THE INTEGRAL OPERATOR ON THE CLASSES $S^\ast_\alpha(b)$ AND $C_\alpha(b)$

DANIEL BREAZ AND H. ÖZLEM GÜNEY

(communicated by Th. Rassias)

Abstract. In this paper we present some properties for two general integral operators on the classes $S^\ast_\alpha(b)$ and $C_\alpha(b)$.

1. Introduction

Let $\mathcal{U} = \{z \in \mathbb{C}, |z| < 1\}$ be the open unit disc of the complex plane. Denote by $\mathcal{H}(U)$ and \mathcal{A}, the class of the holomorphic functions in \mathcal{U} and the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the open unit disk \mathcal{U}, respectively.

In the paper [3], Frasin studied the classes $S^\ast_\alpha(b)$ and $C_\alpha(b)$.

A function $f(z) \in \mathcal{A}$ is said to be a starlike of complex order $b, (b \in \mathbb{C} - \{0\})$ and type $\alpha, (0 \leq \alpha < 1)$, that is $f \in S^\ast_\alpha(b)$, if and only if

$$\Re \left\{ 1 + \frac{1}{b} \left(\frac{zf'(z)}{f(z)} - 1 \right) \right\} > \alpha$$

for all $z \in \mathcal{U}$. (1)

A function $f(z) \in \mathcal{A}$ is said to be convex of complex order $b, (b \in \mathbb{C} - \{0\})$ and type $\alpha, (0 \leq \alpha < 1)$, that is $f \in C_\alpha(b)$, if and only if

$$\Re \left\{ 1 + \frac{1}{b} \frac{zf''(z)}{f'(z)} \right\} > \alpha$$

for all $z \in \mathcal{U}$. (2)

Key words and phrases: Integral operator, holomorphic functions, starlike functions, convex functions, complex order.

Supported by the GAR 20/2007.
Recently, the first author and N. Breaz in [1] introduced and studied the integral operator
\[F_n(z) = \int_0^z \left(\frac{f_1(t)}{t} \right)^{\alpha_1} \cdots \left(\frac{f_n(t)}{t} \right)^{\alpha_n} \, dt \]
and the integral operator
\[F_{\alpha_1, \ldots, \alpha_n}(z) = \int_0^z (f'_1(t))^{\alpha_1} \cdots (f'_n(t))^{\alpha_n} \, dt \]
for \(\alpha_i > 0 \), was introduced by the first author et al. in [2].

In the present paper, we consider two integral operators in above and study their properties on the classes \(S_\alpha(b) \) and \(C_\alpha(b) \).

2. Main results

Theorem 1. Let \(\alpha_i, i \in \{1, \ldots, n\} \) the real numbers with the properties \(\alpha_i > 0 \) for \(i \in \{1, \ldots, n\} \), \(\alpha \) the real number, \(0 \leq \alpha < 1 \) and
\[0 \leq (\alpha - 1) \sum_{i=1}^n \alpha_i + 1 < 1. \]
If \(f_i \in S_\alpha^*(b) \) for \(i = \{1, \ldots, n\} \) and \(b \in \mathbb{C} - \{0\} \), then \(F_n \in C_\gamma(b) \), where
\[\gamma = (\alpha - 1) \sum_{i=1}^n \alpha_i + 1. \]

Proof. We calculate the derivatives of the first and second order for \(F_n \). From (3), we obtain
\[F'_n(z) = \left(\frac{f_1(z)}{z} \right)^{\alpha_1} \cdots \left(\frac{f_n(z)}{z} \right)^{\alpha_n} \]
and
\[F''_n(z) = \sum_{i=1}^n \alpha_i \left(\frac{zf'_i(z) - f_i(z)}{zf_i(z)} \right) F'_n(z). \]
From the above equalities, we have
\[\frac{F''_n(z)}{F'_n(z)} = \alpha_1 \left(\frac{zf'_1(z) - f_1(z)}{zf_1(z)} \right) + \cdots + \alpha_n \left(\frac{zf'_n(z) - f_n(z)}{zf_n(z)} \right) \]
and
\[\frac{F''_n(z)}{F'_n(z)} = \alpha_1 \left(\frac{f'_1(z)}{f_1(z)} - \frac{1}{z} \right) + \cdots + \alpha_n \left(\frac{f'_n(z)}{f_n(z)} - \frac{1}{z} \right). \]
By multiplying the relation (6) with \(z \), we obtain
\[\frac{zF''_n(z)}{F'_n(z)} = \sum_{i=1}^n \alpha_i \left(\frac{zf'_i(z)}{f_i(z)} - 1 \right). \]
Then by multiplying the relation (7) with \(\frac{1}{b} \), we obtain

\[
\frac{1}{b} z F''(z) = \frac{1}{b} \sum_{i=1}^{n} \alpha_i \left(\frac{f''_i(z)}{f_i(z)} - 1 \right) = \sum_{i=1}^{n} \alpha_i \left[1 + \frac{1}{b} \left(\frac{f''_i(z)}{f_i(z)} - 1 \right) \right] - \sum_{i=1}^{n} \alpha_i \tag{8}
\]

The relation (8) is equivalent to

\[
1 + \frac{1}{b} z F''(z) = \sum_{i=1}^{n} \alpha_i \left[1 + \frac{1}{b} \left(\frac{f''_i(z)}{f_i(z)} - 1 \right) \right] - \sum_{i=1}^{n} \alpha_i + 1 \tag{9}
\]

Lastly, we calculate the real part of both terms of (9) and obtain

\[
\text{Re} \left\{ 1 + \frac{1}{b} z F''(z) \right\} = \sum_{i=1}^{n} \alpha_i \text{Re} \left[1 + \frac{1}{b} \left(\frac{f''_i(z)}{f_i(z)} - 1 \right) \right] - \sum_{i=1}^{n} \alpha_i + 1 \tag{10}
\]

Since \(f_i \in \mathcal{S}_\alpha(b) \) for \(i = \{1, \ldots, n\} \), by applying in the relation (10) the inequality (1) we have

\[
\text{Re} \left\{ 1 + \frac{1}{b} z F''(z) \right\} > (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 \tag{11}
\]

Because \(0 \leq (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 < 1 \), we obtain \(F_n \in \mathcal{C}_\gamma(b) \), where \(\gamma = (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 \).

COROLLARY 2. Let \(\alpha_1 > 0 \) and \(\alpha \) the real number with the property \(0 \leq \alpha < 1 \). If \(0 \leq (\alpha - 1) \alpha_1 + 1 < 1 \) and the function \(f_1 \in \mathcal{S}_\alpha(b) \), then the integral operator \(F_1 \in \mathcal{C}_\rho(b) \), where \(\rho = (\alpha - 1) \alpha_1 + 1 \).

THEOREM 3. Let \(f_i \in \mathcal{C}_\alpha(b) \), \(0 \leq \alpha < 1 \), \(\alpha_i > 0 \), \(b \in \mathbb{C} - \{0\} \) and

\[
0 \leq (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 < 1
\]

for all \(i \in \{1, \ldots, n\} \). Then the integral operator \(F_{\alpha_1, \ldots, \alpha_n} \in \mathcal{C}_\eta(b) \), where

\[
\eta = (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1.
\]

Proof. If we make the similar operations to the proof of the Theorem 1, we have

\[
\frac{F''_{\alpha_1, \ldots, \alpha_n}(z)}{F'_{\alpha_1, \ldots, \alpha_n}(z)} = \alpha_1 \frac{f''_1(z)}{f'_1(z)} + \ldots + \alpha_n \frac{f''_n(z)}{f'_n(z)}. \tag{12}
\]

Then by multiplying this relation with \(\frac{\alpha}{b} \), we obtain

\[
\frac{1}{b} z F''_{\alpha_1, \ldots, \alpha_n}(z) = \alpha_1 \frac{z f''_1(z)}{b f'_1(z)} + \ldots + \alpha_n \frac{z f''_n(z)}{b f'_n(z)}. \tag{13}
\]
From the relation (13), we obtain that
\[
\text{Re} \left(\frac{1}{b} \frac{zF''_{\alpha_1, \ldots, \alpha_n}(z)}{F'_{\alpha_1, \ldots, \alpha_n}(z)} + 1 \right) = \sum_{i=1}^{n} \alpha_i \text{Re} \left(1 + \frac{1}{b} \frac{z f''_i(z)}{f'_i(z)} \right) - \sum_{i=1}^{n} \alpha_i + 1. \tag{14}
\]

Since \(f_i \in \mathcal{C}_\alpha(b) \), we have
\[
\text{Re} \left(\frac{1}{b} \frac{zF''_{\alpha_1, \ldots, \alpha_n}(z)}{F'_{\alpha_1, \ldots, \alpha_n}(z)} + 1 \right) > (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1. \tag{15}
\]

Since \(0 \leq (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 < 1 \), the relation (15) implies that the integral operator \(F_{\alpha_1, \ldots, \alpha_n} \in \mathcal{C}_{\eta}(b) \), where \(\eta = (\alpha - 1) \sum_{i=1}^{n} \alpha_i + 1 \). \(\square \)

Putting \(n = 1 \) in the Theorem 3, we have

Corollary 4. Let \(f_1 \in \mathcal{C}_\alpha(b) \), \(0 \leq \alpha < 1 \). Then the integral operator \(F_{\alpha_1} \in \mathcal{C}_{\sigma}(b) \), where \(\sigma = (\alpha - 1)\alpha_1 + 1 \) and \(0 \leq (\alpha - 1)\alpha_1 + 1 < 1 \).

References

(Received December 9, 2007)