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ON HOMOMORPHISMS BETWEEN C∗ –TERNARY ALGEBRAS

ABBAS NAJATI AND ASGHAR RANJBARI

(communicated by Th. Rassias)

Abstract. C. Park in his paper [C. Park, Isomorphisms between C∗ -ternary algebras, J. Math.
Anal. Appl. 327 (2007) 101–115.], has proved the Hyers-Ulam-Rassias stability of homomor-
phisms in C∗ -ternary algebras and of derivations on C∗ -ternary algebras for the following
Cauchy-Jensen additive mappings:

f

(
x + y

2
+ z

)
+ f

(
x − y

2
+ z

)
= f (x) + 2f (z), (0.1)

f

(
x + y

2
+ z

)
− f

(
x − y

2
+ z

)
= f (y), (0.2)

2f

(
x + y

2
+ z

)
= f (x) + f (y) + 2f (z). (0.3)

These are applied to investigate homomorphisms between C∗ -ternary algebras. In this paper
we prove the Hyers-Ulam-Rassias stability of homomorphisms in C∗ -ternary algebras and of
derivations on C∗ -ternary algebras for the linear combinations of the Cauchy-Jensen additive
mappings (0.1), (0.2) and (0.3).

1. Introduction and preliminaries

In 1940, S. M. Ulam [27] gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. Among these was
the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G′ with metric ρ(·, ·) . Given ε > 0 ,
does there exist a δ > 0 such that if f : G → G′ satisfies ρ(f (xy), f (x)f (y)) < δ for
all x, y ∈ G, then a homomorphism h : G → G′ exists with ρ(f (x), h(x)) < ε for all
x ∈ G?

In 1941, D. H. Hyers [7] considered the case of approximately additive mappings
f : E → E′ , where E and E′ are Banach spaces and f satisfies Hyers inequality

‖f (x + y) − f (x) − f (y)‖ � ε
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for all x, y ∈ E . It was shown that the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and that L : E → E′ is the unique additive mapping satisfying

‖f (x) − L(x)‖ � ε.

In 1978, Th. M. Rassias [19] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

THEOREM. (Th. M. Rassias) Let f : E → E′ be a mapping from a normed
vector space E into a Banach space E′ subject to the inequality

‖f (x + y) − f (x) − f (y)‖ � ε(‖x‖p + ‖y‖p) (♥ )

for all x, y ∈ E , where ε and p are constants with ε > 0 and p < 1 . Then the limit

L(x) = lim
n→∞

f (2nx)
2n

exists for all x ∈ E and L : E → E′ is the unique additive mapping which satisfies

‖f (x) − L(x)‖ � 2ε

2 − 2p
‖x‖p (♦ )

for all x ∈ E . If p < 0 then inequality (♥) holds for x, y �= 0 and (♦) for x �= 0.
Also, if the mapping t → f (tx) is continuous in t ∈ R for each fixed x ∈ X, then L is
R -linear.

In 1990, Th. M. Rassias [20] during the 27 th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved for
p � 1 . In 1991, Z. Gajda [5] following the same approach as in Th. M. Rassias [19],
gave an affirmative solution to this question for p > 1 . It was shown by Z. Gajda [5], as
well as by Th. M. Rassias and P. Šemrl [25] that one cannot prove a Th. M. Rassias’ type
theorem when p = 1 . The counterexamples of Z. Gajda [5], as well as of Th. M. Ras-
sias and P. Šemrl [25] have stimulated several mathematicians to invent new definitions
of approximately additive or approximately linear mappings, cf. P. Găvruta [6], S.
Jung [11], who among others studied the Hyers-Ulam-Rassias stability of functional
equations. The inequality (♥ ) that was introduced for the first time by Th. M. Rassias
[19] for the stability of the linear mapping between Banach spaces provided a lot of
influence in the development of a generalization of the Hyers-Ulam stability concept.
This new concept is known as Hyers-Ulam-Rassias stability of functional equations (cf.
the books of P. Czerwik [4], D.H. Hyers, G. Isac and Th. M. Rassias [8]).

P. Găvruta [6] provided a further generalization of Th. M. Rassias’ Theorem. In
1996, G. Isac and Th. M. Rassias [10] applied the Hyers-Ulam-Rassias stability theory
to prove fixed point theorems and study some new applications in Nonlinear Analy-
sis. In [9], D.H. Hyers, G. Isac and Th.M. Rassias studied the asymptoticity aspect
of Hyers-Ulam stability of mappings. During past few years several mathematicians
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have published on various generalizations and applications of Hyers-Ulam stability
and Hyers-Ulam-Rassias stability to a number of functional equations and mappings,
for example : quadratic functional equation, invariant means, multiplicative mappings
- superstability, bounded n th differences, convex functions, generalized orthogonal-
ity functional equation, Euler-Lagrange functional equation, Navier-Stokes equations.
Several mathematicians have contributed works on these subjects; we mention a few:
C. Park [12]–[17], Th. M. Rassias [21]–[24], F. Skof [26].

A. Prastaro and Th. M. Rassias [18] introduced for the first time the Hyers-Ulam-
Rassias stability approach for the study of Navier-Stokes equation.

Following the terminology of [1], a non-empty set G with a ternary operation
[·, ·, ·] : G×G×G → G is called a ternary groupoid and is denoted by (G, [·, ·, ·]) . The
ternary groupoid (G, [·, ·, ·]) is called commutative if [x1, x2, x3] = [xσ(1), xσ(2), xσ(3)]
for all x1, x2, x3 ∈ G and all permutations σ of {1, 2, 3} .

If a binary operation ◦ is defined on G such that [x, y, z] = (x ◦ y) ◦ z for
all x, y, z ∈ G , then we say that [·, ·, ·] is derived from ◦ . We say that (G, [·, ·, ·])
is a ternary semigroup if the operation [·, ·, ·] is associative, i.e., if [[x, y, z], u, v] =
[x, [y, z, u], v] = [x, y, [z, u, v]] holds for all x, y, z, u, v ∈ G (see [3]).

A C∗ -ternary algebra is a complex Banach space A , equipped with a ternary
product (x, y, z) 	→ [x, y, z] of A3 into A , which is C -linear in the outer vari-
ables, conjugate C -linear in the middle variable, and associative in the sense that
[x, y, [z, w, v]] = [x, [w, z, y], v] = [[x, y, z], w, v] , and satisfies ‖[x, y, z]‖ � ‖x‖ ·‖y‖ ·‖z‖
and ‖[x, x, x]‖ = ‖x‖3 (see [1, 28]). Every left Hilbert C∗ -module is a C∗ -ternary
algebra via the ternary product [x, y, z] := 〈 x, y〉 z .

If a C∗ -ternary algebra (A, [·, ·, ·]) has an identity, i.e., an element e ∈ A such
that x = [x, e, e] = [e, e, x] for all x ∈ A , then it is routine to verify that A , endowed
with x ◦ y := [x, e, y] and x∗ := [e, x, e] , is a unital C∗ -algebra. Conversely, if (A, ◦)
is a unital C∗ -algebra, then [x, y, z] := x ◦ y∗ ◦ z makes A into a C∗ -ternary algebra.

A C -linear mapping H : A → B is called a C∗ -ternary algebra homomorphism
if

H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z ∈ A . If, in addition, the mapping H is bijective, then the mapping
H : A → B is called a C∗ -ternary algebra isomorphism. A C -linear mapping
δ : A → A is called a C∗ -ternary derivation if

δ([x, y, z]) = [δ(x), y, z] + [x, δ(y), z] + [x, y, δ(z)]

for all x, y, z ∈ A (see [1]).

2. Stability of homomorphisms in C∗ -ternary algebras

Throughout this section, assume that A is a C∗ -ternary algebra with norm ‖.‖A

and that B a C∗ -ternary algebra with norm ‖.‖B .



390 ABBAS NAJATI AND ASGHAR RANJBARI

Let (α, β , γ ) ∈ R3. For a given mapping f : A → B, we define

Cμ f (x, y, z) := f
(μx + μy

2
+ μz

)
+ f

(μx − μy
2

+ μz
)
− μf (x) − 2μf (z),

Dμ f (x, y, z) := f
(μx + μy

2
+ μz

)
− f

(μx − μy
2

+ μz
)
− μf (y),

Eμ f (x, y, z) := 2f
(μx + μy

2
+ μz

)
− μf (x) − μf (y) − 2μf (z),

Δμα,β ,γ f (x, y, z) := αCμ f (x, y, z) + βDμ f (x, y, z) + γEμ f (x, y, z)

for all μ ∈ T1 := { λ ∈ C : |λ | = 1 } and all x, y, z ∈ A.
We will use the following lemma in this paper:

LEMMA 2.1. [14] Let X and Y be linear spaces and let f : X → Y be an
additive mapping such that f (μx) = μf (x) for all x ∈ X and all μ ∈ T1. Then the
mapping f is C -linear.

LEMMA 2.2. Let X and Y be linear spaces and let α, β , γ be real numbers such
that δ := α + β + 2γ �= 0. Suppose that f : X → Y is a mapping satisfying

Δμα,β ,γ f (x, y, z) = 0 (2.1)

for all μ ∈ T1 and all x, y, z ∈ X. Then the mapping f : X → Y is C -linear.

Proof. Letting x = y = z = 0 in (2.1), we get f (0) = 0. Letting z = 0 and
replacing x and y by 2x and 2y in (2.1), respectively, we get

(α + γ )
[
f (μx + μy) − μf (2x)

]
+ (β + γ )

[
f (μx + μy) − μf (2y)

]
+ (α − β)f (μx − μy) = 0

(2.2)

for all μ ∈ T1 and all x, y ∈ X. Letting y = x in (2.2), we get f (2μx) = μf (2x) for
all μ ∈ T

1 and all x ∈ X. So
f (μx) = μf (x) (2.3)

for all μ ∈ T1 and all x ∈ X. Letting x = y = z in (2.1), and using (2.3), we get
f (2x) = 2f (x) for all x ∈ X. Now, we show that f (x + y) = f (x) + f (y) for all
x, y ∈ X.

We have two cases:
Case I. α = β .
Replacing x and y by y and x in (2.2), we get

(α + γ )
[
f (μx + μy) − μf (2y)

]
+ (β + γ )

[
f (μx + μy) − μf (2x)

]
= 0 (2.4)

for all μ ∈ T1 and all x, y ∈ X. Adding (2.2) to (2.4) and using (2.3), we get

2f (x + y) = f (2x) + f (2y)

for all x, y ∈ X. Since f (2x) = 2f (x) for all x ∈ X, then we get from the last equation
that f (x + y) = f (x) + f (y) for all x, y ∈ X.
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Case II. α �= β .
Letting x = 0 in (2.2), we infer that the mapping f is odd. Replacing x and y

by y and x in (2.2), we get

(α + γ )
[
f (μx + μy) − μf (2y)

]
+ (β + γ )

[
f (μx + μy) − μf (2x)

]
+ (α − β)f (μy − μx) = 0

(2.5)

for all μ ∈ T1 and all x, y ∈ X. Adding (2.2) to (2.5) and using (2.3), we get

2f (x + y) = f (2x) + f (2y)

for all x, y ∈ X. So f (x + y) = f (x) + f (y) for all x, y ∈ X.
Hence by Lemma 2.1 the mapping f : X → Y is C -linear. �

We investigate the Hyers-Ulam-Rassias stability of homomorphisms in C∗ -ternary
algebras for the functional equation Δμα,β ,γ f (x, y, z) = 0.

THEOREM 2.3. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0, and let
ϕ : A3 → [0,∞) and ψ : A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=0

1
2n
ϕ(2nx, 2nx, 2nx) < ∞, lim

n→∞
1
2n
ϕ(2nx, 2ny, 2nz) = 0, (2.6)

lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0 (2.7)

for all x, y, z ∈ A. Suppose that f : A → B is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖B � ϕ(x, y, z), (2.8)

∥∥∥f ([x, y, z]) − [f (x), f (y), f (z)]
∥∥∥

B
� ψ(x, y, z) (2.9)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗ -ternary algebra
homomorphism H : A → B such that

∥∥f (x) − H(x)
∥∥

B
� 1

2|δ | ϕ̃(x) (2.10)

for all x ∈ A.

Proof. Letting μ = 1 and x = y = z in (2.8), we get

‖δ f (2x) − 2δ f (x)‖B � ϕ(x, x, x) (2.11)

for all x ∈ A. If we replace x by 2nx in (2.11) and divide both sides of (2.11) by
|δ |2n+1, we get∥∥∥ 1

2n+1 f (2n+1x) − 1
2n

f (2nx)
∥∥∥

B
� 1

|δ |2n+1ϕ(2nx, 2nx, 2nx)
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for all x ∈ A and all non-negative integers n. Hence

∥∥∥ 1
2n+1

f (2n+1x) − 1
2m

f (2mx)
∥∥∥

B
=

∥∥∥ n∑
k=m

[ 1
2k+1

f (2k+1x) − 1
2k

f (2kx)
]∥∥∥

B

�
n∑

k=m

∥∥∥ 1
2k+1

f (2k+1x) − 1
2k

f (2kx)
∥∥∥

B

� 1
2|δ |

n∑
k=m

1
2k
ϕ(2kx, 2kx, 2kx)

(2.12)

for all x ∈ A and all non-negative integers n � m � 0. It follows from (2.6) and
(2.12) that the sequence { 1

2n f (2nx)} is a Cauchy sequence for all x ∈ A. Since B
is complete, the sequence { 1

2n f (2nx)} converges. Thus one can define the mapping
H : A → B by

H(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (2.12) we get
(2.10).

It follows from (2.6) that

∥∥∥Δμα,β ,γH(x, y, z)
∥∥∥

B
= lim

n→∞
1
2n

∥∥∥Δμα,β ,γ f (2nx, 2ny, 2nz)
∥∥∥

B

� lim
n→∞

1
2n
ϕ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A. So Δμα,β ,γH(x, y, z) = 0 for all μ ∈ T1 and all x, y, z ∈ A. By
Lemma 2.1 the mapping H : A → B is C -linear.

It follows from (2.7) and (2.9) that

∥∥∥H([x, y, z]) − [H(x), H(y), H(z)]
∥∥∥

B

= lim
n→∞

1
8n

∥∥∥f ([2nx, 2ny, 2nz]) − [f (2nx), f (2ny), f (2nz)]
∥∥∥

B

� lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A . Therefore

H([x, y, z]) = [H(x), H(y), H(z)]

for all x, y, z ∈ A. Therefore the mapping H : A → B is a C∗ -ternary algebra
homomorphism.

Now, let Q : A → B be another C∗ -ternary algebra homomorphism satisfying
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(2.10). Then we have from (2.6) that

‖H(x) − Q(x)‖B = lim
n→∞

1
2n

‖f (2nx) − Q(2nx)‖B

� 1
2|δ | lim

n→∞
1
2n
ϕ̃(2nx)

=
1

2|δ | lim
n→∞

∞∑
k=n

1
2k
ϕ(2kx, 2kx, 2kx) = 0

for all x ∈ A. So H(x) = Q(x) for all x ∈ A. This proves the uniqueness of H. Thus
the mapping H : A → B is a unique C∗ -ternary algebra homomorphism satisfying
(2.10). �

COROLLARY 2.4. Let α, β , γ be real numbers and let ε, θ, p1, p2, p3, q1, q2, q3

be non-negative real numbers such that δ := α +β + 2γ �= 0, 0 < p1, p2, p3 < 1 and
0 < q1, q2, q3 < 3. Suppose that f : A → B is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖B � θ(‖x‖p1
A + ‖y‖p2

A + ‖z‖p3
A ), (2.13)∥∥∥f ([x, y, z]) − [f (x), f (y), f (z)]

∥∥∥
B

� ε(‖x‖q1
A + ‖y‖q2

A + ‖z‖q3
A ) (2.14)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗ -ternary algebra
homomorphism H : A → B such that∥∥f (x) − H(x)

∥∥
B

� θ
|δ |

{ 1
2 − 2p1

‖x‖p1
A +

1
2 − 2p2

‖x‖p2
A +

1
2 − 2p3

‖x‖p3
A

}
for all x ∈ A.

THEOREM 2.5. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0, and let
Φ : A3 → [0,∞) and Ψ : A3 → [0,∞) be functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ
( x

2n
,

x
2n

,
x
2n

)
< ∞, lim

n→∞ 2nΦ
( x

2n
,

y
2n

,
z
2n

)
= 0, (2.15)

lim
n→∞ 8nΨ

( x
2n

,
y
2n

,
z
2n

)
= 0 (2.16)

for all x, y, z ∈ A. Suppose that f : A → B is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖B � Φ(x, y, z), (2.17)∥∥∥f ([x, y, z]) − [f (x), f (y), f (z)]
∥∥∥

B
� Ψ(x, y, z) (2.18)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗ -ternary algebra
homomorphism H : A → B such that∥∥f (x) − H(x)

∥∥
B

� 1
2|δ |Φ̃(x) (2.19)

for all x ∈ A.
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Proof. Letting μ = 1 and x = y = z in (2.17), we get

‖δ f (2x) − 2δ f (x)‖B � Φ(x, x, x) (2.20)

for all x ∈ A. If we replace x by x
2n+1 in (2.20) and multiply both sides of (2.20) to

2n

|δ | , we get ∥∥∥2n+1f
( x

2n+1

)
− 2nf

( x
2n

)∥∥∥
B

� 2n

|δ |Φ
( x

2n+1
,

x
2n+1

,
x

2n+1

)
for all x ∈ A and all non-negative integers n. Hence∥∥∥2n+1f

( x
2n+1

)
− 2mf

( x
2m

)∥∥∥
B

=
∥∥∥ n∑

k=m

[
2k+1f

( x
2k+1

)
− 2kf

( x
2k

)]∥∥∥
B

�
n∑

k=m

∥∥∥2k+1f
( x

2k+1

)
− 2kf

( x
2k

)∥∥∥
B

� 1
2|δ |

n∑
k=m

2k+1Φ
( x

2k+1
,

x
2k+1

,
x

2k+1

)
(2.21)

for all x ∈ A and all non-negative integers n � m � 0. It follows from (2.15) and
(2.21) that the sequence {2nf ( x

2n )} is a Cauchy sequence for all x ∈ A. Since B
is complete, the sequence {2nf ( x

2n )} converges. Thus one can define the mapping
H : A → B by

H(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ A. Moreover, letting m = 0 and passing the limit n → ∞ in (2.21) we get
(2.19).

The rest of the proof is similar to the proof of Theorem 2.3. �

COROLLARY 2.6. Let α, β , γ be real numbers and let ε, θ, p1, p2, p3, q1, q2, q3

be non-negative real numbers such that δ := α + β + 2γ �= 0, p1, p2, p3 > 1 and
q1, q2, q3 > 3. Suppose that f : A → B is a mapping satisfying (2.13) and (2.14). Then
there exists a unique C∗ -ternary algebra homomorphism H : A → B such that∥∥f (x) − H(x)

∥∥
B

� θ
|δ |

{ 1
2p1 − 2

‖x‖p1
A +

1
2p2 − 2

‖x‖p2
A +

1
2p3 − 2

‖x‖p3
A

}
for all x ∈ A.

3. Homomorphisms between C∗ -ternary algebras

In this section we improve the results in Theorems 2.3, 2.4, 3.3 and 3.4 of [15].

THEOREM 3.1. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that δ := α + β + 2γ �= 0, p1 > 0 and qi �= 1 for
some 1 � i � 3. Suppose that f : A → B is a mapping satisfying∥∥Δμα,β ,γ f (x, y, z)

∥∥
B

� θ‖x‖p1
A ‖y‖p2

A ‖z‖p3
A , (3.1)
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∥∥f ([x, y, z]) − [f (x), f (y), f (z)]
∥∥

B
� ε‖x‖q1

A ‖y‖q2
A ‖z‖q3

A (3.2)

for all μ ∈ T1 and all x, y, z ∈ A (x, y, z ∈ A\{0} when qi < 0 for some 1 � i � 3).
Then the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Note that we put ‖.‖0
A = 1.

Proof. Since p1 > 0, then by letting x = y = z = 0 in (3.1), we get f (0) = 0.
Letting x = 0 and replacing y by 2y in (3.1), we get

δ f (μy + μz) + (α − β)f (μz − μy)
− 2μ(α + γ )f (z) − μ(β + γ )f (2y) = 0

(3.3)

for all μ ∈ T1 and all y, z ∈ A. Letting y = z in (3.3), we get

δ f (2μy) − 2μ(α + γ )f (y) − μ(β + γ )f (2y) = 0 (3.4)

for all μ ∈ T1 and all y ∈ A. Replacing μ by −μ in (3.4), we get

δ f (−2μy) + 2μ(α + γ )f (y) + μ(β + γ )f (2y) = 0 (3.5)

for all μ ∈ T1 and all y ∈ A. Adding (3.4) to (3.5), we get that f (2μy)+ f (−2μy) =
0 for all μ ∈ T1 and all y ∈ A. So f is odd.

Now, we show that f (μx) = μf (x) and f (x + y) = f (x) + f (y) for all μ ∈ T
1

and all x, y ∈ A.
We have two cases:
(i) Let α+γ �= 0. Letting y = 0 in (3.3), we get f (μz) = μf (z) for all μ ∈ T1

and all z ∈ A. Therefore it follows from (3.4) that f (2y) = 2f (y) for all y ∈ A. So it
follows from (3.3) that

δ f (y + z) + (α − β)f (z − y) = 2(α + γ )f (z) + 2(β + γ )f (y) (3.6)

for all y, z ∈ A. Replacing y by −y in (3.6) and using the oddness of f , we get

δ f (z − y) + (α − β)f (z + y) = 2(α + γ )f (z) − 2(β + γ )f (y) (3.7)

for all y, z ∈ A. Adding (3.6) to (3.7), we get

f (y + z) + f (z − y) = 2f (z) (3.8)

for all y, z ∈ A. Replacing y and z by y−z
2 and y+z

2 in (3.8), respectively, we get
f (y + z) = f (y) + f (z) for all y, z ∈ A.

(ii) Let α + γ = 0. Since δ �= 0, then β + γ �= 0. Letting z = 0 in (3.3) and
using the oddness of f , we get 2f (μy) = μf (2y) for all μ ∈ T1 and all y ∈ A. Hence
by letting μ = 1, we get f (2y) = 2f (y) for all y ∈ A. So f (μy) = μf (y) for all
μ ∈ T1 and all y ∈ A. It follows from (3.3) that

f (y + z) − f (z − y) = 2f (y) (3.9)

for all y, z ∈ A. Replacing y and z by y+z
2 and y−z

2 in (3.9), respectively, we get
f (y + z) = f (y) + f (z) for all y, z ∈ A.

Hence, by Lemma 2.1 the mapping f : A → B is C -linear.
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Without any loss of generality, we may suppose that q1 �= 1. Let q1 > 1. It
follows from (3.2) that∥∥∥f ([x, y, z]) − [f (x), f (y), f (z)]

∥∥∥
B

= lim
n→∞ 2n

∥∥∥f
([ x

2n
, y, z

])
−

[
f
( x

2n

)
, f (y), f (z)

]∥∥∥
B

� ε lim
n→∞

2n

2nq1
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A. Therefore

f ([x, y, z]) = [f (x), f (y), f (z)] (3.10)

for all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 2 � i � 3). Since
f (0) = 0, then (3.10) holds for all x, y, z ∈ A when qi < 0 for some 2 � i � 3.
Similarly, for q1 < 1, we get (3.10). So the mapping f : A → B is a C∗ -ternary
algebra homomorphism. �

THEOREM 3.2. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that α + γ �= 0, p1 > 0 and qi �= 1 for some
1 � i � 3. Suppose that f : A → B is a mapping satisfying (3.1) and (3.2) for all
μ ∈ T1 and all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then
the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Note that we put ‖.‖0
A = 1.

Proof. Letting x = 0 and replacing y by 2y in (3.1), we get

δ f (μy + μz) + (α − β)f (μz − μy)
− 2μ(α + γ )f (z) − μ(β + γ )f (2y) − μ(α + γ )f (0) = 0

(3.11)

for all μ ∈ T1 and all y, z ∈ A. Replacing μ by −μ in (3.11), we get

δ f (−μy − μz) + (α − β)f (−μz + μy)
+ 2μ(α + γ )f (z) + μ(β + γ )f (2y) + μ(α + γ )f (0) = 0

(3.12)

for all μ ∈ T
1 and all y, z ∈ A. Adding (3.11) to (3.12) and letting z = 0 in the

obtained equation, we get f (μy) + f (−μy) = 0 for all μ ∈ T1 and all y ∈ A. So the
mapping f is odd and f (0) = 0. Therefore we obtain (3.3) from (3.11).

It follows from the proof of case (i) of Theorem 3.1 that the mapping f : A → B
is C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. �

THEOREM 3.3. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that α + γ �= 0, p2 > 0 and qi �= 1 for some
1 � i � 3. Suppose that f : A → B is a mapping satisfying (3.1) and (3.2) for all
μ ∈ T1 and all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then
the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Note that we put ‖.‖0
A = 1.
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Proof. Letting y = 0 and replacing x by 2x in (3.1), we get

2(α + γ )f (μx + μz) − μ(α + γ )f (2x)
− 2μ(α + γ )f (z) − μ(β + γ )f (0) = 0

(3.13)

for all μ ∈ T1 and all x, z ∈ A. Replacing μ by −μ in (3.13), we get

2(α + γ )f (−μx − μz) + μ(α + γ )f (2x)
+ 2μ(α + γ )f (z) + μ(β + γ )f (0) = 0

(3.14)

for all μ ∈ T1 and all x, z ∈ A. Adding (3.13) to (3.14), we infer that the mapping f
is odd and f (0) = 0. So it follows from (3.13)that

2f (μx + μz) = μf (2x) + 2μf (z) (3.15)

for all μ ∈ T1 and all x, z ∈ A. Letting z = 0 in (3.15), we get 2f (μx) = μf (2x) for
all μ ∈ T1 and all x ∈ A. So

f (2x) = 2f (x), f (μx) = μf (x) (3.16)

for all μ ∈ T1 and all x ∈ A. It follows from (3.15) and (3.16) that f (x + z) =
f (x) + f (z) for all x, z ∈ A. Hence, by Lemma 2.1 the mapping f : A → B is
C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. �

THEOREM 3.4. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that α + γ �= 0, p3 > 0 and qi �= 1 for some
1 � i � 3. Suppose that f : A → B is a mapping satisfying (3.1) and (3.2) for all
μ ∈ T

1 and all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Then
the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Note that we put ‖.‖0
A = 1.

Proof. Letting z = 0 and replacing x and y by 2x and 2y in (3.1), respectively,
we get

δ f (μx + μy) + (α − β)f (μx − μy) − μ(α + γ )f (2x)
− μ(β + γ )f (2y) − 2μ(α + γ )f (0) = 0

(3.17)

for all μ ∈ T1 and all x, y ∈ A. Replacing μ by −μ in (3.17), we get

δ f (−μx − μy) + (α − β)f (−μx + μy) + μ(α + γ )f (2x)
+ μ(β + γ )f (2y) + 2μ(α + γ )f (0) = 0

(3.18)

for all μ ∈ T1 and all x, y ∈ A. Adding (3.17) to (3.18), we get

δ
[
f (μx + μy) + f (−μx − μy)

]
+ (α − β)

[
f (μx − μy) + f (−μx + μy)

]
= 0

for all μ ∈ T1 and all x, y ∈ A. Letting μ = 1 and y = 0 in the last equation, we infer
that the mapping f is odd and so f (0) = 0. Therefore by letting y = 0 in (3.17), we
get 2f (μx) = μf (2x) for all μ ∈ T1 and all x ∈ A. Hence

f (2x) = 2f (x), f (μx) = μf (x)
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for all μ ∈ T1 and all x ∈ A. So we have the following equation from (3.17),

δ f (x + y) + (α − β)f (x − y) = 2(α + γ )f (x) + 2(β + γ )f (y) (3.19)

for all μ ∈ T1 and all x, y ∈ A. Now, we show that the mapping f is additive.
Replacing y by −y in (3.19) and using the oddness of f , we get

δ f (x − y) + (α − β)f (x + y) = 2(α + γ )f (x) − 2(β + γ )f (y) (3.20)

for all μ ∈ T1 and all x, y ∈ A. Adding (3.19) to (3.20), we get

f (x + y) + f (x − y) = 2f (x)

for all x ∈ A. Replacing x and y by x+y
2 and x−y

2 , respectively, we get f (x + y) =
f (x) + f (y) for all x, y ∈ A. Therefore by Lemma 2.1 the mapping f : A → B is
C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. �

THEOREM 3.5. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that δ := α + β + 2γ �= 0, p3 > 0 and qi �= 1 for
some 1 � i � 3. Suppose that f : A → B is a mapping satisfying (3.1) and (3.2) for
all μ ∈ T

1 and all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3).
Then the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Note that we put ‖.‖0
A = 1.

Proof. Since p3 > 0, then by letting x = y = z = 0 in (3.1), we get f (0) = 0.

If α + γ �= 0, then the result follows from Theorem 3.4.
Now, let α + γ = 0. So δ = β + γ . Letting z = 0 and replacing x and y by 2x

and 2y in (3.1), respectively, we get

f (μx + μy) − f (μx − μy) = μf (2y) (3.21)

for all μ ∈ T1 and all x, y ∈ A. Letting y = x in (3.21), we get f (2μx) = μf (2x) for
all μ ∈ T1 and all x ∈ A. Therefore f (0) = 0 and f (μx) = μf (x) for all μ ∈ T1

and all x ∈ A. So the mapping f is odd. It follows from (3.21) that

f (x + y) − f (x − y) = f (2y)

for all x, y ∈ A. Replacing x and y by x−y
2 and x+y

2 , respectively, we get f (x + y) =
f (x) + f (y) for all x, y ∈ A. Therefore by Lemma 2.1 the mapping f : A → B is
C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. �
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4. Homomorphisms between unital C∗ -ternary algebras

Throughout this section, assume that A is a C∗ -ternary algebra with norm ‖.‖A

and that B a unital C∗ -ternary algebra with norm ‖.‖B and unit e′.
We investigate homomorphisms between unital C∗ -ternary algebras, associated to

the functional equation Δμα,β ,γ f (x, y, z) = 0.

THEOREM 4.1. Let α, β , γ be real numbers and let ε, θ, p1, p2, p3, q1, q2, q3 be
non-negative real numbers such that δ := α + β + 2γ �= 0, 0 < p1, p2, p3 < 1,
0 < q1, q2 < 2 and 0 < q3 < 3. Suppose that f : A → B is a mapping satisfying
(2.13) and (2.14). If there exists a real number λ > 1 (0 < λ < 1) and an element
x0 ∈ A such that limn→∞ 1

λn f (λ nx0) = e′ (limn→∞ λ nf ( x0
λn ) = e′), then the mapping

f : A → B is a C∗ -ternary algebra homomorphism.

Proof. By Corollary 2.4 there exists a unique C∗ -ternary algebra homomorphism
H : A → B such that

∥∥f (x) − H(x)
∥∥

B
� θ

|δ |
{ 1

2 − 2p1
‖x‖p1

A +
1

2 − 2p2
‖x‖p2

A +
1

2 − 2p3
‖x‖p3

A

}
(4.1)

for all x ∈ A. It follows from (4.1) that

H(x) = lim
n→∞

1
λ n

f (λ nx),
(
H(x) = lim

n→∞ λ nf (
x
λ n

)
)

(4.2)

for all x ∈ A and all real number λ > 1 (0 < λ < 1). Therefore by the assumption,
we get that H(x0) = e′. Let λ > 1 and limn→∞ 1

λn f (λ nx0) = e′ . It follows from
(2.14) that ∥∥∥[H(x), H(y), H(z)] − [H(x), H(y), f (z)]

∥∥∥
B

=
∥∥∥H[x, y, z] − [H(x), H(y), f (z)]

∥∥∥
B

= lim
n→∞

1
λ 2n

∥∥∥f ([λ nx, λ ny, z]) −
[
f (λ nx), f (λ ny), f (z)

]∥∥∥
B

� ε lim
n→∞

1
λ 2n

[
λ nq1‖x‖q1

A + λ nq2‖y‖q2
A + ‖z‖q3

A )
]

= 0

for all x, y, z ∈ A. So [H(x), H(y), H(z)] = [H(x), H(y), f (z)] for all x, y, z ∈ A.
Letting x = y = x0 in the last equality, we get f (z) = H(z) for all z ∈ A. Similarly, one
can show that H(z) = f (z) for all z ∈ A when 0 < λ < 1 and limn→∞ λ nf ( x0

λn ) = e′.
Therefore the mapping f : A → B is a C∗ -ternary algebra homomorphism. �

REMARK 4.2. Theorem4.1will be valid if we replace the conditions 0 < q1, q2 < 2
and 0 < q3 < 3 by 0 < q2, q3 < 2 and 0 < q1 < 3, respectively.

THEOREM 4.3. Let α, β , γ be real numbers and let ε, θ, p1, p2, p3, q1, q2, q3 be
non-negative real numbers such that δ := α + β + 2γ �= 0, p1, p2, p3 > 1 and
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q1, q2, q3 > 2. Suppose that f : A → B is a mapping satisfying (2.13) and∥∥∥f ([x, y, z])−[f (x), f (y), f (z)]
∥∥∥

B

� ε
(
‖x‖q1

A ‖y‖q2
A + ‖y‖q2

A ‖z‖q3
A + ‖x‖q1

A ‖z‖q3
A

) (4.3)

for all μ ∈ T
1 and all x, y, z ∈ A. If there exists a real number λ > 1 (0 < λ < 1)

and an element x0 ∈ A such that limn→∞ λ nf ( x0
λn ) = e′ (limn→∞ 1

λn f (λ nx0) = e′),
then the mapping f : A → B is a C∗ -ternary algebra homomorphism.

Proof. By Theorem 2.5 there exists a unique C∗ -ternary algebra homomorphism
H : A → B such that

∥∥f (x) − H(x)
∥∥

B
� θ

|δ |
{ 1

2p1 − 2
‖x‖p1

A +
1

2p2 − 2
‖x‖p2

A +
1

2p3 − 2
‖x‖p3

A

}
(4.4)

for all x ∈ A. It follows from (4.4) that

H(x) = lim
n→∞ λ nf (

x
λ n

),
(
H(x) = lim

n→∞
1
λ n

f (λ nx)
)

(4.5)

for all x ∈ A and all real number λ > 1 (0 < λ < 1). Therefore by the assumption,
we get that H(x0) = e′. Let λ > 1 and limn→∞ λ nf ( x0

λn ) = e′ . It follows from (4.3)
that∥∥∥[H(x), H(y), H(z)] − [H(x), H(y), f (z)]

∥∥∥
B

=
∥∥∥H[x, y, z] − [H(x), H(y), f (z)]

∥∥∥
B

= lim
n→∞ λ 2n

∥∥∥f
([ x

λ n
,

y
λ n

, z
])

−
[
f
( x
λ n

)
, f

( y
λ n

)
, f (z)

]∥∥∥
B

� ε lim
n→∞ λ 2n

[ 1
λ n(q1+q2)

‖x‖q1
A ‖y‖q2

A +
1

λ nq2
‖y‖q2

A ‖z‖q3
A +

1
λ nq1

‖x‖q1
A ‖z‖q3

A )
]

= 0

for all x, y, z ∈ A. So [H(x), H(y), H(z)] = [H(x), H(y), f (z)] for all x, y, z ∈ A.
Letting x = y = x0 in the last equality, we get f (z) = H(z) for all z ∈ A. Similarly, one
can show that H(z) = f (z) for all z ∈ A when 0 < λ < 1 and limn→∞ 1

λn f (λ nx0) =
e′. Therefore the mapping f : A → B is a C∗ -ternary algebra homomorphism. �

5. Stability of derivations on C∗ -ternary algebras

Throughout this section, assume that A is a C∗ -ternary algebra with norm ‖ · ‖A .
In this section we prove the Hyers-Ulam-Rassias stability of derivations on C∗ -

ternary algebras for the functional equation Δμα,β ,γ f (x, y, z) = 0.

THEOREM 5.1. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0, and let
ϕ : A3 → [0,∞) and ψ : A3 → [0,∞) be functions such that

ϕ̃(x) :=
∞∑

n=0

1
2n
ϕ(2nx, 2nx, 2nx) < ∞, lim

n→∞
1
2n
ϕ(2nx, 2ny, 2nz) = 0, (5.1)
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lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0 (5.2)

for all x, y, z ∈ A. Suppose that f : A → A is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖A � ϕ(x, y, z), (5.3)

∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]
∥∥∥

A
� ψ(x, y, z) (5.4)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗ -ternary algebra
derivation D : A → A such that∥∥f (x) − D(x)

∥∥
A

� 1
2|δ | ϕ̃(x) (5.5)

for all x ∈ A.

Proof. By the proof of Theorem 2.3, there exists a unique C -linear mapping
D : A → A satisfying (5.5) and

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ A. It follows from (5.2) and (5.4) that∥∥∥D[x, y, z] − [D(x), y, z] − [x, D(y), z] − [x, y, D(z)]
∥∥∥

A

= lim
n→∞

1
8n

∥∥∥f [2nx, 2ny, 2nz] − [f (2nx), 2ny, 2nz]

− [2nx, f (2ny), 2nz] − [2nx, 2ny, f (2nz)]
∥∥∥

A

� lim
n→∞

1
8n
ψ(2nx, 2ny, 2nz) = 0

for all x, y, z ∈ A. So

D[x, y, z] = [D(x), y, z] + [x, D(y), z] + [x, y, D(z)]

for all x, y, z ∈ A. Therefore the mapping D : A → A is a C∗ -ternary algebra
derivation. �

THEOREM 5.2. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0,
and let ϕ : A3 → [0,∞) be a function satisfying (5.1). Suppose that the function
ψ : A3 → [0,∞) satisfies in one of the following conditions

(i) limn→∞ 1
4nψ(2nx, 2ny, z) = 0;

(ii) limn→∞ 1
4nψ(x, 2ny, 2nz) = 0;

(iii) limn→∞ 1
4nψ(2nx, y, 2nz) = 0

for all x, y, z ∈ A. Let f : A → A be a mapping satisfying (5.3) and (5.4). Then the
mapping f : A → A is a C∗ -ternary algebra derivation.
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Proof. By the proof of Theorem 2.3, there exists a C -linear mapping D : A → A
defined by

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ A. We show that if the mapping ψ satisfies in one of the conditions (i), (ii)
or (iii), then f = D.

Let ψ satisfy in (i) (we have a similar proof if ψ satisfies in (ii) or (iii) ). It
follows from (5.4) that∥∥∥D[x, y, z] − [D(x), y, z] − [x, D(y), z] − [x, y, f (z)]

∥∥∥
A

= lim
n→∞

1
4n

∥∥∥f [2nx, 2ny, z] − [f (2nx), 2ny, z]

− [2nx, f (2ny), z] − [2nx, 2ny, f (z)]
∥∥∥

A

� lim
n→∞

1
4n
ψ(2nx, 2ny, z) = 0

for all x, y, z ∈ A . Therefore

D([x, y, z]) = [D(x), y, z] + [x, D(y), z] + [x, y, f (z)] (5.6)

for all x, y, z ∈ A. Replacing z by 2z in (5.6), we get

2D([x, y, z]) = 2[D(x), y, z] + 2[x, D(y), z] + [x, y, f (2z)] (5.7)

for all x, y, z ∈ A. It follows from (5.6) and (5.7) that

[x, y, f (2z) − 2f (z)] = 0

for all x, y, z ∈ A. Letting x = y = f (2z) − 2f (z) in the last equation, we get

‖f (2z) − 2f (z)‖3
A =

∥∥∥[
f (2z) − 2f (z), f (2z) − 2f (z), f (2z) − 2f (z)

]∥∥∥
A

= 0

for all z ∈ A. So f (2z) = 2f (z) for all z ∈ A. By using induction, we infer that
f (2nz) = 2nf (z) for all z ∈ A and all n ∈ Z. Therefore D(x) = f (x) for all x ∈ A.
Hence it follows from (5.6) that the mapping f : A → A is a C∗ -ternary derivation. �

THEOREM 5.3. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0,
and let ϕ : A3 → [0,∞) be a function satisfying (5.1). Suppose that the function
ψ : A3 → [0,∞) satisfies in one of the following conditions

(i) limn→∞ 1
2nψ(2nx, y, z) = 0;

(ii) limn→∞ 1
2nψ(x, 2ny, z) = 0;

(iii) limn→∞ 1
2nψ(x, y, 2nz) = 0

for all x, y, z ∈ A. Let f : A → A be a mapping satisfying (5.3) and (5.4). Then the
mapping f : A → A is a C∗ -ternary algebra derivation.
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Proof. By the proof of Theorem 2.3, there exists a C -linear mapping D : A → A
defined by

D(x) := lim
n→∞

1
2n

f (2nx)

for all x ∈ A. We show that if the mapping ψ satisfies in one of the conditions (i), (ii)
or (iii), then f = D.

Let ψ satisfy in (i) (we have a similar proof if ψ satisfies in (ii) or (iii) ). It
follows from (5.4) that∥∥∥D[x, y, z] − [D(x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

= lim
n→∞

1
2n

∥∥∥f [2nx, y, z] − [f (2nx), y, z]

− [2nx, f (y), z] − [2nx, y, f (z)]
∥∥∥

A

� lim
n→∞

1
2n
ψ(2nx, y, z) = 0

for all x, y, z ∈ A . Therefore

D([x, y, z]) = [D(x), y, z] + [x, f (y), z] + [x, y, f (z)] (5.8)

for all x, y, z ∈ A.
The rest of the proof is similar to the proof Theorem 5.2. �

COROLLARY5.4. Let α, β , γ be real numbers and let ε, θ � 0, p1, p2, p3, q1, q2, q3

> 0 be real numbers such that δ := α + β + 2γ �= 0, p1, p2, p3 < 1 and qi < 1 for
some 1 � i � 3. Suppose that f : A → A is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖A � θ(‖x‖p1
A + ‖y‖p2

A + ‖z‖p3
A ), (5.9)∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

� ε(‖x‖q1
A + ‖y‖q2

A + ‖z‖q3
A )

(5.10)

for all μ ∈ T1 and all x, y, z ∈ A. Then the mapping f : A → A is a C∗ -ternary
algebra derivation.

THEOREM 5.5. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0, and let
Φ : A3 → [0,∞) and Ψ : A3 → [0,∞) be functions such that

Φ̃(x) :=
∞∑

n=1

2nΦ
( x

2n
,

x
2n

,
x
2n

)
< ∞, lim

n→∞ 2nΦ
( x

2n
,

y
2n

,
z
2n

)
= 0, (5.11)

lim
n→∞ 8nΨ

( x
2n

,
y
2n

,
z
2n

)
= 0 (5.12)

for all x, y, z ∈ A. Suppose that f : A → A is a mapping satisfying

‖Δμα,β ,γ f (x, y, z)‖A � Φ(x, y, z), (5.13)
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∥∥∥

A
� Ψ(x, y, z) (5.14)

for all μ ∈ T1 and all x, y, z ∈ A. Then there exists a unique C∗ -ternary algebra
derivation D : A → A such that∥∥f (x) − D(x)

∥∥
A

� 1
2|δ | Φ̃(x) (5.15)

for all x ∈ A.

Proof. By the proof of Theorem 2.5, there exists a unique C -linear mapping
D : A → A satisfying (5.15) and

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.1. �

THEOREM 5.6. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0,
and let Φ : A3 → [0,∞) be a function satisfying (5.11). Suppose that the function
Ψ : A3 → [0,∞) satisfies in one of the following conditions

(i) limn→∞ 4nΨ( x
2n , y

2n , z) = 0;
(ii) limn→∞ 4nΨ(x, y

2n , z
2n ) = 0;

(iii) limn→∞ 4nΨ( x
2n , y, z

2n ) = 0
for all x, y, z ∈ A. Let f : A → A be a mapping satisfying (5.13) and (5.14). Then the
mapping f : A → A is a C∗ -ternary algebra derivation.

Proof. By the proof of Theorem 2.5, there exists a C -linear mapping D : A → A
defined by

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.2. �

COROLLARY 5.7. Let α, β , γ be real numbers and let ε, θ, p1, p2, p3, q1, q2, q3

be non-negative real numbers such that δ := α + β + 2γ �= 0, p1, p2, p3 > 1 and
q1, q2, q3 > 2. Suppose that f : A → A is a mapping satisfying (5.9) and∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

� ε
(
‖x‖q1

A ‖y‖q2
A + ‖y‖q2

A ‖z‖q3
A + ‖x‖q1

A ‖z‖q3
A

) (5.16)

for all x, y, z ∈ A. Then the mapping f : A → A is a C∗ -ternary algebra derivation.

THEOREM 5.8. Let α, β , γ be real numbers with δ := α + β + 2γ �= 0,
and let Φ : A3 → [0,∞) be a function satisfying (5.11). Suppose that the function
Ψ : A3 → [0,∞) satisfies in one of the following conditions

(i) limn→∞ 2nΨ( x
2n , y, z) = 0;
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(ii) limn→∞ 2nΨ(x, y
2n , z) = 0;

(iii) limn→∞ 2nΨ(x, y, z
2n ) = 0

for all x, y, z ∈ A. Let f : A → A be a mapping satisfying (5.13) and (5.14). Then the
mapping f : A → A is a C∗ -ternary algebra derivation.

Proof. By the proof of Theorem 2.5, there exists a C -linear mapping D : A → A
defined by

D(x) := lim
n→∞ 2nf

( x
2n

)
for all x ∈ A.

The rest of the proof is similar to the proof of Theorem 5.3. �

THEOREM 5.9. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3 be
non-negative real numbers such that δ := α + β + 2γ �= 0, p1 + p3 > 0 and qi �= 1
for some 1 � i � 3. Suppose that f : A → A is a mapping satisfying∥∥Δμα,β ,γ f (x, y, z)

∥∥
A

� θ‖x‖p1
A ‖y‖p2

A ‖z‖p3
A , (5.17)∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

� ε‖x‖q1
A ‖y‖q2

A ‖z‖q3
A

(5.18)

for all μ ∈ T1 and all x, y, z ∈ A (x, y, z ∈ A\{0} when qi < 0 for some 1 � i � 3).
Then the mapping f : A → A is a C∗ -ternary algebra derivation.

Note that we put ‖.‖0
A = 1.

Proof. Without any loss of generality, we can assume that q1 �= 1. Since p1+p3 >
0, then we can let p1 > 0 (p3 > 0). Therefore it follows from the proof of Theorem
3.1 (Theorem 3.5) that the mapping f : A → A is C -linear. Let q1 < 1. It follows
from (5.18) that ∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

= lim
n→∞

1
2n

∥∥∥f [2nx, y, z] − [f (2nx), y, z]

− [2nx, f (y), z] − [2nx, y, f (z)]
∥∥∥

A

� ε lim
n→∞

2nq1

2n
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Therefore

f ([x, y, z]) = [f (x), y, z] + [x, f (y), z] + [x, y, f (z)] (5.19)

for all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 1 � i � 3). Since
f (0) = 0, then (5.19) holds for all x, y, z ∈ A when qi < 0 for some 1 � i � 3.
Similarly, we get (5.19) when q1 > 1. So the mapping f : A → A is a C∗ -ternary
algebra derivation. �
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THEOREM 5.10. Let α, β , γ , q1, q2, q3 be real numbers and let ε, θ, p1, p2, p3

be non-negative real numbers such that α + γ �= 0, p2 > 0 and qi �= 1 for some
1 � i � 3. Suppose that f : A → A is a mapping satisfying (5.17) and (5.18). Then
the mapping f : A → B is a C∗ -ternary algebra derivation.

Note that we put ‖.‖0
A = 1.

Proof. Without any loss of generality, we can assume that q1 �= 1. It follows from
the proof of Theorem 3.3 that the mapping f : A → A is C -linear. Let q1 > 1. It
follows from (5.18) that∥∥∥f ([x, y, z]) − [f (x), y, z] − [x, f (y), z] − [x, y, f (z)]

∥∥∥
A

= lim
n→∞ 2n

∥∥∥f
([ x

2n
, y, z

])
−

[
f
( x

2n

)
, y, z

]
−

[ x
2n

, f (y), z
]
−

[ x
2n

, y, f (z)
]∥∥∥

A

� ε lim
n→∞

2n

2nq1
‖x‖q1

A ‖y‖q2
A ‖z‖q3

A = 0

for all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 2 � i � 3). Therefore

f ([x, y, z]) = [f (x), y, z] + [x, f (y), z] + [x, y, f (z)] (5.20)

for all x, y, z ∈ A (x, y, z ∈ A \ {0} when qi < 0 for some 2 � i � 3). Since
f (0) = 0, then (5.19) holds for all x, y, z ∈ A when qi < 0 for some 1 � i � 3.
Similarly, we get (5.20) when q1 < 1. So the mapping f : A → A is a C∗ -ternary
algebra derivation. �
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