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ON HOMOMORPHISMS BETWEEN C*-TERNARY ALGEBRAS

ABBAS NAJATI AND ASGHAR RANJBARI

(communicated by Th. Rassias)

Abstract. C. Park in his paper [C. Park, Isomorphisms between C* -ternary algebras, J. Math.
Anal. Appl. 327 (2007) 101-115.], has proved the Hyers-Ulam-Rassias stability of homomor-
phisms in C* -ternary algebras and of derivations on C™* -ternary algebras for the following
Cauchy-Jensen additive mappings:

f(x;y +z> +f <’% +z> —F () +2f (), (0.1)
(552 e) - (B2 42) =10, 02)
o (552 4e) =W+ 0)+ Y ) 03)

These are applied to investigate homomorphisms between C* -ternary algebras. In this paper
we prove the Hyers-Ulam-Rassias stability of homomorphisms in C* -ternary algebras and of
derivations on C* -ternary algebras for the linear combinations of the Cauchy-Jensen additive
mappings (0.1), (0.2) and (0.3).

1. Introduction and preliminaries

In 1940, S. M. Ulam [27] gave a talk before the Mathematics Club of the University
of Wisconsin in which he discussed a number of unsolved problems. Among these was
the following question concerning the stability of homomorphisms.

We are given a group G and a metric group G' with metric p(-,-). Given € > 0,
does there exista 6 > 0 such that if f : G — G’ satisfies p(f (xy),f (x)f (y)) < & for
all x,y € G, then a homomorphism h : G — G’ exists with p(f (x),h(x)) < € for all
xeG?

In 1941, D. H. Hyers [7] considered the case of approximately additive mappings
f :E — E',where E and E’ are Banach spaces and [ satisfies Hyers inequality

Ife4+y) =f(x) =fO)l <e
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for all x,y € E. It was shown that the limit

L(x) = fim L)

n—oo mn

exists for all x € E and that L : E — E’ is the unique additive mapping satisfying

If () = L)l < e.

In 1978, Th. M. Rassias [19] provided a generalization of Hyers’ Theorem which
allows the Cauchy difference to be unbounded.

THEOREM. (Th. M. Rassias) Let f : E — E' be a mapping from a normed
vector space E into a Banach space E' subject to the inequality

1 (e 4 y) =f (x) =f DI < eC[lx]l” + [Ivll”) ()
forall x,y € E, where € and p are constants with € > 0 and p < 1. Then the limit
27!
L(x) = fim L2

n— o0 on

exists forall x € E and L : E — E' is the unique additive mapping which satisfies

If () = L@ < 5= P (¢)

forall x € E. If p < 0 then inequality (V) holds for x,y # 0 and () for x # 0.
Also, if the mapping t — f (tx) is continuous in t € R for each fixed x € X, then L is
R -linear.

In 1990, Th. M. Rassias [20] during the 27 International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved for
p = 1. In 1991, Z. Gajda [5] following the same approach as in Th. M. Rassias [19],
gave an affirmative solution to this question for p > 1. It was shown by Z. Gajda [5], as
well as by Th. M. Rassias and P. Semrl [25] that one cannot prove a Th. M. Rassias’ type
theorem when p = 1. The counterexamples of Z. Gajda [5], as well as of Th. M. Ras-
sias and P. Semrl [25] have stimulated several mathematicians to invent new definitions
of approximately additive or approximately linear mappings, cf. P. Gévruta [6], S.
Jung [11], who among others studied the Hyers-Ulam-Rassias stability of functional
equations. The inequality () that was introduced for the first time by Th. M. Rassias
[19] for the stability of the linear mapping between Banach spaces provided a lot of
influence in the development of a generalization of the Hyers-Ulam stability concept.
This new concept is known as Hyers-Ulam-Rassias stability of functional equations (cf.
the books of P. Czerwik [4], D.H. Hyers, G. Isac and Th. M. Rassias [8]).

P. Givruta [6] provided a further generalization of Th. M. Rassias’ Theorem. In
1996, G. Isac and Th. M. Rassias [10] applied the Hyers-Ulam-Rassias stability theory
to prove fixed point theorems and study some new applications in Nonlinear Analy-
sis. In [9], D.H. Hyers, G. Isac and Th.M. Rassias studied the asymptoticity aspect
of Hyers-Ulam stability of mappings. During past few years several mathematicians
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have published on various generalizations and applications of Hyers-Ulam stability
and Hyers-Ulam-Rassias stability to a number of functional equations and mappings,
for example : quadratic functional equation, invariant means, multiplicative mappings
- superstability, bounded nth differences, convex functions, generalized orthogonal-
ity functional equation, Euler-Lagrange functional equation, Navier-Stokes equations.
Several mathematicians have contributed works on these subjects; we mention a few:
C. Park [12]-[17], Th. M. Rassias [21]—[24], F. Skof [26].

A. Prastaro and Th. M. Rassias [18] introduced for the first time the Hyers-Ulam-
Rassias stability approach for the study of Navier-Stokes equation.

Following the terminology of [1], a non-empty set G with a ternary operation
[,+,7] : GXGx G — G is called a ternary groupoid and is denoted by (G, [-,-,]). The
ternary groupoid (G, [-,-,-]) is called commutative if [x1,x2,x3] = [Xo(1), X5(2), Xo(3)]
for all x,x;,x3 € G and all permutations o of {1,2,3}.

If a binary operation o is defined on G such that [x,y,z] = (xoy) oz for
all x,y,z € G, then we say that [-,-,] is derived from o. We say that (G, [, ])
is a ternary semigroup if the operation [-,-,-] is associative, i.e., if [[x,y,z],u,v] =
[x, [y, 2, u],v] = [x,¥, [z, u,v]] holds for all x,y,z,u,v € G (see [3]).

A C* -ternary algebra is a complex Banach space A, equipped with a ternary
product (x,y,z) — [x,y,z] of A’ into A, which is C-linear in the outer vari-
ables, conjugate C-linear in the middle variable, and associative in the sense that

b, ys [z w, vl = [, [w, 2, 3),v] = [[x, v, 2], w, v], and satisfies |[[x, y, 2| < [lx[] - [y - [12]
and ||[x,x,x]|| = ||x|* (see [1, 28]). Every left Hilbert C*-module is a C* -ternary
algebra via the ternary product [x,y,z] := (x,y) z.

If a C*-ternary algebra (A, [-,-,-]) has an identity, i.e., an element ¢ € A such
that x = [x, e, e] = [e,e,x] forall x € A, then it is routine to verify that A, endowed
with xoy := [x,e,y] and x* := [e, x, ¢], is a unital C* -algebra. Conversely, if (A, o)

is a unital C* -algebra, then [x,y,z] := x 0 y* o z makes A into a C* -ternary algebra.
A C-linear mapping H : A — B is called a C* -ternary algebra homomorphism

if
H([x,y,z]) = [H(x),H(y), H(z)]

for all x,y,z € A. If, in addition, the mapping H is bijective, then the mapping
H : A — B is called a C*-ternary algebra isomorphism. A C-linear mapping
0 :A — A iscalled a C* -ternary derivation if

§([x,y,2]) = [6(x),¥,2] + [x,8(y), 2] + [x,¥,8(2)]

forall x,y,z € A (see [1]).

2. Stability of homomorphisms in C* -ternary algebras

Throughout this section, assume that A is a C* -ternary algebra with norm ||.||a
and that B a C* -ternary algebra with norm ||.||5.
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Let (o, B,y) € R3. For a given mapping f : A — B, we define

Cuf (x,,2) = £ (E 2 ) 7 (B2 4 we) - wr () — 207 (2

Duf (3,2 = £ (F i) —r (B2 ) — wr 00,
Euf (x,3,2) = 2f (B e — af () = wf () — 20f (2)
A g f (69,2) i= aCuf (x,9,2) + BDuf (x,9,2) + YEuf (x,,2)

2
forall u € T' :={A € C:|A| =1} andall x,y,z € A.
We will use the following lemma in this paper:

LEMMA 2.1. [14] Let X and Y be linear spaces and let f : X — Y be an
additive mapping such that f (ux) = uf (x) forall x € X and all u € T'. Then the
mapping f is C-linear.

LEMMA 2.2. Let X and Y be linear spaces and let o, 3,y be real numbers such
that 6 := o + B + 2y # 0. Suppose that f : X — Y is a mapping satisfying

Ay f(y,2) = 0 (2.1)
forall uw € T' and all x,y,z € X. Then the mapping f : X — Y is C-linear.
Proof. Letting x =y =z =0 in (2.1), we get f(0) = 0. Letting z = 0 and
replacing x and y by 2x and 2y in (2.1), respectively, we get
(o4 1) () = f (20)] + (B+ 1) [f (e + ) — s (29)
+ (o= B)f (ux —py) = 0

forall u € T' and all x,y € X. Letting y = x in (2.2), we get f (2ux) = uf (2x) for
all u € T! and all x € X. So

(2.2)

[ (ux) = uf (x) (2:3)
forall u € T! and all x € X. Letting x = y = z in (2.1), and using (2.3), we get
f(2x) = 2f(x) for all x € X. Now, we show that f(x +y) = f(x) +f(y) for all

x,y €X.
We have two cases:
Casel o = f.

Replacing x and y by y and x in (2.2), we get
(4 ) (x+ ) = 29)] + B+ )| (wr+ ) —wf 20 =0 (24)
forall u € T' and all x,y € X. Adding (2.2) to (2.4) and using (2.3), we get

2f (x+y) =1 (2x) +f(2y)

forall x,y € X. Since f (2x) = 2f (x) forall x € X, then we get from the last equation
that f (x +y) =f (x) +f(y) forall x,y € X.
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Case ll. o # B.
Letting x = 0 in (2.2), we infer that the mapping f is odd. Replacing x and y
by y and x in (2.2), we get

(o4 1) (x11y) = f (29)] + (B+ 1) [F (e + py) — s (2%)
+ (o = B)f (uy — px) =0
forall w € T' and all x,y € X. Adding (2.2) to (2.5) and using (2.3), we get
2 (x+y) =f(2x) +/(2)

forall x,y € X. So f(x+y) =f(x) +f(y) forall x,y € X.
Hence by Lemma 2.1 the mapping f : X — Y is C-linear.

(2.5)

We investigate the Hyers-Ulam-Rassias stability of homomorphismsin C* -ternary
algebras for the functional equation A‘; gl (x,y,2) =0.

THEOREM 2.3. Let a, B,y be real numbers with 6 := o + 8 + 2y # 0, and let
@: A3 —[0,00) and y : A> — [0,00) be functions such that

oo

~ 1 1
o(x) == 7 (2"x,2"x,2"x) < 00, lim ?(p(Z"x, 2%y,2"z) =0, (2.6)
n=0
. 1
lim § l//(2"x, Z"y, 2"Z) =0 (27)

forall x,y,z € A. Suppose that f : A — B is a mapping satisfying

HAgﬁ7yf(x7y7Z)”B < (P(x7y72)a (28)

() = @ 01 @, < wixn2) (29)

forall w € T and all x,y,z € A. Then there exists a unique C*-ternary algebra
homomorphism H : A — B such that

If (v) — )|, < ﬁaw (2.10)

forall x € A.
Proof. Letting u =1 and x =y =z in (2.8), we get
16/ (2x) — 26f (x)[|5 < @(x,x,x) (2.11)

for all x € A. If we replace x by 2"x in (2.11) and divide both sides of (2.11) by
|5]2"1) we get

1 n 1 n 1 n n n
gl (210) = 5o ()|, < 02 21 27)
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forall x € A and all non-negative integers n. Hence

1
n+1 m k+1 k
[z - e, = |3 [t - e,
1
<3| - @) )
k=m
k k
2\5|;2k(p kx, 2kx, 2kx)

for all x € A and all non-negative integers n > m > 0. It follows from (2.6) and
(2.12) that the sequence {5:f(2"x)} is a Cauchy sequence for all x € A. Since B

is complete, the sequence {f (2"x)} converges. Thus one can define the mapping
H:A— B by

H(x) := lim —f(2” )

n—oo

forall x € A. Moreover, letting m = 0 and passing the limit n — oo in (2.12) we get
(2.10).
It follows from (2.6) that

#1539, = Jim, T By g (2%,2'9,2°9) |
hm 2—('()(2")(;7 2"y7 znz) -0

for all x,y,z € A. So Aaﬁy (x,y,z) = 0 forall u € T! and all x,y,z € A. By
Lemma 2.1 the mapping H : A — B is C-linear.
It follows from (2.7) and (2.9) that

B
< linol<> 8iq/(2"x 2"y,2"7) =0
for all x,y,z € A. Therefore
H([x,y,2]) = [H(x), H(y), H(2)]
for all x,y,z € A. Therefore the mapping H : A — B is a C*-ternary algebra

homomorphism.
Now, let O : A — B be another C* -ternary algebra homomorphism satisfying
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(2.10). Then we have from (2.6) that

[H(x) = Q(x)||p = lim —Hf(2" ) — 02"l

n—o0

//\

lim - §(2"x
z|5\nL“§ozn"’( )

1 1
=— 1 — (2%x, 2%, 2%%) = 0
2I5\nirgo;2k‘p( %25 2%)

forall x € A. So H(x) = Q(x) forall x € A. This proves the uniqueness of H. Thus
the mapping H : A — B is a unique C* -ternary algebra homomorphism satisfying
(2.10). O

COROLLARY 2.4. Let o, B,y be real numbers and let ¢, 0,p1,p2,p3, 91,92, 93
be non-negative real numbers such that § := a+ 42y #0, 0 <pi1,p2,p3 <1 and
0 < q1,92,93 < 3. Suppose that f : A — B is a mapping satisfying

118G p.of (v, 2) |5 < OCIXII + VIR + [l2l17), (2.13)

ey ) = r.r 0. @) <

forall w € T and all x,y,z € A. Then there exists a unique C*-ternary algebra
homomorphism H : A — B such that

100~ By < o 3gr 18I+ 5 L
5/ \2—2m M

forall x € A.

e(llxlld + I3 + l1zl2) (2.14)

THEOREM 2.5. Let a, B,y be real numbers with 6 := o + 8 + 2y # 0, and let
®: A% —[0,00) and ¥ : A> — [0,00) be functions such that

X X ox Yy z
2P ( ) li 2”(13( ,—) —0, 2.1
Z mn < 00, ni,n;o 2n n’on 0 ( 5)
y z
lim 8" (2,2 2) =0 2.16
ni,rgo on’ on ( )
forall x,y,z € A. Suppose that f : A — B is a mapping satisfying

||A B, ‘ff X, Y52 ||B (x,y,z), (217)
(EEE FEI|, < Pl (2.18)

forall w € T' and all x,y,z € A. Then there exists a unique C*-ternary algebra
homomorphism H : A — B such that

If (0) = H)|[, < ﬁ(i(x) (2.19)

forall x € A.
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Proof. Letting u =1 and x =y =z in (2.17), we get
I|6f (2x) — 261 (x)]|p < D(x, x,x) (2.20)
for all x € A. If we replace x by 5= in (2.20) and multiply both sides of (2.20) to

%, we get
n+1 X X X
‘2 f<2n+l) - <2n)H ‘5|(D<2n+1’2n+1’2n+1)

forall x € A and all non-negative integers n. Hence

oy () 27 ), = [ P (i) -2 ()
<l () ()], e
k=m

- X X X
< L Sag( 2 )
2|8 ; k+17 Dk+17 Dk+1

for all x € A and all non-negative integers n > m > 0. It follows from (2.15) and
(2.21) that the sequence {2"f(3;)} is a Cauchy sequence for all x € A. Since B
is complete, the sequence {2"f(47)} converges. Thus one can define the mapping
H:A— Bby

H(x) = lim 2f (21)

forall x € A. Moreover, letting m = 0 and passing the limit n — oo in (2.21) we get
(2.19).
The rest of the proof is similar to the proof of Theorem 2.3. [

COROLLARY 2.6. Let a, B,y be real numbers and let €,0,p1,p2,p3,91,92, 43
be non-negative real numbers such that 6 := o+ 8+ 2y # 0, p1,p2,p3 > 1 and
q1,92,q3 > 3. Suppose that f : A — B is amapping satisfying (2.13) and (2.14). Then
there exists a unique C* -ternary algebra homomorphism H : A — B such that

0 1 1 1
I )~ )l < 5y { g I+ g I + g e }

forall x € A.

3. Homomorphisms between C* -ternary algebras

In this section we improve the results in Theorems 2.3, 2.4, 3.3 and 3.4 of [15].

THEOREM 3.1. Let a,B,7,q1,q2,q3 be real numbers and let €, 0,p1,ps,p3 be
non-negative real numbers such that 6 := o+ 3 +2y #0, p; > 0 and g; # 1 for
some 1 < i < 3. Suppose that f : A — B is a mapping satisfying

1A% 5. (5, 3,2)] |, < Ol IV 2117 (3.1)
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[ (b, v, 2]) = [F (). f 0)of (@1 5 < ellxllF I I N2l (3:2)

forall w € T! andall x,y,z € A (x,y,z € A\{0} when q; < 0 for some 1 <i < 3).
Then the mapping f : A — B is a C* -ternary algebra homomorphism.
Note that we put ||.||§ = 1.

Proof. Since p; > 0, then by letting x =y =z =0 in (3.1), we get f(0) = 0.
Letting x = 0 and replacing y by 2y in (3.1), we get

8f (uy + uz) + (o — B)f (uz — uy)

(a1 () — w(B+ Y (2) =0 G
forall u € T' andall y,z € A. Letting y = z in (3.3), we get
8f 2uy) = 2u(a+y)f (v) — (B +7)f (2y) =0 (3.4)
forall u € T! andall y € A. Replacing by —pu in (3.4), we get
8f (—2uy) +2u(a+v)f (v) + u(B+7v)f (2y) =0 (3.5)

forall u € T! andall y € A. Adding (3.4) to (3.5), we get that f (2uy) +f (—2uy) =
0 forall u € T! andall y € A. So f is odd.

Now, we show that f (ux) = uf (x) and f(x +y) = f(x) +f(y) forall u € T!
and all x,y € A.

We have two cases:

(i) Let a+7v # 0. Letting y = 0 in (3.3), we get f (uz) = uf (z) forall u € T!
and all z € A. Therefore it follows from (3.4) that f (2y) = 2f (y) forall y € A. So it
follows from (3.3) that

Of (v +2) + (= B)f (z —y) = 2(a + ¥)f (z) +2(B + v)f () (3.6)
forall y,z € A. Replacing y by —y in (3.6) and using the oddness of f, we get

Of z=y) + (e = B)f (z +y) = 2(a +y)f (z) =2(B +v)f (v) (3.7)
forall y,z € A. Adding (3.6) to (3.7), we get

fO+2)+f(z—y) =2f(2) (3-8)

for all y,z € A. Replacing y and z by *5* and y% in (3.8), respectively, we get

f+2)=f()+f(z) forall y,z € A.
(ii) Let ¢+ v = 0. Since & # 0, then § + y # 0. Letting z =0 in (3.3) and
using the oddness of f, we get 2f (uy) = uf (2y) forall u € T! and all y € A. Hence

by letting u = 1, we get f(2y) = 2f (y) forall y € A. So f(uy) = uf(y) for all
u €T and all y € A. It follows from (3.3) that

fO+2)—flz—y) =2f1) (3.9)

for all y,z € A. Replacing y and z by yzi and 5= in (3.9), respectively, we get

f(y+2)=f() +f(z) forall y,z € A.
Hence, by Lemma 2.1 the mapping f : A — B is C-linear.
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Without any loss of generality, we may suppose that g; # 1. Let ¢; > 1. It
follows from (3.2) that

Jrite.2 s,

:,}3202"%‘([2 »3 D f(F)r06)],
< e lim g Iyl =0

forall x,y,z € A. Therefore

f(xy,2) = [F (0.0 ().f (2)] (3.10)

for all x,y,z € A (x,y,z € A\ {0} when ¢; < 0 for some 2 < i < 3). Since
f(0) = 0, then (3.10) holds for all x,y,z € A when ¢; < 0 for some 2 < i < 3.
Similarly, for ¢; < 1, we get (3.10). So the mapping f : A — B is a C*-ternary
algebra homomorphism. [

THEOREM 3.2. Let o, f3,Y,q1,q2,q3 be real numbers and let €, 0,py,py,p3 be
non-negative real numbers such that oo +y # 0, p1 > 0 and q; # 1 for some
1 < i < 3. Suppose that f : A — B is a mapping satisfying (3.1) and (3.2) for all
p €T andall x,y,z€ A (x,y,z € A\ {0} when q; <0 for some 1 <i < 3). Then
the mapping f : A — B is a C* -ternary algebra homomorphism.

Note that we put ||.||§ = 1.

Proof. Letting x = 0 and replacing y by 2y in (3.1), we get
Of (y + uz) + (a = B)f (mz — py)

3.11
—2u(a+y)f (2) — (B +v)f (2y) —u(a+7)f (0) =0 1y

forall u € T' andall y,z € A. Replacing u by —u in (3.11), we get
Of (—uy — mz) + (a0 = B)f (—uz + uy) (3.12)

+2u(e+y)f (2) +u(B+v)f (2y) +u(a+vy)f(0) =0

forall u € T' and all y,z € A. Adding (3.11) to (3.12) and letting z = 0 in the
obtained equation, we get f (uy) +f(—uy) =0 forall u € T! andall y € A. So the
mapping f is odd and f (0) = 0. Therefore we obtain (3.3) from (3.11).

It follows from the proof of case (i) of Theorem 3.1 that the mapping f : A — B
is C-linear.

The rest of the proof is similar to the proof of Theorem 3.1. [

THEOREM 3.3. Let a,B,7,q1,q2,q3 be real numbers and let ¢, 0,p1,ps,p3 be
non-negative real numbers such that a« +y # 0, p» > 0 and gq; # 1 for some
1 <i < 3. Suppose that f : A — B is a mapping satisfying (3.1) and (3.2) for all
u €T andall x,y,z€ A (x,y,z € A\ {0} when q; <0 for some 1 <i < 3). Then
the mapping f : A — B is a C* -ternary algebra homomorphism.

Note that we put |.||3 = 1.
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Proof. Letting y = 0 and replacing x by 2x in (3.1), we get
20+ v)f (ux + pz) — p(a +y)f (2x)

3.13
et @ -nBrpro-o &

forall u € T' and all x,z € A. Replacing u by —u in (3.13), we get
2(0o+ v)f (—px — pz) + plo 4+ v)f (2) (3.14)

+2u(o+y)f (z) +u(B+v)f(0)=0

forall u € T! and all x,z € A. Adding (3.13) to (3.14), we infer that the mapping f
is odd and f (0) = 0. So it follows from (3.13)that

2f (ux + pz) = puf (2x) + 2uf (z) (3.15)

forall u € T! and all x,z € A. Letting z = 0 in (3.15), we get 2f (ux) = uf (2x) for
all u € T' and all x € A. So

f(2x) =21 (x), f(ux) =uf(x) (3.16)

for all u € T! and all x € A. It follows from (3.15) and (3.16) that f(x + z) =
f(x) + f(z) for all x,z € A. Hence, by Lemma 2.1 the mapping f : A — B is
C-linear.

The rest of the proof is similar to the proof of Theorem 3.1. [

THEOREM 3.4. Let a,B,7,q1,q2,q3 be real numbers and let ¢, 0,p,ps,p3 be
non-negative real numbers such that oo +y # 0, p3 > 0 and q; # 1 for some
1 <i < 3. Suppose that f : A — B is a mapping satisfying (3.1) and (3.2) for all
u €T andall x,y,z€ A (x,y,z € A\ {0} when q; <0 for some 1 <i < 3). Then
the mapping f : A — B is a C* -ternary algebra homomorphism.

Note that we put |.||3 = 1.

Proof. Letting z = 0 and replacing x and y by 2x and 2y in (3.1), respectively,
we get
Of (ux + uy) + (o0 = B)f (ux — uy) — u(a + y)f (2x)

3.17
By - merro =0 &7

forall uw € T' andall x,y € A. Replacing u by —u in (3.17), we get
Of (—px — py) + (o0 — B)f (—px + py) + u(e +y)f (2x) (3.18)

+ (B +v)f (2y) +2u(o +7)f (0) =0
forall u € T' and all x,y € A. Adding (3.17) to (3.18), we get
o [f(ux ) +f (—px— uy)} +(a—p) [f(ux — )+ (—px A+ uy)} =0

forall u € T! andall x,y € A. Letting u = 1 and y = 0 in the last equation, we infer
that the mapping f is odd and so f (0) = 0. Therefore by letting y = 0 in (3.17), we
get 2f (ux) = uf (2x) forall u € T! and all x € A. Hence

f(2x) =2f(x), f(ux) = uf (x)
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forall u € T' and all x € A. So we have the following equation from (3.17),

Of x+y) + (= B)f (x—y) = 2(a+y)f (x) +2(B+7)f () (3.19)

forall u € T' and all x,y € A. Now, we show that the mapping f is additive.
Replacing y by —y in (3.19) and using the oddness of f, we get

Of (x —y) + (o = B)f (x +y) = 2(a +y)f (x) =2(B+v)f (v) (3.20)

forall u € T! and all x,y € A. Adding (3.19) to (3.20), we get

fr+y)+fx—y) =2/ (x)
for all x € A. Replacing x and y by ’% and =%, respectively, we get f (x +y) =
f(x) +f(y) forall x,y € A. Therefore by Lemma 2.1 the mapping f : A — B is
C-linear.

The rest of the proof is similar to the proof of Theorem 3.1. [

THEOREM 3.5. Let a,B,7,q1,q2,q3 be real numbers and let ¢, 0,p1,ps,p3 be
non-negative real numbers such that 8 := oo+ +2y #0, p3 >0 and q; # 1 for
some 1 < i < 3. Suppose that f : A — B is a mapping satisfying (3.1) and (3.2) for
all w € T' andall x,y,z €A (x,y,z € A\ {0} when g; < 0 for some 1 <i < 3).
Then the mapping f : A — B is a C* -ternary algebra homomorphism.

Note that we put |.||3 = 1.

Proof. Since p3 > 0, then by letting x =y =z =0 in (3.1), we get £ (0) = 0.

If ot + y # 0, then the result follows from Theorem 3.4.

Now, let ¢ +7v =0. So § = f+ 7. Letting z = 0 and replacing x and y by 2x
and 2y in (3.1), respectively, we get

f(ux + py) — f (ux — py) = uf (2y) (3.21)

forall u € T! and all x,y € A. Letting y = x in (3.21), we get f (2ux) = uf (2x) for
all u € T' and all x € A. Therefore f(0) = 0 and f (ux) = uf (x) forall u € T!
and all x € A. So the mapping f is odd. It follows from (3.21) that

f+y) =flx—y) =72y
forall x,y € A. Replacing x and y by *5* and *}*, respectively, we get f (x + y) =
f(x)+f(y) forall x,y € A. Therefore by Lemma 2.1 the mapping f : A — B is
C -linear.

The rest of the proof is similar to the proof of Theorem 3.1. [J
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4. Homomorphisms between unital C* -ternary algebras

Throughout this section, assume that A is a C* -ternary algebra with norm ||.||4
and that B a unital C* -ternary algebra with norm ||.||z and unit ¢’.

We investigate homomorphisms between unital C* -ternary algebras, associated to
the functional equation AZ,B,yf (x,y,2) =0.

THEOREM 4.1. Let a, B,y be real numbers and let €,0,py,p2,p3,q1,92,q3 be
non-negative real numbers such that § == oo+ +2y # 0, 0 < p1,p2,p3 < 1,
0<4q1,920 <2 and 0 < g3 < 3. Suppose that f : A — B is a mapping satisfying
(2.13) and (2.14). If there exists a real number A > 1(0 < A < 1) and an element
X0 € A such that 1im, . 2=f (A"x0) = €’ (lim,—.0c A" (3%) = €'), then the mapping
f 1A — B isa C*-ternary algebra homomorphism.

Proof. By Corollary 2.4 there exists a unique C* -ternary algebra homomorphism
H : A — B such that

0 1 1 1
1f () =HW) || < =79 555 XA+ 557 X%+ 5= X% (4.1)
5] 12 =2» 2- o 22—

for all x € A. It follows from (4.1) that

n—o0 n—oo

H(x) = Tim ——f (A"x), (1) = tim 27 (55)) (4.2)

forall x € A and all real number A > 1(0 < A < 1). Therefore by the assumption,
we get that H(xg) = €. Let A > 1 and lim,—.o 72/ (A"xo) = ¢’. It follows from
(2.14) that

i), HO), HE) -~ @, HE)., )|
= |[Hbeyd = @, HO)E ()|

= tim ol Ay, ) — [r . ). s )|

n— o0 AZn

B

B

: 1 1z N
< e lim o [ g+ A"y + el$)] =0
for all x,y,z € A. So [H(x),H(y),H(2)] = [H(x),H(y),f(z)] for all x,y,z € A.
Letting x = y = xo in the last equality, we get f (z) = H(z) forall z € A. Similarly, one
can show that H(z) = f (z) forall z € A when 0 < A < 1 and lim, .o A"f (%) = €.
Therefore the mapping f : A — B is a C* -ternary algebra homomorphism. [

REMARK 4.2. Theorem 4.1 will be valid if we replace the conditions 0 < g1, g, < 2
and 0 < g3 <3 by 0 < ¢2,93 <2 and 0 < g < 3, respectively.

THEOREM 4.3. Let a, B,y be real numbers and let €,0,py,p2,p3,q1,92,q3 be
non-negative real numbers such that 6 == a+ B +2y # 0, pi,p2,p3 > 1 and
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q1,92,q3 > 2. Suppose that f : A — B is a mapping satisfying (2.13) and
I ey D=r s . @
(4.3)
< (I I + I Il + g Dzl )

forall u € T' and all x,y,z € A. If there exists a real number A > 1(0 < A < 1)
and an element xo € A such that lim, .. A"f (55) = €' (lim, Mf (A"xo) =€),
then the mapping f : A — B is a C* -ternary algebra homomorphism.

Proof. By Theorem 2.5 there exists a unique C* -ternary algebra homomorphism
H : A — B such that

0 P2 1 P3
I )= B, < 5 { sl + grg I + 5 IR} @)
for all x € A. It follows from (4.4) that
n T 1 n
Hx) = lim 2'f (), (H@) = Jim 227 () (43)

forall x € A and all real number A > 1(0 < A < 1). Therefore by the assumption,
we get that H(xo) = ¢’. Let A > 1 and lim, .o A"f (5%) = ¢’. It follows from (4.3)
that

o), 1), 1)~ [H<x>,H<y>,f<z>}H

= |[Hey. g~ HE@. HO)S Q]
~am 2 (e ;me /() ()l
< e Jim 22 [ eI I + e IR + o I )] =0

for all x,y,z € A. So [H(x),H(y),H(z)] = [H(x),H(y),f (2)] for all x,y,z € A.
Letting x =y = xo in the last equality, we get f (z) = H(z) forall z € A. Similarly, one
can show that H(z) =f(z) forall z€ A when 0 <A < 1 and lim,_.c 7=f (A"x0) =
¢'. Therefore the mapping f : A — B is a C* -ternary algebra homomorphism. [

5. Stability of derivations on C* -ternary algebras

Throughout this section, assume that A is a C* -ternary algebra with norm || - ||4.
In this section we prove the Hyers-Ulam-Rassias stability of derivations on C* -
ternary algebras for the functional equation A" By S (x,v,z) =0.

THEOREM 5.1. Let a, 3,y be real numbers with § := o + 3 + 2y # 0, and let
@:A>—[0,00) and y : A> — [0,00) be functions such that

1
o(x) = 2nqo(2"x, 2"x,2"x) < 00, lim 2—(p(2” 2%,2"z) =0, (5.1)

n=0
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lim 8—1[/( x,2"y,2"7) =0 (5.2)

n—oo

forall x,y,7 € A. Supposethat f : A — A is a mapping satisfying
185 g1 (.3, 2)lla < @(x,¥,2), (5.3)

e = @3, = ef 0.2 = b f @), Swlend) (54

forall u € T' and all x,y,z € A. Then there exists a unique C*-ternary algebra
derivation D : A — A such that

I )= D), < 575700 (55)
forall x € A.

Proof. By the proof of Theorem 2.3, there exists a unique C-linear mapping
D : A — A satisfying (5.5) and

D) = lim —f (2")

n—oo 2N

forall x € A. It follows from (5.2) and (5.4) that
| Dy, 2) = 1D(3).9.7] = b, D), 2 = e, DG
= lim —Hf "x, 2"y, 2"z — [f(2"x),2"y, 2"7]

n—oo 8N

—p%J@w@w—p%JWJ@mmA

A

< lim 8—1//( x,2"y,2"7) =0

n—oo

forall x,y,z € A. So

Dlx,y,z] = [D(x),y,2] + [x, D(y), 2] + [x,y,D(2)]

for all x,y,z € A. Therefore the mapping D : A — A is a C*-ternary algebra
derivation. [J

THEOREM 5.2. Let o, B,y be real numbers with 6 := oo + B + 2y # 0,
and let @ : A> — [0,00) be a function satisfying (5.1). Suppose that the function
v A — [0, oo) satisfies in one of the following conditions

(l) hmn—>oo 4n W(znx 2ny7 ) O;
(ii) lim,_ o & W (x,2"y,2"z) = 0;
(iii) lim,—o 5 W(2"x,y,2"z) =0
forall x,y,z € A. Let f : A — A be a mapping satisfying (5.3) and (5.4). Then the
mapping f : A — A is a C* -ternary algebra derivation.
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Proof. By the proof of Theorem 2.3, there exists a C-linear mapping D : A — A

defined by
1
D(x) := lim Ff(Z”x)

for all x € A. We show that if the mapping v satisfies in one of the conditions (i), (ii)
or (iii), then f = D.

Let y satisfy in (i) (we have a similar proof if y satisfies in (ii) or (iii) ). It
follows from (5.4) that

HD[x,y,z] — [D(x),y,7] — [x,D(y),2] — [x,y,f(z)]HA
= lim %Hf[?’x, 2"y, 2 — [F (2"x), 2", 7]

n—oo

— 2 (2),7] - 2 20 Q)

A
< nll>n<}o %u/(Z"x, 2",z) =0
for all x,y,z € A. Therefore
D([x,y,2]) = [D(x), 5,2 + [x, D(y), 2] + [x, 3.1 (2)] (5.6)
forall x,y,z € A. Replacing z by 2z in (5.6), we get
2D([x,y, 2]) = 2[D(x), y, 2] + 2[x, D(y), 2] + [x, 5,/ (22)] (5.7)

forall x,y,z € A. It follows from (5.6) and (5.7) that

by, f(22) = 2f ()] = 0

forall x,y,z € A. Letting x =y = f (2z) — 2f (z) in the last equation, we get

Ir 2 -2 I = |[r 29 - 2 @/ 29 - 2 @/ 29 - 2 @) |, =0

for all z € A. So f(2z) = 2f(z) for all z € A. By using induction, we infer that
f(2"z) = 2"f(z) forall z € A and all n € Z. Therefore D(x) = f (x) forall x € A.
Hence it follows from (5.6) that the mapping f : A — A isa C* -ternary derivation. [

THEOREM 5.3. Let o,f,y be real numbers with 6 := o + B + 2y # 0,
and let @ : A> — [0,00) be a function satisfying (5.1). Suppose that the function
v : A3 — [0,00) satisfies in one of the following conditions

(i) limy_oo 5 y(2"x,y,2) = 0;
(ii) limy—oo 3 W (x,2"y,2) = 0;
(iii) limy o0 % W(x,,2"2) =0
forall x,y,z € A. Let f : A — A be a mapping satisfying (5.3) and (5.4). Then the
mapping f : A — A is a C* -ternary algebra derivation.
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Proof. By the proof of Theorem 2.3, there exists a C-linear mapping D : A — A
defined by
D(x) := lim —f (2"x)
forall x € A. We show that if the mapping y satisfies in one of the conditions (i), (ii)
or (iii), then f = D.
Let y satisfy in (i) (we have a similar proof if y satisfies in (ii) or (iii) ). It
follows from (5.4) that

D,y = D)3, = [ (0,2 = s Q)
= lim —Hf [2"x,v,2] = [f (2"x),,7]

n—oo

) x,y7f<z>]HA

A

1
hm _W(zn-x7y7 Z) =0

n—oo 2
for all x,y,z € A. Therefore
D([x,y,2]) = [D(x),y,2] + [x.f (v), 2] + [x, v, (2)] (5.8)
forall x,y,z € A.

The rest of the proof is similar to the proof Theorem 5.2. [J

COROLLARY 5.4. Let o, B,y bereal numbersandlet €,0 > 0, py,p2,p3, 41,92, q3
> 0 be real numbers such that 6 == o+ f3+2y #0, p1,p2,p3 <1 and q; < 1 for
some 1 < i< 3. Supposethat f : A — A is a mapping satisfying

18G4 (63, 2)lla < OCIXIE + IVIE + 1I]l7), (5.9)

I ey = 0097 = e 00,2 = b Q)
< el + Iyl + 121)

forall u € T' and all x,y,z € A. Then the mapping f : A — A is a C*-ternary
algebra derivation.

(5.10)

THEOREM 5.5. Let a, 3,y be real numbers with § := o + 3 + 2y # 0, and let
®: A3 —[0,00) and ¥ : A*> — [0,00) be functions such that

X X X x y z
§ 2P ( ) li 2”(13( ): , 11
<oo,  lim ETIET 0 (5.11)
. yozy_
Jim 8% (55, 57 37) = 6.12)

forall x,y,z € A. Suppose that f : A — A is a mapping satisfying

||A ﬁyf X, ¥, 2 ||A (x7y7z)a (513)
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ey ) =00 = e f 012 = ey f @I, <¥lowz) (514)

forall uw € T' and all x,y,z € A. Then there exists a unique C*-ternary algebra
derivation D : A — A such that

If (x) = D)||, < ﬁcf(x) (5.15)

forall x € A.

Proof. By the proof of Theorem 2.5, there exists a unique C-linear mapping
D : A — A satisfying (5.15) and

D(x) := lim 2'f (21)
for all x € A.
The rest of the proof is similar to the proof of Theorem 5.1. [J

THEOREM 5.6. Let o, 3,y be real numbers with 6 := o + B + 2y # 0,
and let ® : A3 — [0,00) be a function satisfying (5.11). Suppose that the function
V¥ : A3 — [0, 00) satisfies in one of the following conditions

(i) lim,_c 4"¥ (37, 37.2) = 0;
(it) 1im, o0 4"¥(x, 57, 57) = 0;
(iii) 1im, o 4"¥(55,y,37) =0
forall x,y,z € A. Let f : A — A be a mapping satisfying (5.13) and (5.14). Then the
mapping f : A — A is a C* -ternary algebra derivation.

Proof. By the proof of Theorem 2.5, there exists a C-linear mapping D : A — A
defined by
D(x) = lim 2'f (%)
for all x € A.
The rest of the proof is similar to the proof of Theorem 5.2. [J

COROLLARY 5.7. Let o, B,y be real numbers and let ¢, 0,p1,p2,p3, 491,92, 93
be non-negative real numbers such that § := o+ 3 +2y # 0, p1,p2,p3 > 1 and
q1,q92,q3 > 2. Suppose that f : A — A is a mapping satisfying (5.9) and

By = 100,92 = Bef (90,2 = leyf Q)

(5.16)
< (g IV + IV el + I 1))

forall x,y,7 € A. Then the mapping f : A — A is a C* -ternary algebra derivation.

THEOREM 5.8. Let o, B,y be real numbers with 6 := oo + B + 2y # 0,
and let ® : A3 — [0,00) be a function satisfying (5.11). Suppose that the function
Y : A3 — [0, 00) satisfies in one of the following conditions

(i) lim, o 2"¥ (5, y,2) = 0;



ON HOMOMORPHISMS BETWEEN C* -TERNARY ALGEBRAS 405

(it) 1im, o0 2"¥(x, 57,2) = 0;

(iii) lim, oo 2"¥(x,y, 57) =0
forall x,y,z € A. Let f : A — A be a mapping satisfying (5.13) and (5.14). Then the
mapping f : A — A is a C* -ternary algebra derivation.

Proof. By the proof of Theorem 2.5, there exists a C-linear mapping D : A — A
defined by

Duyzgggv(%)

forall x € A.
The rest of the proof is similar to the proof of Theorem 5.3. [

THEOREM 5.9. Let o, f3,Y,q1,q2,q3 be real numbers and let €, 0,py,py,p3 be
non-negative real numbers such that § := a+ B +2y #0, p1+ps >0 and q; # 1
for some 1 < i < 3. Suppose that f : A — A is a mapping satisfying

8% 5. e, v 2], < O IV 0 (5.17)

I ey = 00,97 = e 00,2 = b Q)

< ellxllZ Iy IA 1=lA

forall w € T! andall x,y,z € A (x,y,z € A\{0} when q; < 0 for some 1 <i < 3).
Then the mapping f : A — A is a C* -ternary algebra derivation.
Note that we put ||.||§ = 1.

(5.18)

Proof. Without any loss of generality, we can assume that ¢; # 1. Since p;+p3 >
0, then we canlet p; > 0 (p3 > 0). Therefore it follows from the proof of Theorem
3.1 (Theorem 3.5) that the mapping f : A — A is C-linear. Let ¢; < 1. It follows
from (5.18) that

(3.2 = @33 = ef 03] = s Q]
=l g - p @0

fp%ﬂwdfpﬁﬂﬂmm

<e lim S Il =0

forall x,y,z€A (x,y,z€A \ {0} when g; < 0 for some 1 < i < 3). Therefore

F(x ) =1 (), 9,2 + xf(),2 + [x,9.f(2)] (5.19)

for all x,y,z € A (x,y,z € A\ {0} when ¢; < 0 for some 1 < i < 3). Since
f(0) = 0, then (5.19) holds for all x,y,z € A when ¢; < 0 for some 1 < i < 3.
Similarly, we get (5.19) when ¢; > 1. So the mapping f : A — A is a C* -ternary
algebra derivation. [J



406 ABBAS NAJATI AND ASGHAR RANJBARI

THEOREM 5.10. Let o, f,Y,q1,92,q95 be real numbers and let €,0,py,p2, p3
be non-negative real numbers such that oo +y # 0, p» > 0 and q; # 1 for some
1 < i< 3. Suppose that f : A — A is a mapping satisfying (5.17) and (5.18). Then
the mapping f : A — B is a C* -ternary algebra derivation.

Note that we put ||.||§ = 1.

Proof. Without any loss of generality, we can assume that g; # 1. It follows from
the proof of Theorem 3.3 that the mapping f : A — A is C-linear. Let q; > 1. It
follows from (5.18) that

I ey d) = (r 03,2 = e 00,2 = ey Q)
= Jim 2y ([e0:2)) = [r(5) 24

{2,, J ), } [2,,,y f(Z)} ‘

A

<e lim [l VI fl2llE = 0

2"
oo 2N41
forall x,y,z€ A (x,y,z€ A\ {0} when ¢; < 0 for some 2 < i < 3). Therefore

F(xy2) =[F (), 0,2 + xf ()2 + [x,3.f(2)] (5.20)

for all x,y,z € A (x,y,z € A\ {0} when ¢; < 0 for some 2 < i < 3). Since
f(0) = 0, then (5.19) holds for all x,y,z € A when ¢; < 0 for some 1 < i < 3.
Similarly, we get (5.20) when ¢; < 1. So the mapping f : A — A is a C* -ternary
algebra derivation. [
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