SOME INEQUALITIES ON STATISTICAL SUMMABILITY \((C, 1) \)

M. MURSALEEN, ABDULLAH ALOTAIBI AND S. A. MOHIUDDINE

(communicated by H. Srivastava)

Abstract. We prove some inequalities related to the concepts of \(C_1(st) \)-conservative matrices, \(C_1(st) \)-lim sup and \(C_1(st) \)-lim inf which are natural analogues of \((c, st \cap l_\infty) \)-matrices, \(st \)-lim sup and \(st \)-lim inf respectively.

1. Introduction

Let \(l_\infty \) and \(c \) be the Banach spaces of bounded and convergent sequences of real numbers with the usual supremum norm. Let \(A = (a_{nk}) \), \(n, k \in \mathbb{N} \), be an infinite matrix of real numbers, and let \(x = (x_k) \) be a sequence of real numbers. We write \(Ax = (A_n(x)) \) if \(A_n(x) = \sum_k a_{nk}x_k \) converges for each \(n \). Let \(X \) and \(Y \) be any two sequence spaces. If \(x \in X \) implies \(Ax \in Y \), then we say that the matrix \(A \) maps \(X \) into \(Y \). We denote the class of all matrices \(A \) which map \(X \) into \(Y \) by \((X, Y) \). If \(X \) and \(Y \) are equipped with \(X \)-lim and \(Y \)-lim, \(A \in (X, Y) \) and \(Y \)-lim \(Ax = X \)-lim \(x \) for all \(x \in X \), then we write \(A \in (X, Y)_{\text{reg}} \).

It is known that \(A \in (c, c) \), that is, \(A \) is conservative if and only if

(i) \(||A|| = \sup_n \sum_k |a_{nk}| < \infty\),
(ii) \(a_k = \lim n a_{nk} \), for each \(k \),
(iii) \(a = \lim n \sum_k a_{nk} \).

If \(A \) is conservative, the number \(\chi = \chi(A) = a - \sum_k a_k \) is called the characteristic of \(A \). \(A \) is said to be regular if and only if (i), (ii) with \(a_k = 0 \) for all \(k \); and (iii) with \(a = 1 \) hold.

Let \(E \subseteq \mathbb{N} \). Natural density \(\delta \) of \(E \) is defined by

\[
\delta(E) = \lim_n \frac{1}{n} |\{k \leq n : k \in E\}|,
\]

where the vertical bars indicate the number of elements in the enclosed set. The sequence \(x = (x_k) \) is said to be statistically convergent to \(L \) if for every \(\epsilon > 0 \),
\[k : |x_k - L| \geq \epsilon \} = 0 \text{ (cf. Fast [5] and Steinhauss [11]). Statistical convergence for double sequences has been defined and studied by Mursaleen and Edely [9].}

The idea of A-statistical convergence was defined by Kolk [7] and Duman et al [4] used A-statistical convergence for approximating operators.

Recently, Moricz [8] defined the concept of statistical \((C, 1)\) summability as follows. Let \(\sigma_k\) denote the (first) arithmetic means of a sequence \(x = (x_k)\), that is,

\[
\sigma_k = \sigma_k(x) = \frac{1}{k+1} \sum_{j=0}^{k} x_j, \quad k = 0, 1, 2, \ldots
\]

We say that \(x = (x_k)\) is statistically summable \((C, 1)\) to \(L\) if the sequence \(\sigma = (\sigma_k)\) is statistically convergent to \(L\), i.e. \(st\)-lim \(\sigma = L\). We denote by \(C_1(st)\) the set of all sequences which are statistically summable \((C, 1)\).

In this paper we prove some inequalities related to the concepts of \(C_1(st)\)-conservative matrices, \(C_1(st)\)-lim sup and \(C_1(st)\)-lim inf which are natural analogues of \((c, st\cap l_\infty)\)-matrices (cf. Kolk [7]), \(st\)-lim sup and \(st\)-lim inf respectively (cf. Fridy and Orhan [6]). Such type of inequalities are also considered by Çoşkun and Çakan [2], and Çakan and Altay [1].

2. Main Result

The following lemma is a consequence of Theorem 1 of Kolk [7].

Lemma 2.1. \(A \in (c, C_1(st) \cap l_\infty)\) if and only if

\[
\sup_n \sum_k |a_{nk}| < \infty,
\]

\(C_1(st)\)-lim \(a_{nk} = \alpha_k\) for every \(k\), and

\(C_1(st)\)-lim \(\sum_k a_{nk} = \alpha\).

We call such matrices as \(C_1(st)\)-conservative matrices, and in this case

\[
\kappa = \alpha - \sum_k \alpha_k
\]

is defined which is known as the \(C_1(st)\)-characteristic of \(A\). This number is analogous to the number \(\chi_{st}\) defined by Çoşkun and Çakan [2].

Theorem 2.1. Let \(A\) be conservative and \(x \in l_\infty\). Then

\[
\limsup_n \sum_k (a_{nk} - a_k)x_k \leq \frac{\lambda + \chi}{2} \beta(x) + \frac{\lambda - \chi}{2} \alpha(-x) \tag{2.1.1}
\]

for some constant \(\lambda \geq |\chi|\), if and only if

\[
\limsup_n \sum_k |a_{nk} - a_k| \leq \lambda, \tag{2.1.2}
\]
\[
\lim_n \sum_{k \in E} |a_{nk} - a_k| = 0
\]
(2.1.3)

for every \(E \subseteq \mathbb{N} \) with \(\delta(E) = 0 \), where \(\beta(x) = C_1(st) \cdot \limsup x \) and \(\alpha(x) = C_1(st) \cdot \liminf x \).

Proof. Necessity. Let \(L(x) = \limsup x \) and \(l(x) = \liminf x \). Since \(\beta(x) \leq L(x) \) and \(\alpha(-x) \leq -l(x) \) for all \(x \in l\infty \), we have

\[
\limsup_n \sum_k (a_{nk} - a_k)x_k \leq \frac{\lambda + \chi L(x) - \lambda - \chi l(x)}{2},
\]

and the necessity of (2.1.2) follows from Theorem 1 of Das [3]. Define the matrix \(B = (b_{nk}) \) by

\[
b_{nk} = \begin{cases}
a_{nk} - a_k & \text{for } k \in E, \\
0 & \text{for } k \notin E.
\end{cases}
\]

Since \(A \) is conservative, the matrix \(B \) satisfies the conditions of Corollary 12 of Simons [10]. Hence there exists a \(y \in l\infty \) such that \(||y|| \leq 1 \) and

\[
\limsup_n \sum_k |b_{nk}| = \limsup_n \sum_k b_{nk}y_k.
\]
(2.1.4)

Now, let \(y = (y_k) \) be defined by

\[
y_k = \begin{cases}
1 & \text{for } k \in E, \\
0 & \text{for } k \notin E.
\end{cases}
\]

So that, \(C_1(st) \cdot \lim y = \beta(y) = \alpha(y) = 0 \); and by (2.1.1) and (2.1.4) we have

\[
\limsup_n \sum_{k \in E} |a_{nk} - a_k| \leq \frac{\lambda + \chi \beta(y) - \lambda - \chi \alpha(-y)}{2} = 0
\]

and we get (2.1.3).

Sufficiency. Let \(x \in l\infty \). Write \(E_1 = \{ k : \sigma_k > \beta(x) + \epsilon \} \) and \(E_2 = \{ k : \sigma_k < \alpha(x) - \epsilon \} \). Then we have \(\delta(E_1) = \delta(E_2) = 0 \); and hence \(\delta(E) = 0 \) for \(E = E_1 \cap E_2 \).

We can write

\[
\sum_k (a_{nk} - a_k)x_k = \sum_{k \in E} (a_{nk} - a_k)x_k + \sum_{k \notin E} (a_{nk} - a_k)^+ x_k - \sum_{k \notin E} (a_{nk} - a_k)^- x_k,
\]

where \(\lambda^+ = \max\{0, \lambda\}, \lambda^- = \max\{-\lambda, 0\} \). Hence

\[
\limsup_n \sum_k (a_{nk} - a_k)x_k \leq \limsup_n \sum_{k \in E} |a_{nk} - a_k||x_k| + \limsup_n \sum_{k \notin E} (a_{nk} - a_k)^+ \sigma_k
\]

\[
+ \limsup_n \left[-\sum_{k \notin E} (a_{nk} - a_k)^- \sigma_k \right]
\]

\[
= I_1(x) + I_2(x) + I_3(x).
\]
From condition (2.1.3), we have $I_1(x) = 0$. Let $\epsilon > 0$, then there is a set E as defined above such that for $k \not\in E$,
\[\alpha(x) - \epsilon \leq \sigma_k \leq \beta(x) + \epsilon, \quad \beta(-x) - \epsilon \leq -\sigma_k \leq \alpha(-x) + \epsilon. \] (2.1.5)
Therefore from conditions (2.1.2) and (2.1.5) and Lemma 1 of Das [3], we get
\[I_2(x) \leq \frac{\lambda + \chi}{2} (\beta(x) + \epsilon) \]
\[I_3(x) \geq \frac{\lambda - \chi}{2} (\alpha(-x) + \epsilon). \]
Hence we get
\[\limsup_n \sum_k (a_{nk} - a_k)x_k \leq \frac{\lambda + \chi}{2} \beta(x) + \frac{\lambda - \chi}{2} \alpha(-x) + \lambda \epsilon, \]
since ϵ was arbitrary. This completes the proof of the theorem. \[\square\]

To prove our next theorem, we need the following lemma which is $C_1(st)$-analogue of a result of Çoşkun and Çakan [2].

Lemma 2.2. Let $\|A\| < \infty$ and $C_1(st)$-$\lim_n |a_{nk}| = 0$. Then there exists a $y \in l_\infty$ such that $\|y\| \leq 1$ and
\[C_1(st) -$\limsup_n \sum_k a_{nk}y_k = C_1(st) -$\limsup_n \sum_k |a_{nk}|. \]

The following lemma is derived by replacing the functional st-\lim by $C_1(st)$-\lim in Lemma 2.3 of Çoşkun and Çakan [2].

Lemma 2.3. Let A be $C_1(st)$-conservative and $\lambda > 0$. Then
\[C_1(st) -$\limsup_n \sum_k |a_{nk} - \alpha_k| \leq \frac{\lambda + \kappa}{2} \text{ if and only if } C_1(st) -$\limsup_n \sum_k (a_{nk} - \alpha_k)^+ \leq \frac{\lambda + \kappa}{2} \text{ and } C_1(st) -$\limsup_n \sum_k (a_{nk} - \alpha_k)^- \leq \frac{\lambda - \kappa}{2}. \]

Theorem 2.2. Let A be $C_1(st)$-conservative. Then, for some constant $\lambda \geq |\kappa|$ and for all $x \in l_\infty$,
\[C_1(st) -$\limsup_n \sum_k (a_{nk} - \alpha_k)x_k \leq \frac{\lambda + \kappa}{2} L(x) - \frac{\lambda - \kappa}{2} l(x) \] (2.2.1)
if and only if
\[C_1(st) -$\limsup_n \sum_k |a_{nk} - \alpha_k| \leq \lambda. \] (2.2.2)
Proof. Necessity. If we define the matrix \(B = (b_{nk}) \) by \(b_{nk} = a_{nk} - \alpha_k \) for all \(n, k \), then, since \(A \) is \(C_1 \text{(st)} \)-conservative, the matrix \(B \) satisfies the hypothesis of Lemma 2.2. Hence for a \(y \in l_\infty \) such that \(||y|| \leq 1 \) we have

\[
C_1 \text{(st)} - \limsup \sum_n b_{nk} = C_1 \text{(st)} - \limsup \sum_k b_{nk} y_k.
\]

Using (2.2.1), we get

\[
C_1 \text{(st)} - \lim sup \sum_n |b_{nk}| \leq \frac{\lambda + \kappa}{2} L(y) - \frac{\lambda - \kappa}{2} l(y)
\]

\[
\leq \left(\frac{\lambda + \kappa}{2} + \frac{\lambda - \kappa}{2} \right) ||y||
\]

\[
\leq \lambda, \quad \text{since} \ ||y|| \leq 1.
\]

Hence (2.2.2) holds.

Sufficiency. As in Theorem 2.1, for some \(k_0 \in \mathbb{N} \ (k > k_0) \), we can write

\[
\sum (a_{nk} - a_k) x_k = \sum_{k \leq k_0} (a_{nk} - a_k) x_k + \sum_{k > k_0} (a_{nk} - a_k)^+ x_k - \sum_{k > k_0} (a_{nk} - a_k)^- x_k.
\]

Since for any \(\epsilon > 0 \), \(l(x) - \epsilon < x_k < L(x) + \epsilon \); and \(A \) is \(C_1 \text{(st)} \)-conservative, we get by Lemma 2.3 that

\[
C_1 \text{(st)} - \lim sup \sum_n (a_{nk} - a_k) x_k \leq (L(x) + \epsilon) \left(\frac{\lambda + \kappa}{2} \right) - (l(x) - \epsilon) \left(\frac{\lambda - \kappa}{2} \right)
\]

\[
= \frac{\lambda + \kappa}{2} L(x) - \frac{\lambda - \kappa}{2} l(x) + \lambda \epsilon,
\]

which gives (2.2.1), since \(\epsilon \) was arbitrary.

This completes the proof of the theorem.

\[\square\]

THEOREM 2.3.. Let \(A \) be \(C_1 \text{(st)} \)-conservative. Then, for some constant \(\lambda \geq |\kappa| \) and for all \(x \in l_\infty \),

\[
C_1 \text{(st)} - \lim sup \sum_k (a_{nk} - a_k) x_k \leq \frac{\lambda + \kappa}{2} \beta(x) + \frac{\lambda - \kappa}{2} \alpha(-x)
\]

if and only if (2.2.2) holds and

\[
C_1 \text{(st)} - \lim \sum_{k \in E} |a_{nk} - a_k| = 0
\]

for every \(E \subseteq \mathbb{N} \) with \(\delta(E) = 0 \).

Proof. Necessity. Let (2.3.1) hold. Since \(\beta(x) \leq L(x) \) and \(\alpha(-x) \leq -l(x) \), (2.2.2) follows from Theorem 2.2. Now let us show the necessity of (2.3.2). For any
$E \subseteq \mathbb{N}$ with $\delta(E) = 0$, let us define a matrix $B = (b_{nk})$ as follows

$$b_{nk} = \begin{cases} \alpha_k & \text{for } k \in E, \\ 0 & \text{for } k \notin E. \end{cases}$$

Then, it is clear that B satisfies the conditions of Lemma 2.2 and hence there exists a $y \in l_\infty$ such that $\|y\| \leq 1$ and

$$C_1(st) - \limsup_n \sum_k b_{nk}y_k = C_1(st) - \limsup_n \sum_k |b_{nk}|.$$

Let us define the sequence $y = (y_k)$ by

$$y_k = \begin{cases} 1 & \text{for } k \in E, \\ 0 & \text{for } k \notin E. \end{cases}$$

Using the fact that $C_1(st) - \lim y = \beta(y) = \alpha(y) = 0$ and (2.3.1), we get

$$C_1(st) - \limsup_n \sum_{k \in E} |a_{nk} - \alpha_k| \leq \frac{\lambda + \kappa}{2} \beta(y) + \frac{\lambda - \kappa}{2} \alpha(-y) = 0,$$

and hence we get (2.3.2).

Sufficiency. Let (2.2.2) and (2.3.2) hold and $x \in l_\infty$. As in Theorem 2.1, we can write

$$\sum_k (a_{nk} - \alpha_k)x_k = \sum_{k \in E} (a_{nk} - \alpha_k)x_k + \sum_{k \notin E} (a_{nk} - \alpha_k)^+x_k - \sum_{k \notin E} (a_{nk} - \alpha_k)^-x_k.$$

Using Lemma 2.3 and $C_1(st)$ - conservativeness of A, we have

$$C_1(st) - \limsup_n \sum_k (a_{nk} - \alpha_k)x_k \leq \frac{\lambda + \kappa}{2} \beta(x) + \frac{\lambda - \kappa}{2} \alpha(-x) + \lambda \epsilon.$$

But ϵ was arbitrary, so (2.3.1) holds.

This completes the proof of theorem.

\[\Box\]

REFERENCES

(Received September 18, 2007)

M. Mursaleen
Department of Mathematics
Aligarh Muslim University
Aligarh-202002
India
e-mail: mursaleem@gmail.com

Abdullah Alotaibi
Department of Mathematics
King Abdul Aziz University
P. O. BOX-80203
Jeddah
Saudi Arabia
e-mail: aalotaibi@kau.edu.sa

S. A. Mohiuddine
Department of Mathematics
Aligarh Muslim University
Aligarh-202002
India
e-mail: mohiuddine@gmail.com