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Abstract. In this paper, we show that the general variational inequalities are equivalent to a
new class of general Wiener-Hopf equations involving the nonexpansive mappings. Using this
equivalence, we suggest and analyze an iterative method for finding the common elements of the
solution set of the general variational inequalities and the solution set of the fixed-point of the
nonexpansive mapping. We also consider the convergence criteria of the proposed method under
some mild conditions. Since the general variational inequalities and the Wiener-Hopf equations
include several classes of variational inequalities and Wiener-Hopf equations as special cases,
our results continue to hold for these problems. Results obtained in this paper may be viewed as
a refinement and improvement of the previously known results.

1. Introduction

General variational inequalities introduced by Noor [8] in 1988 are a very important
and significant extension of the concept of variational inequalities. It has been shown
that a wide class of both odd-order and even-order, nonsymmetric problems arising in
various branches of mathematical and engineering sciences can be studied in the unified
and general framework of general variational inequalities, see [3–29, 32]. Theory
of variational inequalities combines theoretical and algorithmic advances with new
and novel domain of applications. Analysis of these problems requires a blend of
techniques from convex analysis, functional analysis and numerical analysis. As a
result of interaction between these different branches of mathematical and engineering
sciences, we have a variety of techniques for solving variational inequalities and related
problems. Using the projection technique, one can show that the general variational
inequalities are equivalent to the fixed-point problems. This equivalence has been
used to develop some efficient and robust numerical techniques for solving variational
inequalities and related optimization problems. Related to the variational inequalities,
we have the problem of solving the Wiener-Hopf equations, which were introduced by
Shi [27] in conjunction with variational inequalities. Essentially using the projection
technique, one establishes the equivalance between the variational inequalities and
the Wiener-Hopf equations. This alternative equivalent formulation has played an
important and significant part in developing efficient and robust numerical techniques
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and sensitivity analysis framework for variational inequalities, see [9, 10, 13–18, 20,
21, 25–27] and the references therein.

Related to the variational inequalities and the Wiener-Hopf equations, we also have
the problem of finding fixed points of the non-expansivemappings, which is the subject
of current interest in functional analysis, see [30]. It is natural to consider a unified
approach for these different problems. Motivated and inspired by the research going in
this direction, Noor [16] and Noor and Huang [19] considered the problem of finding
the common element of the set of the solutions of variational inequalities, the Wiener-
Hopf equations and the set of the fixed points of the nonexpansive mappings. In this
paper, we introduce and consider a new class of Wiener-Hopf equations involving two
nonlinear operators and a nonexpansive mapping, which is called the general Wiener-
Hopf equation involving mapping. Using the projection technique, we show that the
general Wiener-Hopf equation involving a non-expansive mapping are equivalent to
the general variational inequalities. We use this alternative equivalence to suggest
and analyze an iterative scheme for finding the common solutions of the Winer-Hopf
equations involving the nonexpansivemappings. We also prove the convergencecriteria
of these new iterative schemes under some mild conditions. Since Noor variational
inequalities include variational inequalities, nonlinear complementarity problems and
a class of quasi variational inequalities as special cases, results obtained in this paper
continue to hold for these problems. Our results can be viewed as a significant and
novel extension of the previously known results.

2. Premilinaries and Basic Results

Let H be a real Hilbert space, whose inner product and norm are denoted by
〈 ., .〉 and ‖.‖ respectively. Let K be a nonempty closed and convex set in H and
T, g : H −→ H be nonlinear operators.

We now consider the problem of finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v) − g(u)〉 � 0, ∀v ∈ H : g(v) ∈ K. (2.1)

Problem (2.1) is called the general variational inequality, which was introduced and
studied by Noor [8] in 1988. It has been shown that many diverse problems in science
and engineering as well as in social sciences and ecology can be studied in the unified
framework of the general variational inequalities, see [9-21] and the references therein.
To convey an idea of the applications of general variational inequalities, we consider
the third-order obstacle boundary value problem of finding u such that

−u′′′ � f (x) on Ω = [0, 1]
u � ψ(x) on Ω = [0, 1]
[−u′′′ − f (x)][u − ψ(x)] = 0 on Ω = [0, 1]
u(0) = 0, u′(0) = 0, u′(1) = 0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

, (2.2)

where f (x) is a continuous function and ψ(x) is the obstacle function. We study the
problem (2.2) in the framework of variational inequality approach. To do so, we first
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define the set K as

K = {v : v ∈ H2
0(Ω) : v � ψ on Ω},

which is a closed convex set in H2
0(Ω) , where H2

0(Ω) is a Sobolev (Hilbert) space, see
[7]. One can easily show that the energy functional associated with the problem (2.2) is

I[v] = −
∫ 1

0

(
d3v
dx3

) (
dv
dx

)
dx − 2

∫ 1

0
f (x)

(
dv
dx

)
dx, for all

dv
dx

∈ K

=
∫ 1

0

(
d2v
dx2

)2

dx − 2
∫ 1

0
f (x)

(
dv
dx

)
dx

= 〈Tv, g(v)〉 − 2〈 f , g(v)〉 (2.3)

where

〈Tu, g(v)〉 =
∫ 1

0

(
d2u
dx2

) (
d2v
dx2

)
dx (2.4)

〈 f , g(v)〉 =
∫ 1

0
f (x)

dv
dx

dx

and g =
d
dx

is the linear operator.

It is clear that the operator T defined by (2.4) is linear, g -symmetric and g -
positive. Using the technique of Noor [15], one can easily show that the minimum
u ∈ H of the functional I[v] defined by (2.3) associated with the problem (2.2) on the
closed convex set K can be characterized by the inequality of the type

〈Tu, g(v) − g(u)〉 � 〈 f , g(v) − g(u)〉 , ∀g(v) ∈ K,

which is exactly the general variational inequality (2.1). It is worth mentioning that a
wide class of unrelated odd-order and nonsymmetric equilibrium problems arising in
regional, physical, mathematical, engineering and applied sciences can be studied in the
unified and general framework of the general variational inequalities (2.1), see [9–18]
and the references therein.

For g ≡ I, where I is the identity operator, problem (2.1) is equivalent to finding
u ∈ K such that

〈Tu, v − u〉 � 0 ∀v ∈ K, (2.5)

which is known as the classical variational inequality introduced and studied by Stam-
pacchia [29] in 1964. For recent state-of-the-art, see [1–32] and the references therein.

If K∗ = {u ∈ H : 〈 u, v〉 � 0, ∀v ∈ K} is a polar (dual) cone of a convex cone
K in H , then problem (2.1) is equivalent to finding u ∈ H such that

g(u) ∈ K, Tu ∈ K∗ and 〈Tu, g(u)〉 = 0, (2.6)

which is known as the general complementarity problem. For g(u) = m(u)+K, where
m is a point-to-point mapping, problem (2.6) is called the implicit (quasi) complemen-
tarity problem. If g ≡ I, then problem (2.6) is known as the generalized complemen-
tarity problem. Such problems have been studied extensively in the literature, see the
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references. For suitable and appropriate choice of the operators and spaces, one can
obtain several classes of variational inequalities and related optimization problems.

We now recall the following well known results and concepts.

LEMMA 2.1. For a given z ∈ H , u ∈ K satisfies the inequality

〈 u − z, v − u〉 � 0, ∀v ∈ K,

if and only if
u = PK [z],

where PK is the projection of H onto K . Also, the projection operator PK is nonex-
pansive.

Related to the variational inequalities, we now consider the problem of solving
the Wiener-Hopf equations. To be more precise, let QK = I − SPK, where PK is the
projection of H onto the closed convex set K, I is the identity operator and S is the
nonexpansive operator. For given nonlinear operators T, g : H −→ H, we consider the
problem of finding z ∈ H such that

Tg−1SPKz + ρ−1QKz = 0, (2.7)

which is called the Wiener-Hopf equation involving the nonexpansive operator S. For
S = I, the identity operator, we obtain the original general Wiener-Hopf equation,
introduced by Noor [9]. We also remark that, if g = I the identity operator, then
the General Wiener-Hopf equations are exactly the same as considered in Noor and
Huang [23]. In passing, we would like to mention that the concept of Wiener-Hopf
equations was introduced by Shi [27] in the context of variational inequalities. Us-
ing essentially the projection technique, one can show that the general Wiener-Hopf
equations are equivalent to the variational inequalities. This equivalence has played a
fundamental and basic role in developing some efficient and robust methods for solving
variational inequalities, see [9,10, 13–15,20–23, 26,27] and the references therein for
the applications and numerical methods.

Using Lemma 2.1, we can show that the general variational inequality (2.1) is
equivalent to the fixed point problem. This result is mainly due to Noor [8].

LEMMA 2.2. The function u ∈ H : g(u) ∈ K satisfies the general variational
inequality (2.1), if and only if, u ∈ H satisfies the relation

g(u) = PK[g(u) − ρTu], (2.8)

where ρ > 0 is a constant.

It is clear from Lemma 2.2 that the general variational inequalities (2.1) and
the fixed point problems (2.8) are equivalent. This alternative equivalent formulation
has played a significant role in the studies of the variational inequalities and related
optimization problems.

It is convenient to write (2.8) in the following formwhich is very useful in obtaining
our results.

u = u − g(u) + PK[g(u) − ρTu].
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Let S be a nonexpansive mapping. We denote the set of the fixed points of S by F(S)
and the set of the solutions of the general variational inequalities (2.1) by GVI(K, T, g).
We now characterize the problem. If u ∈ F(S) ∩ GVI(K, T, g), then u ∈ F(S) and
u ∈ GVI(K, T, g). Thus from Lemma 2.2, it follows that

u = Su = u − g(u) + PK [g(u) − ρTu]
= S{u − g(u) + PK [g(u) − ρTu]}. (2.9)

where ρ > 0 is a constant.
This fixed point formulation has been [18] used to suggest the following iterative

method for finding a common element of two different sets of solutions of the fixed
points of the nonexpansive mappings and the variational inequalities.

ALGORITHM 2.1. For a given x0 ∈ H, compute the approximate solution xn by
the iterative schemes

xn+1 = (1 − an)xn + anS{xn − g(xn) + PK [g(xn) − ρTxn]},
where an ∈ [0, 1] for all n � 0 and S is the nonexpansive operator. For S = I, the
identity operator, Algorithm 2.1 is essentially due to Noor [11].

DEFINITION 2.1. A mapping T : H → H is called μ -Lipschitzian if there exists a
constant μ > 0 , such that

||Tx − Ty|| � μ||x − y||, ∀x, y ∈ H.

DEFINITION 2.2. A mapping T : H → H is called α -inverse strongly monotonic
if there exists a constant α > 0 , such that

〈Tx − Ty, x − y〉 � α||Tx − Ty||2, ∀x, y ∈ H.

DEFINITION 2.3. A mapping T : H → H is called r -strongly monotonic if there
exists a constant r > 0 , such that

〈Tx − Ty, x − y〉 � r||x − y||2, ∀x, y ∈ H.

DEFINITION 2.4. A mapping T : H → H is called relaxed (γ , r) -cocoercive if
there exists constants γ > 0, r > 0 , such that

〈Tx − Ty, x − y〉 � −γ ||Tx − Ty||2 + r||x − y||2, ∀x, y ∈ H.

REMARK 2.2. Clearly a r -strongly monotonic mapping or a γ -inverse strongly
monotonic mapping must be a relaxed (γ , r) -cocoercive mapping, but the converse is
not true. Therefore the class of the relaxed (γ , r) -cocoercive mappings is the most
general class, and hence definition 2.4 includes both the definition 2.2 and the definition
2.3 as special cases.

LEMMA 2.3. [31] Suppose {δk}∞k=0 is a nonnegative sequence satisfying the
following inequality:

δk+1 � (1 − λk)δk + σk, k � 0

with λk ∈ [0, 1] ,
∑∞

k=0 λk = ∞ , and σk = o(λk) . Then limk→∞ δk = 0 .
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3. Main Results

In this section, we use the general Wiener-Hopf equations to suggest and analyze
an iterative method for finding the common element of the nonexpansive mappings
and the general variational inequalities GVI(K, T, g) . For this purpose, we need the
following result, which can be proved by using Lemma 2.2. However, for the sake of
completeness, we include its proof.

LEMMA 3.1. The element u ∈ H : g(u) ∈ K is a solution of GVI(K, T, g) if and
only if z ∈ H satisfies the Wiener-Hopf equation (2.7), where

g(u) = SPKz, (3.1)
z = g(u) − ρTu, (3.2)

where ρ > 0 is a constant.

Proof. Let u ∈ H : g(u) ∈ K be a solution of GVI(K, T) . Then, from Lemma
2.2 and (2.9), we have

g(u) = SPK[g(u) − ρTu]. (3.3)

Let

z = g(u) − ρTu. (3.4)

Form (3.3) and (3.4), we have

g(u) = SPKz

z = g(u) − ρTu,

from which, we have

z = SPKz − ρTg−1SPKz,

which is exactly the general Wiener-Hopf equation (2.7), the required result. �
From Lemma 3.1, it follows that the general variational inequality (2.1) and the

general Wiener-Hopf equation (2.7) are equivalent. We denote the set of the solutions
of the Wiener-Hopf equations by GWHE(H, T, g, S) .

Using Lemma 3.1 and (2.9), we now suggest and analyze a new iterative algorithm
for finding the common element of the solution sets of the general variational inequalities
and nonexpansive mappings S and this is the main motivation of this paper.

ALGORITHM3.1. For a given z0 ∈ H and some sequence an, an ∈ [0, 1], compute
the approximate solution zn+1 by the iterative schemes

g(un) = SPKzn (3.5)
zn+1 = (1 − an)zn + an{g(un) − ρTun} (3.6)

where S is a non-expansive operator. For S = I, the identity operator, Algorithm 3.1
reduces to the following iterative method for solving variational inequalities (2.1) and
appears to be a new one.
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ALGORITHM 3.2. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

g(un) = PKzn

zn+1 = (1 − an)zn + an{g(un) − ρTun}.
For an = 1 and S = I, the identity operator, Algorithm 3.1 collapses to the following
iterative method for solving variational inequalities (1), which is mainly due to Noor
[9].

ALGORITHM 3.3. For a given z0 ∈ H, compute the approximate solution zn+1 by
the iterative schemes

g(un) = PKzn

zn+1 = g(un) − ρTun.

For the convergence analysis and applications of Algorithm 3.3, see Noor [9] and the
references therein.

We consider convergence analysis of Algorithm 3.1 under some mild conditions
and this is the main motivation of next result.

THEOREM 3.1. Let K be a closed convex subset of a real Hilbert space H. Let T be
a relaxed (γ , r) -cocoercive and μ -Lipschitzian mapping Let g be a relaxed (γ1, r1) -
cocoercive and μ1 -Lipschitzian mapping of H into H and S be a nonexpansive
mapping of such that F(S) ∩ GWHE(H, T, g, S) �= ∅ . Let {zn} be a sequence defined
by Algorithm 3.1, for any initial point z0 ∈ K , with conditions

∥∥∥∥ρ − r − γ μ2

μ2

∥∥∥∥ <

√
(r − γ μ)2 − μ2k(2 − k)

μ2
, (3.7)

r > γ μ2 + μ
√

k(2 − k), k < 1,

where

k = 2
√

1 + 2γ1μ2
1 − 2r1 + μ2

1 , (3.8)

an ∈ [0, 1] and
∑∞

n=0 an = ∞ , then zn obtained from Algorithm 3.1 converges
strongly to z∗ ∈ F(S) ∩ GWHE(H, T, g, S) .

Proof. Let z∗ ∈ H be a solution of F(S) ∩ GWHE(H, T, g, S). Then

g(u∗) = SPKz∗ (3.9)
z∗ = (1 − an)z∗ + an{g(u∗) − ρTu∗}, (3.10)

where an ∈ [0, 1] and u∗ ∈ H is a solution of the general variational inequality. To
prove the result, we need first to evaluate ||zn+1− z∗|| for all n � 0 . From (3.10), (3.6)
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and the nonexpansive properties of the projection PK and the nonexpansive mapping
S , we have

||zn+1−z∗|| = ||(1−an)zn+an{g(un)−ρTun}−(1−an)z∗−an{g(u∗)−ρTu∗}||
� (1 − an)||zn − z∗|| + an||g(un) − g(u∗) − ρ(Tun − Tu∗)||
� (1 − an)‖zn − z∗‖ + an‖un − u∗ − ρ(Tun − Tu∗)‖

+an‖un − u∗ − (g(un) − g(u∗))‖. (3.11)

From the relaxed (γ , r) -cocoercive and μ -Lipschitzian definition on T, we have

||un − u∗ − ρ(Tun − Tu∗)||2
= ||un − u∗||2 − 2ρ〈Tun − Tu∗, un − u∗〉 + ρ2||Tun − Tu∗||2
� ||un − x∗||2 − 2ρ[−γ ||Tun − Tu∗||2 + r||un − u∗||2] + ρ2||Tun − Tu∗||2
� ||un − u∗||2 + 2ργμ2||un − u∗||2 − 2ρr||un − u∗||2 + ρ2μ2||un − u∗||2
= [1 + 2ργμ2 − 2ρr + ρ2μ2]||un − u∗||2
= θ2

1‖un − u∗‖2, (3.12)

where

θ1 =
√

1 + 2ργμ2 − 2ρr + ρ2μ2. (3.13)

In a similar way, using the relaxed (γ1, r1) -cocoercivity and μ1 Lipschitzian of the
operator g, we have

‖un − u∗ − (g(un) − g(u∗))‖ � k
2
‖un − u∗‖, (3.14)

where k is defined by (3.8).
Combining (3.11), (3.11) and (3.14), we have

‖zn+1 − z∗‖ � (1 − an)‖zn − z∗‖ + an(θ1 +
k
2
)‖zn − z∗‖. (3.15)

Also from (3.5) and (3.9), we have

‖un − u∗‖ � ‖un − u∗ − (g(un) − g(u∗))‖ + ‖SPKzn − SPKz∗‖
� k

2
‖un − u∗‖ + ‖zn − z∗‖

from which, we have

‖un − u∗‖ � 1

1 − k
2

‖zn − z∗‖. (3.16)

From (3.15) and (3.16), we obtain that

||zn+1 − z∗|| � (1 − an)||zn − z∗|| + anθ||zn − z∗||
= {1 − an(1 − θ)} ||zn − z∗||,
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where

θ =
k
2 + θ1

1 − k
2

.

From (3.7), it follows that θ < 1. and consequently by Lemma 2.3, we have
limn→∞ ||zn − z∗|| = 0 , completing the proof. �

REMARK 3.1. For g = I, the identity operator, Theorem 3.1 reduces to a result of
Noor and Huang [23] for the variational inequalities and nonexpansive mappings.

Now we prove the strong convergence theorem for Algorithm 3.1 under the α -
inverse strong monotonicity.

THEOREM 3.3. Let K be a closed convex subset of a real Hilbert space H . Let
α > 0 and α1 > 0. Let T be an α -inverse strongly monotonic mapping of H into
H. Let g be an α1 -inverse strongly monotonic mapping of H into H. and S be a
nonexpansive mapping such that F(S) ∩ GWHE(H, T, g, S) �= ∅ . If

|ρ − α| � α(1 − k), (3.17)

where

ν = 2

(
α1 − 1
α1

)
, (3.18)

then the approximate solution zn obtained from Algorithm 3.1 converges strongly to
z∗ ∈ F(S) ∩ GWHE(H, T, g, S).

Proof. It is well known that if T is α -inverse stronglymonotonicwith the constant
α > 0 , then T is 1

α –Lipschitzian continuous [29, page 419]. Consider

||un − u∗ − ρ[Tun − Tu∗]||2
= ||un − u∗||2 + ρ2||Tun − Tu∗||2 − 2ρ〈Tun − Tx∗, un − u∗〉
� ||un − u∗||2 + ρ2||Tun − Tu∗||2 − 2ρα||Tun − Tu∗||2
= ||xn − x∗||2 + (ρ2 − 2ρα)||Tun − Tu∗||2

� ||un − u∗||2 + (ρ2 − 2ρα) · 1
α2

||un − u∗||2

=
(

1 +
(ρ2 − 2ρα)

α2

)
||un − u∗||2. (3.19)

In a similar way, using the α1 -inverse strongly monotonicity of g, we have

‖un − u∗ − (g(un) − g(u∗))‖ � ν‖un − u∗‖, (3.20)

where ν is given by (3.18).
From (3.5), (3.9), (3.19) and (3.20), we have

||zn+1 − z∗|| � (1 − an)||zn − z∗|| + an||g(un) − g(u∗) − ρ(Tun − Tu∗)‖
= [1 − an(1 − θ2)]||zn − z∗||.
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where

θ2 =

√
1 +

ρ2 − 2ρα
α2

+ ν. (3.21)

From (3.17), it follows that θ2 < 1 and consequently using Lemma 2.3, we have
limn→∞ ||zn − z∗|| = 0, we obtain the required result. �

4. Applications

In this section we show that the results obtained in Section 3 can be extended
for a class of quasi variational inequalities. If the convex set K depends upon the
solution explicitly or implicitly, then variational inequality problem is known as the
quasi variational inequality. For a given operator T : H −→ H, and a point-to-set
mapping K : u −→ K(u), which associates a closed convex-valued set K(u) with any
element u of H, we consider the problem of finding u ∈ K(u) such that

〈Tu, v − u〉 � 0, ∀v ∈ K(u). (4.1)

Inequality of type (4.1) is called the quasi variational inequality. To convey an idea
of the applications of the quasi variational inequalities, we consider the second-order
implicit obstacle boundary value problem of finding u such that

−u′′ � f (x) on Ω = [a, b]
u � M(u) on Ω = [a, b]
[−u′′ − f (x)][u − M(u)] = 0 on Ω = [a, b]
u(a) = 0, u(b) = 0.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(4.2)

where f (x) is a continuous function and M(u) is the cost (obstacle) function. The
prototype encountered is

M(u) = k + inf
i
{ui}. (4.3)

In (4.3), k represents the switching cost. It is positive when the unit is turned on and
equal to zero when the unit is turned off. Note that the operator M provides the coupling
between the unknowns u = (u1, u2, . . . , ui), see [2]. We study the problem (4.2) in the
framework of variational inequalities. To do so, we first define the set K as

K(u) = {v : v ∈ H1
0(Ω) : v � M(u), on Ω},

which is a closed convex-valued set in H1
0(Ω) , where H1

0(Ω) is a Sobolev (Hilbert)
space. One can easily show that the energy functional associated with the problem (4.2)
is

I[v] = −
∫ b

a

(
d2v
dx2

)
vdx − 2

∫ b

a
f (x) (v) dx, ∀v ∈ K(u)

=
∫ b

a

(
dv
dx

)2

dx − 2
∫ b

a
f (x) (v) dx

= 〈Tv, v〉 − 2〈 f , v〉 (4.4)
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where

〈Tu, v〉 =
∫ b

a

(
d2u
dx2

)
(v) dx =

∫ b

a

du
dx

dv
dx

dx (4.5)

〈 f , v〉 =
∫ b

a
f (x)(v)dx.

It is clear that the operator T defined by (4.5) is linear, symmetric and positive. Using
the technique ofNoor [13], one can show that theminimumof the functional I[v] defined
by (4.4) associated with the problem (4.2) on the closed convex-valued set K(u) can
be characterized by the inequality of the type

〈Tu, v − u〉 � 〈 f , v − u〉 , ∀v ∈ K(u), (4.6)

which is exactly the quasi variational inequality (4.1). See also [4–6, 13, 18] for
the formulation, applications, numerical methods and sensitivity analysis of the quasi
variational inequalities.

Using Lemma 2.1, one can show that the quasi variational inequality (4.1) is
equivalent to finding u ∈ K(u) such that

u = PK(u)[u − ρTu]. (4.7)

In many important applications [2], the convex-valued set K(u) is of the form

K(u) = m(u) + K, (4.8)

where m is a point-to-point mapping and K is a closed convex set.
From (4.7) and (4.8), we see that problem (4.1) is equivalent to

u = PK(u)[u − ρTu] = Pm(u)+K[u − ρTu]
= m(u) + PK [u − m(u) − ρTu]

which implies that

g(u) = PK [g(u) − ρTu] with g(u) = u − m(u),

which is equivalent to the general variational inequality (2.1) by an application of
Lemma2.1. We have shown that the quasi variational inequalities (4.1) with the convex-
valued set K(u) defined by (4.8) are equivalent to the general variational inequalities
(2.1). Using Lemma 3.1, one can show that the quasi variational inequalities are also
equivalent to a class of the implicit (quasi) Wiener-Hopf equations, see Noor [9]. Thus
all the logorithmic results obtained in this paper continue to hold for quasi variational
inequalities (4.1) with K(u) defined by (4.8).
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5. Outlook and Conclusions

In this paper, we have shown that the variational inequalities are equivalent to a new
class of Wiener-Hopf equations involving the nonexpansive operator. This equivalence
is used to suggest and analyze an iterative method for finding the common element of set
of the solutions of the general variational inequalities and the set of the fixed-points of
the nonexpansive operator. It is worth mentioning that a special case of Algorithm 3.1
has been used by Pitonyak, Shi and Schiller [26] to find the numerical solutions of the
obstacle problems. The results are encouraging and perform better than other methods.
In addition, Noor, Wang and Xiu [24] have developed a very efficient and robust method
using the technique of theWiener-Hopf equations for solving the variational inequalities.
It is interesting to use the technique and idea of this paper to develop some new iterative
methods for solving the variational inequalities involving the nonexpansive operators.
This is another direction for future work.
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