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AN EXTENDED MATRIX EXPONENTIAL FORMULA
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(communicated by J.-C. Bourin)

Abstract. In this paper we present matrix exponential formulae for the geometric and spectral
geometric means of positive definite matrices using a conjectured exponential formula that solved
by Wasin So [Linear Algebra Appl. 379 (2004)].

1. Introduction

A conjectured matrix exponential formula has recently been proved by Wasin So
[10, 11]: For Hermitian n by n matrices X and Y, there exist unitary matrices U and
V such that

eX/2eYeX/2 = eUXU∗+VYV∗
(1.1)

or equivalently eX+VYV∗
= U(eX/2eYeX/2)U∗. In other words, the Hermitian matrix

log(eX/2eYeX/2) belongs to the sum of the unitary orbits of X and Y

log(eX/2eYeX/2) ∈ U(n) · X + U(n) · Y = {UXU∗ + VYV∗ : U, V ∈ U(n)}.
We note that positive definite matrices of the form eX/2eYeX/2 appear in an extended
Lie-Trotter formula as infinitesimal generators [3]

eX+Y = lim
n→∞(eX/2neY/neX/2n)n.

The exponential formula leads to a trace equality; TreX+VYV∗
= Tr(eX/2eYeX/2) =

TreXeY for some unitary matrix V, in comparison with the well-known Golden-
Thompson trace inequality TreX+Y � TreXeY [6, 12].

The main purpose of this paper is to derive matrix exponential formulae for the
geometric and spectral geometric means that also appeared in extended Lie-Trotter
formulae as infinitesimal generators and in the study of logarithmic trace inequalities
complementing the Golden-Thompson trace inequality. The geometric and spectral
means of positive definite matrices A and B are defined by

A#B = A1/2(A−1/2BA−1/2)1/2A1/2, A�B = (A−1#B)1/2A(A−1#B)1/2.
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If A and B commute then A#B = A�B = A1/2B1/2 = (AB)1/2. The geometric mean
A#B is realized as a unique midpoint (geodesic middle) of A and B for a congruence
transformation invariant Riemannian metric on the open convex cone of positive definite
matrices [4, 8, 9]. The spectral geometric mean A�B is introduced and studied in detail
by Fiedler and V. Pták [5]. Extended Lie-Trotter formulae via the geometric and spectral
geometric means appear in [7, 1]

lim
n→∞

(
e2X/n#e2Y/n

)n
= eX+Y = lim

n→∞

(
e2X/n�e2Y/n

)n
.

More generally, eX+Y = limn→∞ γ (1/n)n for any differentiable curve γ defined on
(−ε, ε) to the open convex cone of positive definite matrices with γ (0) = I and
γ ′(0) = X + Y. See [1] for a proof.

We state the main result of this paper.

THEOREM 1.1. For Hermitian matrices X and Y, there exist unitary matrices Ui

and Vi such that

e2X#e2Y = eU1XU∗
1 +V1YV∗

1 and e2X�e2Y = eU2XU∗
2 +V2YV∗

2 . (1.2)

In particular for p > 0,

Tr eX+UYU∗
= Tr (epX#epY)2/p � Tr eX+Y � Tr(epX�epY)2/p = Tr eX+VYV∗

(1.3)

for some unitary matrices U and V, depending on p and X, Y.

2. Geometric and spectral means

Throughout this paper all matrices are assumed to be complex n×n matrices. Let
H(n) be the space of Hermitian matrices and let U(n) be the group of unitary matrices.

The following Riccati lemma is useful for our purpose. See [2, 9] for a proof.
LEMMA 2.1. (Riccati Lemma)For positive definitematrices A and B, the geometric

mean A#B is a unique positive definite solution of the Riccati equation XA−1X = B.

The following properties of the geometric and spectral mean operations are well-
known [2, 5, 9].

PROPOSITION 2.2. Let A and B be positive definite matrices. Then
(i) A#A = A�A = A ;
(ii) A#B = B#A, A�B = B�A ;
(iii) (A#B)−1 = A−1#B−1, (A�B)−1 = (A−1)�(B−1) ;
(iv) A#B = A�B if and only if A and B commute; and
(vi) (MAM∗)#(MBM∗) = M(A#B)M∗ and (UAU∗)�(UBU∗) = U(A�B)U∗ for any

invertible matrix M and U ∈ U(n).

PROPOSITION 2.3. Let A and B be positive definite matrices. Then

A�B = U(A1/2BA1/2)1/2U∗ (2.1)

for some unitary matrix U.
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Proof. Note that X∗X and XX∗ are unitarily similar for any invertible matrix X.
Setting X = A1/2(A−1#B)1/2, there exists a unitary matrix U such that

A�B = X∗X = UXX∗U∗ = UA1/2(A−1#B)1/2 ·(A−1#B)1/2A1/2U∗ = U(A1/2BA1/2)U∗.

�

3. Proof and related results

Proof of Theorem 1.1. We consider the matrix exponential equations of the geo-
metric and spectral geometric means: e2X#e2Y = eZ and e2X�e2Y = eW . By Riccati
Lemma, eZe−2XeZ = e2Y and by (1.1) there exist unitary matrices U and V such that
eZe−2XeZ = e2Z/2e−2Xe2Z/2 = e2UZU∗−2VXV∗

. Since the exponential map on the space
of Hermitian matrices is bijective onto the convex cone of positive definite matrices, we
have 2UZU∗−2VXV∗ = 2Y and hence UZU∗ = VXV∗ +Y or Z = WXW∗ +U∗YU
where W = U∗V.

For the spectral geometric mean, we apply Proposition 2.3:

eW = e2X�e2Y = U(eXe2YeX)1/2U∗

for some unitary U. Then by (1.1), eW = UeV1XV∗
1 +V2YV∗

2 U∗ = eU1XU∗
1 +U2YU∗

2 for some
unitary V1, V2 and therefore W = U1XU∗

1 + U2YU∗
2 .

Finally we prove (1.3): The first and last equalities follow from (1.2). By Theorem
3.4 and Theorem 1.1 of [7],

Tr (epX#epY)2/p � Tr eX+Y � Tr(epX/2epYepX/2)1/p.

Since epX�epY is similar to (epX/2epYepX/2)1/2, (epX�epY)2/p is similar to (epX/2epYepX/2)1/p.
Therefore Tr(epX/2epYepX/2)1/p = Tr(epX�epY)2/p for every p > 0. This shows the in-
equalities of (1.3).

DEFINITION 3.1. Define differentiable maps p, g, s : H(n) × H(n) → H(n) by

eX/2eYeX/2 = ep(X,Y), e2X#e2Y = eg(X,Y), e2X�e2Y = es(X,Y).

PROPOSITION 3.2. Let X, Y ∈ H(n).
(1) If X and Y commute then X + Y = p(X, Y) = g(X, Y) = s(X, Y).
(2) g(X, Y) = g(Y, X), s(X, Y) = s(Y, X), p(−X,−Y) = −p(X, Y), g(−X,−Y) =

−g(X, Y), s(−X,−Y) = −s(X, Y).
(3) p(X, Y) = Up(Y, X)U∗, s(X, Y) = 1

2Vp(2X, 2Y)V∗ for some unitary matrices
U, V depending on X and Y.

(4) g(−Y/2, p(X, Y)/2) = X/2, g(X, Y) = p(2X, 1
2p(−2X, 2Y)), and p(−2X, g(X, Y)) =

1
2p(−2X, 2Y).

(5) p(2g(X, Y),−2X) = 2Y, p(X, Y) = 1
2p(X, p(2Y, X)), and p(2X, Y) = p(X, p(X, Y)).
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Proof. (1) Straightforward.
(2) This follows from the commutative and inversion property of the geometric

and spectral means (Proposition 2.2).
(3) This follows from (2.1) and (1.1) and the fact that A1/2BA1/2 and B1/2AB1/2

are unitarily similar for any positive definite matrices A and B.
(4) By Riccati Lemma, eX/2eYeX/2 = ep(X,Y) implies that eX/2 = e−Y#ep(X,Y) =

eg(−Y/2,p(X,Y)/2). From

eg(X,Y) = e2X#e2Y = eX
(
e−Xe2Ye−X

)1/2
eX = eXe

1
2 p(−2X,2Y)eX = ep(2X, 1

2 p(−2X,2Y)),

wehave g(X, Y) = p(2X, 1
2p(−2X, 2Y)) and e

1
2 p(−2X,2Y) = e−Xeg(X,Y)e−X = ep(−2X,g(X,Y)).

(5) By Riccati Lemma, eg(X,Y) = e2X#e2Y implies that eg(X,Y)e−2Xeg(X,Y) = e2Y

and hence 2Y = p(2g(X, Y),−2Y). The remaining parts are immediate. �

REMARK 3.3. For fixed X, Y ∈ H(n), we consider the sum of two unitary orbits

U(X, Y) := {UXU∗ + VYV∗ : U, V ∈ U(n)}.
The previous results imply that p(X, Y), g(X, Y) and s(X, Y) lie in the compact subset
U(X, Y). Now, we consider weighted geometric and spectral means and associated Lie-
Trotter formulae. For any real number t, the t -weighted geometric and spectral means
are naturally defined by

A#tB := A1/2(A−1/2BA−1/2)tA1/2, A�tB := (A−1#B)tA(A−1#B)t.

We note that the line t �→ A#tB is the unique geodesic line passing A and B on the
Riemannian symmetric space of positive definite matrices [8, 9]. It is shown ([1]) that

e(1−t)X+tY = lim
n→∞

(
e(1−t)X/2netY/ne(1−t)X/2n

)n
= lim

n→∞

(
eX/n#te

Y/n
)n

= lim
n→∞

(
eX/n�te

Y/n
)n

.

Moving to Hermitian matrices, we get pt, gt, st : H(n) × H(n) → H(n) defined by

ept(X,Y) = e(1−t)X/2etYe(1−t)X/2, egt(X,Y) = eX#te
Y , est(X,Y) = eX�te

Y .

From (1.1) we have that pt(X, Y) ∈ Ut(X, Y) := U((1 − t)X, tY) , the t -weighted sum
of the unitary orbits.

We remark in closing that higher-order exponential formulae are immediate from
induction and So’s result. For Hermitian matrices X1, X2, . . . , Xm,

eX1/2eX2/2 · · · eXm−1/2eXmeXm−1/2 · · · eX2/2eX1/2 = e
∑m

i=1
UiXiU

∗
i

e2X1#e4X2# · · · #e2m−1Xn−1#e2m−1Xm = e
∑m

i=1
ViXiV

∗
i

e2X1�e4X2� · · · �e2m−1Xm−1�e2m−1Xm = e
∑m

i=1
WiXiW

∗
i

for some unitary matrices Ui, Vi and Wi, i = 1, 2, . . . , m. Here we used the notation
A1#A2# · · · #An−1#An in the usual way:

A1#A2# · · · #An−1#An = A1#
(
A2# · · · #An−1#An

)
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although the geometric mean operation is not associative. Similarly for spectral geo-
metric means.
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