ON THE QUASI–MONOTONE AND ALMOST INCREASING SEQUENCES

H. BOR AND H. S. ÖZARSLAN

(communicated by G. Toader)

Abstract. In this paper, a theorem of Bor and Özarslan [3] dealing with \(|C, \alpha; \beta|_k \) summability factors has been generalized for \(|C, \alpha, \gamma; \beta|_k \) summability methods.

1. Introduction

We will use the following notations and notions in our paper:

If \(g > 0 \), then \(f = O(g) \) means that \(|f| < K g \), for some constant \(K > 0 \) (see [7]). Let \((u_n) \) be a sequence. We write that \(\Delta u_n = u_n - u_{n+1} \), \(\Delta^0 u_n = u_n \) and \(\Delta^k u_n = \Delta \Delta^{k-1} u_n \), for \(k = 1, 2, \ldots \) (see [7]).

Abel’s transformation ([8]): Let \((a_k), (b_k) \) be complex sequences, and write

\[
S_n = a_1 + a_2 + \ldots + a_n .
\]

Then

\[
\sum_{k=1}^{n} a_k b_k = \sum_{k=1}^{n-1} S_k \Delta b_k + S_n b_n .
\] (1)

Hölder’s inequality ([8]): If \(p > 1 \), \(\frac{1}{p} + \frac{1}{q} = 1 \) and \(a_1, a_2, a_3, \ldots, a_n \geq 0 \); \(b_1, b_2, b_3, \ldots, b_n \geq 0 \) , then

\[
\sum_{k=1}^{n} a_k b_k \leq \left(\sum_{k=1}^{n} a_k^p \right)^{1/p} \left(\sum_{k=1}^{n} b_k^q \right)^{1/q} .
\] (2)

A sequence \((b_n) \) of positive numbers is said to be \(\delta \)-quasi-monotone, if \(b_n \to 0 \), \(b_n > 0 \) ultimately and \(\Delta b_n \geq -\delta_n \), where \((\delta_n) \) is a sequence of positive numbers (see [2]). A positive sequence \((b_n) \) is said to be almost increasing if there exists a positive increasing sequence \(c_n \) and two positive constants \(A \) and \(B \) such that \(A c_n \leq b_n \leq B c_n \) (see [1]). Let \(\sum a_n \) be a given infinite series with partial sums \((s_n) \). We denote by \(\sigma_n^\alpha \) and \(t_n^\alpha \) the \(n \)-th Cesàro means of order \(\alpha \), with \(\alpha > -1 \), of the sequence \((s_n) \) and \((na_n) \), respectively, i.e.,

\[
\sigma_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=0}^{n} A_n^{\alpha-1} s_v
\] (3)

Mathematics subject classification (2000): 40D15, 40F05, 40G05.

Key words and phrases: Absolute summability, almost increasing and quasi-monotone sequences.
\[t_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v, \quad (4) \]

where
\[A_n^\alpha = O(n^\alpha), \quad \alpha > -1, \quad A_0^\alpha = 1 \quad \text{and} \quad A_n^\alpha = 0 \quad \text{for} \quad n > 0. \quad (5) \]

The series \(\sum a_n \) is said to be summable \(| C, \alpha |_k \), \(k \geq 1 \) and \(\alpha > -1 \), if (see [5])
\[\sum_{n=1}^{\infty} n^{k-1} \left| \sigma_n^\alpha - \sigma_{n-1}^\alpha \right|^k = \sum_{n=1}^{\infty} \frac{1}{n} \left| t_n^\alpha \right|^k < \infty \quad (6) \]
and it is said to be summable \(| C, \alpha; \beta |_k \), \(k \geq 1 \), \(\alpha > -1 \) and \(\beta \geq 0 \), if (see [6])
\[\sum_{n=1}^{\infty} n^{\beta k+k-1} \left| \sigma_n^\alpha - \sigma_{n-1}^\alpha \right|^k = \sum_{n=1}^{\infty} n^{\beta k-1} \left| t_n^\alpha \right|^k < \infty. \quad (7) \]

The series \(\sum a_n \) is said to be summable \(| C, \alpha, \gamma; \beta |_k \), \(k \geq 1 \) and \(\alpha > -1 \), \(\delta \geq 0 \) and \(\gamma \) is a real number, if (see [9])
\[\sum_{n=1}^{\infty} n^{(\beta k+k-1)-k} \left| t_n^\alpha \right|^k < \infty. \quad (8) \]

If we take \(\gamma = 1 \), then \(| C, \alpha, \gamma; \beta |_k \) summability reduces to \(| C, \alpha; \beta |_k \) summability.

Bor and Özarslan [3] have proved the following theorem for \(| C, \alpha; \beta |_k \) summability factors.

THEOREM A. Let \((X_n) \) be an almost increasing sequence such that \(| \Delta X_n | = O(\frac{X_n}{n}) \) and \(\lambda_n \to 0 \) as \(n \to \infty \). Suppose that there exists a sequence of numbers \((B_n) \) such that it is \(\delta \)-quasi-monotone with \(\sum nX_n \delta_n < \infty \), \(\sum B_nX_n \) is convergent and \(\left| \Delta \lambda_n \right| \leq B_n \) for all \(n \). If the sequence \((u_n^\alpha) \), defined by (see [10])
\[u_n^\alpha = \begin{cases} \left| t_n^\alpha \right|, & \alpha = 1 \\ \max_{1 \leq v \leq n} \left| t_v^\alpha \right|, & 0 < \alpha < 1 \end{cases} \quad (9) \]
satisfies the condition
\[\sum_{n=1}^{m} n^{\beta k-1} (u_n^\alpha)^k = O(X_m) \quad \text{as} \quad m \to \infty, \quad (10) \]
then the series \(\sum a_n \lambda_n \) is summable \(| C, \alpha; \beta |_k \), \(k \geq 1 \) and \(0 \leq \beta < \alpha \leq 1 \).
2. The main result

The aim of this paper is to generalize Theorem A for \(| C, \alpha, \gamma; \beta |_k \) summability factors. We shall prove the following theorem.

THEOREM. Let \((X_n)\) be an almost increasing sequence such that \(| \Delta X_n | = O(\frac{X_n}{n})\) and \(\lambda_n \to 0\) as \(n \to \infty\). Suppose that there exists a sequence of numbers \((B_n)\) such that it is \(\delta\)-quasi-monotone with \(\sum n X_n \delta_n < \infty\), \(\sum B_n X_n\) is convergent and \(| \Delta \lambda_n | \leq | B_n |\) for all \(n\). If the sequence \((u_n^\alpha)\), defined by (9) satisfies the condition

\[
\sum_{n=1}^{m} n^{\gamma (\beta k + k - 1) - k} (u_n^\alpha)^k = O(X_m) \text{ as } m \to \infty, \tag{11}
\]

then the series \(\sum a_n \lambda_n\) is summable \(| C, \alpha, \gamma; \beta |_k\), where \(k \geq 1\), \(\beta \geq 0\), \(0 < \alpha \leq 1\) and \(\gamma\) is a real number such that \(k + \alpha k - \gamma (\beta k + k - 1) > 1\).

We need the following lemmas for the proof of our theorem.

Lemma 1. ([4]) If \(0 < \alpha \leq 1\) and \(1 \leq v \leq n\), then

\[
| \sum_{p=0}^{v} A_{n-p}^{\alpha-1} a_p | \leq \max_{1 \leq m \leq v} | \sum_{p=0}^{m} A_{m-p}^{\alpha-1} a_p |. \tag{12}
\]

Lemma 2. ([3]) Under the conditions regarding \((\lambda_n)\) and \((X_n)\) of the Theorem, we have

\[
| \lambda_n | X_n = O(1) \text{ as } n \to \infty. \tag{13}
\]

Lemma 3. ([3]) Under the conditions pertaining to \((X_n)\) and \((B_n)\) of the Theorem, we have that

\[
\sum_{n=1}^{\infty} n X_n | \Delta B_n | < \infty. \tag{15}
\]

3. Proof of the Theorem

Let \((T_n^\alpha)\) be the \(n\)-th \((C, \alpha)\) mean of the sequence \((n a_n \lambda_n)\). Then, by (4) we have

\[
T_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v \lambda_v. \tag{16}
\]

Using Abel’s transformation, we get that

\[
T_n^\alpha = \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} \Delta \lambda_v \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p a_p + \frac{\lambda_n}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} v a_v,
\]
so that making use of Lemma 1, we have

\[
| T_n^\alpha | \leq \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} | \Delta \lambda_v | \sum_{p=1}^{v} A_{n-p}^{\alpha-1} p |a_p| + \frac{| \lambda_n |}{A_n^\alpha} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} va_v |
\]

\[
\leq \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} A_v^\alpha w_v^\alpha \Delta \lambda_v | + | \lambda_n | w_n^\alpha
\]

\[= T_{n,1}^\alpha + T_{n,2}^\alpha, \text{ say.} \]

Since

\[
| T_{n,1}^\alpha + T_{n,2}^\alpha |^k \leq 2^k (| T_{n,1}^\alpha |^k + | T_{n,2}^\alpha |^k),
\]

to complete the proof of the Theorem, it is sufficient to show that

\[
\sum_{n=1}^{\infty} n^{\gamma(\beta k + k - 1) - k} | T_{n,r}^\alpha |^k < \infty \quad \text{for} \quad r = 1, 2, \quad \text{by} \quad (8).
\]

Now, when \(k > 1 \), applying Hölder’s inequality with indices \(k \) and \(k' \), where \(\frac{1}{k} + \frac{1}{k'} = 1 \), we get that

\[
\sum_{n=1}^{m+1} n^{\gamma(\beta k + k - 1) - k} | T_{n,1}^\alpha |^k \leq \sum_{n=2}^{m+1} n^{\gamma(\beta k + k - 1) - k} \left\{ \frac{1}{A_n^\alpha} \sum_{v=1}^{n-1} A_v^\alpha u_v^\alpha \Delta \lambda_v \right\}^k
\]

\[
= O(1) \sum_{n=2}^{m+1} n^{\gamma(\beta k + k - 1) - k - \alpha k} \left\{ \sum_{v=1}^{n-1} v^{\alpha k} (u_v^\alpha)^k | B_v | \right\}^k
\]

\[
\times \left\{ \sum_{v=1}^{n-1} | B_v | \right\}
\]

\[
= O(1) \sum_{v=1}^{m} v^{\alpha k} (u_v^\alpha)^k | B_v | \sum_{n=v+1}^{m+1} \frac{1}{n^{k + \alpha k - \gamma(\beta k + k - 1)}}
\]

\[
= O(1) \sum_{v=1}^{m} v^{\alpha k} (u_v^\alpha)^k | B_v | \int_{v}^{\infty} \frac{dx}{x^{\alpha k + k - \gamma(\beta k + k - 1)}}
\]

\[
= O(1) \sum_{v=1}^{m} v | B_v | v^{\gamma(\beta k + k - 1) - k} (u_v^\alpha)^k
\]

\[
= O(1) \sum_{v=1}^{m} \Delta(v | B_v |) \sum_{r=1}^{v} r^{\gamma(\beta k + k - 1) - k} (u_r^\alpha)^k
\]

\[
+ O(1) m | B_m | \sum_{v=1}^{m-1} v^{\gamma(\beta k + k - 1) - k} (u_v^\alpha)^k
\]

\[= O(1) \sum_{v=1}^{m-1} \Delta(v | B_v |) X_v + O(1) m | B_m | X_m
\]
\[= \mathcal{O}(1) \sum_{v=1}^{m-1} v \mid \Delta B_v \mid X_v + \mathcal{O}(1) \sum_{v=1}^{m-1} \mid B_{v+1} \mid X_{v+1} + \mathcal{O}(1) \mid B_m \mid X_m = \mathcal{O}(1) \text{ as } m \to \infty,\]

by virtue of the hypotheses of the Theorem and Lemma 3.

Again, since \(|\lambda_n| = \mathcal{O}(1/X_n) = \mathcal{O}(1)\) by (13), we have that
\[
\sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} \mid T_{n,2}^\alpha \mid^k = \sum_{n=1}^{m} \mid \lambda_n \mid^{k-1} \mid \lambda_n \mid n^{\gamma(\beta k + k - 1) - k} (u_n^\alpha)^k
\]
\[
= \mathcal{O}(1) \sum_{n=1}^{m} \mid \lambda_n \mid^{k-1} \mid \lambda_n \mid n^{\gamma(\beta k + k - 1) - k} (u_n^\alpha)^k
\]
\[
= \mathcal{O}(1) \sum_{n=1}^{m-1} \Delta \mid \lambda_n \mid \sum_{v=1}^{n} v^{\gamma(\beta k + k - 1) - k} (u_v^\alpha)^k
\]
\[
+ \mathcal{O}(1) \mid \lambda_m \mid \sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} (u_n^\alpha)^k
\]
\[
= \mathcal{O}(1) \sum_{n=1}^{m-1} \mid \Delta \lambda_n \mid X_n + \mathcal{O}(1) \mid \lambda_m \mid X_m
\]
\[
= \mathcal{O}(1) \sum_{n=1}^{m-1} \mid B_n \mid X_n + \mathcal{O}(1) \mid \lambda_m \mid X_m = \mathcal{O}(1) \text{ as } m \to \infty,
\]

by virtue of the hypotheses of the Theorem, Lemma 2 and Lemma 3.

Therefore, we get that
\[
\sum_{n=1}^{m} n^{\gamma(\beta k + k - 1) - k} \mid T_{n,r}^\alpha \mid^k = \mathcal{O}(1) \text{ as } m \to \infty, \text{ for } r = 1, 2.
\]

This completes the proof of the Theorem.

If we take \(\gamma = 1\), then we get Theorem A. In this case condition (11) reduces to condition (10). Also if we take \(\gamma = 1\) and \(\beta = 0\), then we have a new result concerning \(|C, \alpha|_k\) summability factors. Finally, if we take \(\gamma = 1, \beta = 0\) and \(\alpha = 1\), then we obtain a new result related to \(|C, 1|_k\) summability factors.

Acknowledgement. The authors are very grateful to the referee for his/her invaluable suggestions.
REFERENCES

(Received July 28, 2007)

H. Bor
Department of Mathematics
Erciyes University
38039 Kayseri
Turkey
e-mail: bor@erciyes.edu.tr

H. S. Özarslan
Department of Mathematics
Erciyes University
38039 Kayseri
Turkey
e-mail: seyhan@erciyes.edu.tr