r

)n

Br
MRn

and the required estimate (3.1) is proved. �

Next we will state a similar comparison between the following dual versions of the
constants BMRn and BPSn :

B∗
MRn

:=

(∫
R

n
+

V(t)
r
p′ W1(t1)

r
p . . . Wn(tn)

r
p d [−W1(t1)] . . . d [−Wn(tn)]

) 1
r

,

B∗
PSn

:=

(∫
R

n
+

(∫ ∞

t1

. . .

∫ ∞

tn

v(x)1−p′W1(x1)p′ . . .Wn(xn)p′dx
) r

p′

× W1(t1)
− r

p′ . . . Wn(tn)
− r

p′ d [−W1(t1)] . . . d [−Wn(tn)]
) 1

r
.
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LEMMA 3.2. It yields that

B∗
PSn

� B∗
MRn

. (3.2)

Proof. The proof is similar to that of Lemma 3.1 so we omit the details. �
The following Theorems state necessary and sufficient conditions for the validity

of (1.2) in the case 1 < q < p < ∞ with weights satisfying the following additional
conditions:

V1(∞) = . . . = Vn(∞) = ∞ (3.3)

or
W1(0) = . . . = Wn(0) = ∞ (3.4)

THEOREM 3.1. Let 1 < q < p < ∞ and 1/r = 1/q − 1/p. Suppose that the
weight function v satisfies the conditions (2.1) and (3.3). Then the inequality (1.2)
holds for all measurable functions f on R

n
+ with some finite constant C, which is

independent on f , if and only if BMRn < ∞. Moreover, C ≈ BMRn with constants of
equivalence depending only on the parameters p, q and the dimension n.

Proof. Necessity. Suppose that the inequality (1.2) holds with C < ∞ and put

f (y) = W(y)
r
pq V1(y1)

r
pq′ v1(y1)1−p′ . . .Vn(yn)

r
pq′ vn(yn)1−p′ .

It is easy to see that
(∫

R
n
+

f p(x)v(x)dx
) 1

p
= B

r
p
MRn

. On the left hand side we have

(∫
R

n
+

(Hnf )q (x)w(x)dx

) 1
q

=

(∫
R

n
+

(∫ x1

0
. . .

∫ xn

0
f (t)dt

)(∫ x1

0
. . .

∫ xn

0
f (y)dy

)q−1

w(x)dx

) 1
q

=

(∫
R

n
+

f (t)

(∫ ∞

t1

. . .

∫ ∞

tn

(∫ x1

0
. . .

∫ xn

0
f (y)dy

)q−1

w(x)dx

)
dt

) 1
q

=

(∫
R

n
+

W(t)
r
pq V1(t1)

r
pq′ . . . Vn(tn)

r
pq′
(∫ ∞

t1

. . .

∫ ∞

tn

(∫ x1

0
. . .

∫ xn

0
W(y)

r
pq

× V1(y1)
r

pq′ . . . Vn(yn)
r

pq′dVn(yn). . . dV1(y1)
)q−1

w(x)dx
)

dV1(t1) . . . dVn(tn)
) 1

q

�
(∫

R
n
+

W(t)
r
pq +1V1(t1)

r
pq′ . . . Vn(tn)

r
pq′
(∫ t1

0
. . .

∫ tn

0
W(y)

r
pq

× V1(y1)
r

pq′ . . . Vn(yn)
r

pq′ dVn(yn) . . . dV1(y1)
)q−1

dV1(t1) . . . dVn(tn)
) 1

q

[since the function W is non-increasing and r/pq′ + 1 = r/p′q ]
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�
(∫

R
n
+

(∫ t1

0
. . .

∫ tn

0
V1(y1)

r
pq′ . . .Vn(yn)

r
pq′ dVn(yn) . . . dV1(y1)

)q−1

× W(t)
r
q V1(t1)

r
pq′ . . .Vn(tn)

r
pq′ dV1(t1) . . . dVn(tn)

) 1
q

=
(

p′q
r

) n
q′

B
r
q
MRn

and the estimate B
r
q
MRn

� CB
r
p
MRn

follows. Therefore, BMRn � C < ∞.
Sufficiency. Suppose that BMRn < ∞. On the strength of (3.3) we find that∫

R
n
+

(Hnf )q (x)w(x)dx

=
∫

R
n
+

(Hnf )q (x)V1(x1)qV1(x1)−q . . . Vn(xn)qVn(xn)−qw(x)dx

= qn
∫

R
n
+

(Hnf )q (x)V1(x1)q . . . Vn(xn)q

×
(∫ ∞

x1

. . .

∫ ∞

xn

V1(y1)−q−1 . . . Vn(yn)−q−1dVn(yn) . . . dV1(y1)
)

w(x)dx

� qn
∫

R
n
+

(Hnf )q (y)V1(y1)−q−1 . . .Vn(yn)−q−1

×
(∫ y1

0
. . .

∫ yn

0
w(x)V1(x1)q . . . Vn(xn)qdx

)
dVn(yn) . . . dV1(y1)

= qn
∫

R
n
+

{
(Hnf )q (y)V1(y1)−q . . . Vn(yn)−q

}{
V1(y1)−1 . . .Vn(yn)−1

×
(∫ y1

0
. . .

∫ yn

0
w(x)V1(x1)q . . . Vn(xn)qdx

)}
dVn(yn) . . . dV1(y1)

[by using Hölder’s inequality with exponents p/q and r/q ]

� Bq
PSn

(∫
R

n
+

(Hnf )p (y)V1(y1)−p . . .Vn(yn)−pdVn(yn) . . . dV1(y1)

) q
p

.

Moreover, according to Theorem 2.2,(∫
R

n
+

(Hnf )p (y)V1(y1)−p . . .Vn(yn)−pdVn(yn) . . . dV1(y1)

) q
p

�
(∫

R
n
+

f p(x)v1(x1) . . . vn(xn)dx

) q
p

.

By combining these inequalities we have that

∫
R

n
+

(Hnf )q (x)w(x)dx � Bq
PSn

(∫
R

n
+

f p(x)v1(x1) . . . vn(xn)dx

) q
p

. (3.5)
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Therefore, in view of Lemma 3.1, the inequality (1.2) holds and the proof is com-
plete. �

The corresponding result with the constant BPSn involved reads:

THEOREM 3.2. Let 1 < q < p < ∞ and 1/r = 1/q − 1/p. Suppose that the
weight function v satisfies the conditions (2.1) and (3.3). Then the inequality (1.2)
holds for all measurable functions f on R

n
+ with some finite constant C, which is

independent on f , if and only if BPSn < ∞. Moreover, C ≈ BPSn with constants of
equivalence depending only on the parameters p, q and the dimension n.

Proof. The necessity follows from Lemma 3.1 and Theorem 3.1. The sufficiency
is proved by (3.5). �

REMARK 3.1. Note that the sufficient parts of Theorems 3.1 and 3.2 in fact hold
for all 0 < q < p < ∞. Moreover, the necessary parts of these Theorems are correct
even without assuming that the condition (3.3) is satisfied.

By passing to the dual inequality (2.7) of (1.2) we can in a similar way as above
(but now using Lemma 3.2 instead of Lemma 3.1) get the following results for the case
1 < q < p < ∞ with the left hand side weight w of product type (2.2).

THEOREM 3.3. Let 1 < q < p < ∞ and 1/r = 1/q − 1/p. Assume that the
weight function w satisfies the conditions (2.2) and (3.4). Then the inequality (1.2)
holds for all measurable functions f on R

n
+ with some finite constant C, which is

independent on f , if and only if B∗
MRn

< ∞. Moreover, C ≈ B∗
MRn

with constants of
equivalence depending only on the parameters p, q and the dimension n.

THEOREM 3.4. Let 1 < q < p < ∞ and 1/r = 1/q − 1/p. Suppose that the
weight function w satisfies the conditions (2.2) and (3.4). Then the inequality (1.2)
holds for all measurable functions f on R

n
+ with some finite constant C, which is

independent on f , if and only if B∗
PSn

< ∞. Moreover, C ≈ B∗
PSn

with constants of
equivalence depending only on the parameters p, q and the dimension n.

4. Multi-dimensional limit Pólya–Knopp type inequalities

In this Section we will apply the results of Theorems 2.2 and 3.2 for the corre-
sponding investigation of the inequality (1.6) with the geometric mean operator given
by (1.7). Namely, we will characterize the inequality (1.6) in the case 0 < p � q < ∞
and give a sufficient condition for (1.6) to hold in the case 0 < q < p < ∞.

According to Jensen’s inequality it holds for any x ∈ R
n
+ that

(Gnf )(x) � 1
x1 . . . xn

(Hnf )(x). (4.1)

This fact allows us to find a upper estimate for the best constant of (1.6) via the inequality
(1.2) for the Hardy operator Hn, which is considered in a previous Section for p, q > 1
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and with a product type weight on one side. It is useful to rewrite (1.6) in the following
way (∫

R
n
+

(Gng)q (x)u(x)dx

) 1
q

� C

(∫
R

n
+

gp(x)dx

) 1
p

(4.2)

with g(x) = f (x)v(x)1/p and

u(x) :=(Gnv)(x)−
q
p w(x). (4.3)

Further, for any 0 < s < q we put p̃ := p/s, q̃ := q/s and after a new substitution
g(x) = h(x)1/s the inequality (4.2) gets the form(∫

R
n
+

(Gnh)q̃ (x)u(x)dx

)1/q̃

� C̃

(∫
R

n
+

hp̃(x)dx

)1/p̃

, (4.4)

where C̃ = Cs. Therefore, in view of (4.1) we have that the inequality corresponding
to (4.4) for the operator

(H̃nh)(x) :=
1

x1 . . . xn
(Hnh)(x) (4.5)

has the form (∫
R

n
+

(
H̃nh

)q̃
(x)u(x)dx

)1/q̃

� C̄

(∫
R

n
+

hp̃(x)dx

)1/p̃

. (4.6)

This is an inequality for the Hardy operator Hn with 1 < p̃, q̃ < ∞, w(x) =
(x1 . . . xn)−q̃u(x) and with the product weight v(x) ≡ 1. Now we are ready to state and
prove our results for the inequality (1.6). Our main result for the case 0 < p � q < ∞
reads:

THEOREM 4.1. Let 0 < p � q < ∞. Then the inequality (1.6) holds for all
positive measurable functions f on R

n
+ if and only if AGn < ∞, where

AGn := sup
ti>0

i=1,...,n

t−1/p
1 . . . t−1/p

n

(∫ t1

0
. . .

∫ tn

0
u(x)dx

)1/q

(4.7)

with u(x) defined by (4.3). Moreover, C ≈ AGn with constants of equivalence depend-
ing only on the parameters p, q and the dimension n.

Proof. Sufficiency. On the strength of (4.1) and Theorem 2.2 for 1 < p̃ � q̃ < ∞
the inequality (4.6) holds if

ĀGn := sup
ti>0

i=1,...,n

t−1/p̃
1 . . . t−1/p̃

n

(∫ t1

0
. . .

∫ tn

0
u(x)dx

)1/q̃

< ∞.
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Note that because of definitions of p̃ and q̃ it yields that

(ĀGn)
1
s = AGn .

Therefore, according to the fact that C = C̃1/s it follows that AGn < ∞ is a sufficient
condition for the validity of the inequality (1.6) in the case 0 < p � q < ∞.

Necessity. Suppose that (1.6) and, thus, (4.2) holds with C < ∞. Take a test
function

gt(y) = χ[0,t1](y1)t
− 1

p
1 . . . χ[0,tn](yn)t

− 1
p

n

and put it into the inequality (4.2). The function gt(y) is such that the right hand side
of (4.2) is equal to 1. Therefore,

C �
(∫

R
n
+

(Gngt)
q (x)u(x)dx

) 1
q

� t
− 1

p
1 . . . t

− 1
p

n

(∫ t1

0
. . .

∫ tn

0
u(x)dx

) 1
q

.

Hence, by taking supremum over all ti, i = 1, . . . , n, we have that AGn < ∞ and the
proof is complete. �

REMARK 4.1. Our proof above shows that Theorem 4.1 may be regarded as a limit
case of the result in Theorem 2.2.

Moreover, the inequality (4.1) and Theorem 3.2 allow us to obtain a sufficient
condition for (1.6) to hold in the case 0 < q < p < ∞. We state this result in the
following form:

THEOREM 4.2. Let 0 < q < p < ∞. Then the inequality (1.6) holds if BGn < ∞,
where

BGn :=

(∫
R

n
+

(∫ t1

0
. . .

∫ tn

0
u(x)dx

) r
q

t
− r

q
1 . . . t

− r
q

n dt1 . . . dtn

) 1
r

.

Proof. The statement follows from Theorem 3.2 by using the same arguments as
for the proof of a sufficiency part of Theorem 4.1. �

REMARK 4.2. Note that the condition BGn < ∞ is also necessary for (1.6) to hold
in the case 0 < q < p < ∞ with the additional assumption that the weight function u
is of product type. In this case we also have that C ≈ BGn , where C is the best constant
in (1.6).
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