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COMPARISON OF OPERATOR MEAN GEODESICS

JUN ICHI FUJII, JADRANKA MIĆIĆ, JOSIP PEČARIĆ AND YUKI SEO
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Abstract. The space of positive invertible operators of a unital C ∗ -algebra has a natural structure
of reductive homogenious manifold with a Finsler metric. Then pairs of points A and B can

be joined by a natural geodesic A �t B = A
1
2 (A− 1

2 BA− 1
2 )tA

1
2 for t ∈ [0, 1] , where is the

geometric mean in the sense of Kubo and Ando. In this paper, we consider estimates of the upper
bounds for the difference between the geodesic and extended interpolational paths by terms of
the spectra of positive operators. As applications, we investigate some properties of the velocity
vectors for interpolational paths. Also, we obtain estimates of the upper bounds for α -operator
divergence as a noncommutative version of the α -divergence in the information geometry.

1. Introduction

Let A be a unital C ∗ -algebra, A + (resp. A h ) be the set of all positive
invertible (resp. selfadjoint) operators of A . It is known that A + is a real analytic
open submanifold of A h and its tangent space (TA +)A at any A ∈ A + is naturally
identified to A h , see for instance Corach, Porta and Recht [4, 5]. For each A ∈ A + , the
norm ‖X‖A = ‖A− 1

2 XA− 1
2 ‖ , X ∈ (TA +)A defined a Finsler structure on the tangent

bundle TA + . For every A, B ∈ A + , there is a natural geodesic joining A and B :

γA,B(t) = A �t B for t ∈ [0, 1] ,

where A �t B is the geometric mean in the sense of Kubo-Ando theory [13]:

A �t B = A
1
2

(
A− 1

2 BA− 1
2

)t
A

1
2 . (1.1)

As usual, the length of a smooth curve γ in A + is defined by

l(γ ) =
∫ 1

0
‖γ̇ (t)‖γ (t)dt

and the geodesic distance between A and B in A + is

d(A, B) = inf{l(γ ) : γ joins A and B}.
Mathematics subject classification (2000): 47A63, 47A64.
Key words and phrases: Operator inequality, Interpolational path, Mond-Pečarić method, Operator
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Then it follows that
d(A, B) = ‖ log(A− 1

2 BA− 1
2 )‖,

also see [2]. It is a general fact that (A +, d) is a complete metric space.
Kamei and Fujii [9, 10] defined the relative operator entropy S(A|B) which is a

relative version of the operator entropy defined by Nakamura-Umegaki [14]:

S(A|B) = A
1
2 log

(
A− 1

2 BA− 1
2

)
A

1
2 . (1.2)

Then the velocity vector γ̇A,B(0) is exactly the relative operator entropy S(A|B) :

γ̇A,B(0) = lim
t→0

A �t B − A
t

= S(A|B).

On the other hand, J. I. Fujii [7] showed that if the manifold A + has a metric
La(X) = ‖X‖ (resp. Lh(X) = ‖A−1XA−1‖ ) on the tangent space TA + , then the
geodesic and the distance from A to B for A, B ∈ A + are given by

the arithmetic mean A ∇t B = (1 − t)A + tB and d1(A, B) = ‖B − A‖
(resp.

the harmonic mean A !t B =
(
(1 − t)A−1 + tB−1

)−1
and d−1(A, B) = ‖A−1 − B−1‖.

)
Here for mt = �t,∇t and !t , their paths have the following interpolationality [10]:

(A mp B) mt (A mq B) = A m(1−t)p+tq B

for 0 � p, q, t � 1 .
Typical interpolational paths from A to B which include the arithmetic, geometric

and harmonic mean are as follows: For each r ∈ [−1, 1]

A mr,t B = A
1
2

(
1 − t + t

(
A− 1

2 BA− 1
2

)r) 1
r
A

1
2 for t ∈ [0, 1] . (1.3)

In particular, A m1,t B = A ∇t B , A m0,t B = A �t B and A m−1,t B = A !t B .

In this paper, we investigate estimates of the upper bounds for the difference
between the geodesic A �t B and interpolational paths A mr,t B by terms of the spectra
of positive operators: For each s > 0 and t ∈ (0, 1) , there exists a suitable constant β
such that

0 � A ms,t B − A �t B � βA.

As applications, we investigate some properties of the velocity vectors for interpo-
lational paths. Also, we obtain estimates of the upper bounds for α -operator divergence
introduced by [6] as a noncommutative version of the α -divergence in the information
geometry.
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2. Interpolational paths

First of all, we recall an interpolational path for symmetric operator means. Fol-
lowing [10, 11], for a symmetric mean σ , a parametrized operator mean σt is called
an interpolational path for σ if it satisfies

(1) A σ0 B = A , A σ1/2 B = A σ B and A σ1 B = B
(2) (A σp B) σ (A σq B) = A σ p+q

2
B

(3) the map t → A σt B is norm continous for each A and B .

Typical interpolational means are so-called power means;

A mr B = A
1
2

(
1 + (A− 1

2 BA− 1
2 )r

2

) 1
r

A
1
2 for r ∈ [−1, 1]

and their interpolational paths from A to B via A mr B are given by (1.3).

Here we consider them in the general setting: For positive invertible operators A
and B , an extended path A mr,t B is defined as

A mr,t B = A
1
2

(
1 − t + t(A− 1

2 BA− 1
2 )r
) 1

r
A

1
2 for all real numbers r ∈ R

and t ∈ [0, 1] . The representing function f r,t for mr,t is defined as

f r,t(ξ) = 1 mr,t ξ = (1 − t + tξ r)
1
r for ξ > 0 .

Notice that A mr,t B for r ∈ R is no longer a path of operator means for r �∈ [−1, 1] ,
but we list some properties of interpolational paths mr,t and the representing function
f r,t , also see [8].

Since every function f r,t(ξ) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1 ), it follows that an extended path A mr,t B for each
t ∈ (0, 1) is nondecreasing and norm continuous for r ∈ R : For r � s

A mr,t B � A ms,t B.

Moreover, an extended path is also interpolational for all real numbers r ∈ R . In
particular, the transposition formula holds:

B mr,t A = A mr,1−t A. (2.1)

For the sake of convenience, we prepare the following notation: For k2 > k1 > 0 ,
r ∈ R and t ∈ [0, 1]

a(r, t) =
f r,t(k2) − f r,t(k1)

k2 − k1
and b(r, t) =

k2f r,t(k1) − k1f r,t(k2)
k2 − k1

. (2.2)

We investigate estimates of the upper bounds for the difference between extended
interpolational paths:
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LEMMA 2.1. Let A and B be positive invertible operators such that k1A � B �
k2A for some scalars 0 < k1 < k2 . Then for r � s and t ∈ (0, 1)

0 � A ms,t B − A mr,t B � βA for r � 1 (2.3)

and
0 � A ms,t B − A mr,t B � β

′
A for r � 1 (2.4)

hold for
β = β(r, s, t, k1, k2) = max

k1�ξ�k2

{f s,t(ξ) − a(r, t)ξ − b(r, t)},
and

β
′
= β

′
(r, s, t, k1, k2) = max

k1�ξ�k2

{a(s, t)ξ + b(s, t) − f r,t(ξ)},

where a, b are defined by (2.2).

Proof. Suppose that r � 1 . If we put C = A− 1
2 BA− 1

2 , then we have k2I � C �
k1I > 0 . Since f r,t(ξ) is concave for r � 1 , it follows from the definition of β that

β � f s,t(ξ) − a(r, t)ξ − b(r, t) � f s,t(ξ) − f r,t(ξ) for all ξ ∈ [k1, k2] ,

and hence
βI � f s,t(C) − f r,t(C).

This fact implies

βA � A
1
2 f s,t(C)A

1
2 − A

1
2 f r,t(C)A

1
2 = A ms,t B − A mr,t B,

which gives the desired result (2.3). Conversely, if r � 1 , then f s,t(ξ) is convex for
1 � r � s and the latter part (2.4) of Lemma 2.1 follows from the same way. �

REMARK 2.2. The constant β = β(s, r, t, m, M) and β
′

= β
′
(s, r, t, m, M) in

Lemma 2.1 can be written explicitly as

β =

⎧⎪⎪⎨
⎪⎪⎩

a(r, t)(
1 − t

t
)

1
s (t

1
s−1 a(r, t)

s
1−s − 1)

s−1
s − b(r, t) for k1 � ξ0 � k2

f s,t(k1) − f r,t(k1) for ξ0 � k1

f s,t(k2) − f r,t(k2) for k2 � ξ0

where ξ0 =
(

1
1−t

(
a(r,t)

t

) s
1−s − t

1−t

)− 1
s

and

β
′
=

⎧⎪⎪⎨
⎪⎪⎩

−a(s, t)(
1 − t

t
)

1
r (t

1
r−1 a(s, t)

r
1−r − 1)

r−1
r + b(s, t) for k1 � ξ1 � k2

f s,t(k1) − f r,t(k1) for ξ1 � k1

f s,t(k2) − f r,t(k2) for k2 � ξ1

where ξ1 =
(

1
1−t

(
a(s,t)

t

) r
1−r − t

1−t

)− 1
r

.
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By lemma 2.1, we obtain estimates of the upper bounds for the difference between
the geodesic A �t B and extended interpolational paths:

THEOREM 2.3. Let A and B be positive invertible operators such that k1A �
B � k2A for some scalars 0 < k1 < k2 . Then for each t ∈ (0, 1)

0 � A ms,t B − A �t B � β(0, s, t, k1, k2)A for s � 0 , (2.5)

and
0 � A �t B − A mr,t B � β(r, 0, t, k1, k2)A for r � 0 , (2.6)

where β is defined by Remark 2.2.

As special cases of Theorem 2.3, we obtain an estimate of the upper bound for the
difference between the geodesic A �t B and the arithmetic interpolational paths A∇t B ,
and also the same for the geodesic A �t B and the harmonic interpolational paths A !t B :

THEOREM 2.4. Let A and B be positive invertible operators such that k1A �
B � k2A for some scalars 0 < k1 < k2 . Then for each t ∈ (0, 1)

0 � A ∇t B − A �t B � max{1 − t + tk1 − kt
1, 1 − t + tk2 − kt

2}A (2.7)

and
0 � A �t B − A !t B � β(−1, 0, t, k1, k2)A, (2.8)

where β(−1, 0, t, k1, k2) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−t
((1−t)k1+t)((1−t)k2+t)

(
((1 − t)k1 + t)((1 − t)k2 + t)

1
1−t − k1k2

)
for k1−t

1 � ((1 − t)k1 + t)((1 − t)k2 + t) � k1−t
2 ,

kt
2 − k2

(1−t)k2+t

for k1−t
2 � ((1 − t)k1 + t)((1 − t)k2 + t),

kt
1 − k1

(1−t)k1+t

for k1−t
1 � ((1 − t)k1 + t)((1 − t)k2 + t).

Proof. If we put s = 1 in (2.5) of Theorem 2.3, then f 1,t(ξ) = 1 − t + tξ and

f 0,t(ξ) = ξ t . Since a(0, t) = kt
2−kt

1
k2−k1

, the condition f ′
1,t(M) � a(0, t) � f ′

1,t(m) is
equivalent to a(0, t) = t . Therefore we have

β =

⎧⎪⎨
⎪⎩

1 − t + tk2 − kt
2 for kt

2−kt
1

k2−k1
� t,

1 − t + tk1 − kt
1 for kt

2−kt
1

k2−k1
� t.

Similarly, we have the latter part of this theorem by using (2.6) of Theorem 2.3. �
Next, we show estimates of the lower bounds of the ratio for extended interpola-

tional paths:

LEMMA 2.5. Let A and B be positive invertible operators such that k1A � B �
k2A for some scalars 0 < k1 < k2 . Then for r � s and t ∈ (0, 1)

A mr,t B � αA ms,t B for r � 1 (2.9)
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and
A mr,t B � α

′
A ms,t B for r � 1 (2.10)

hold for

α = α(r, s, t, k1, k2) = min
k1�ξ�k2

{a(r, t)ξ + b(r, t)
f s,t(ξ)

}

and

α
′
= α

′
(r, s, t, k1, k2) = min

k1�ξ�k2

{ f r,t(ξ)
a(s, t)ξ + b(s, t)

},

where a, b are defined by (2.2).

Proof. Suppose that r � 1 . Since f r,t(ξ) is concave for r � 1 , it follows that

f r,t(ξ)
f s,t(ξ)

� a(r, t)ξ + b(r, t)
f s,t(ξ)

� α

and hence f r,t(ξ) � αf s,t(ξ) on [k1, k2] . Therefore we have

A mr,t B = A
1
2 f r,t(A− 1

2 BA− 1
2 )A

1
2 � αA

1
2 f s,t(A− 1

2 BA− 1
2 )A

1
2 = αA ms,t B.

Similarly, since f s,t(ξ) is convex for 1 � r � s , the latter part follows from the same
way. �

REMARK 2.6. The constant α = α(r, s, t, k1, k2) and α
′

= α
′
(r, s, t, k1, k2) in

Lemma 2.5 can be written explicitly as follows: In the case of s � 1 ,

α = min{ f r,t(k1)
f s,t(k1)

,
f r,t(k2)
f s,t(k2)

}.

In the case of s � 1 ,

α =

⎧⎪⎪⎨
⎪⎪⎩

a(r,t)ξ0+b(r,t)

(1−t+tξ s
0 )

1
s

for k1 � ξ0 � k2,

f r,t(k2)
f s,t(k2)

for k2 � ξ0,
f r,t(k1)
f s,t(k1)

for k1 � ξ0,

where ξ0 =
(

1−t
t

a(r,t)
b(r,t)

) 1
s−1

and

α
′
=

⎧⎪⎪⎨
⎪⎪⎩

(1−t+tξ r
1 )

1
r

a(s,t)ξ1+b(s,t) for k1 � ξ1 � k2,
f r,t(k2)
f s,t(k2)

for k2 � ξ1,
f r,t(k1)
f s,t(k1)

for k1 � ξ1,

where ξ1 =
(

1−t
t

a(s,t)
b(s,t)

) 1
r−1

.



COMPARISON OF OPERATOR MEAN GEODESICS 293

As a special case of Lemma 2.5, we have the following theorem.

THEOREM 2.7. Let A and B be positive invertible operators such that k1A �
B � k2A for some scalars 0 < k1 < k2 . Then for each t ∈ (0, 1)

A �t B � min{ kt
1

1 − t + tk1
,

kt
2

1 − t + tk2
} A ∇t B (2.11)

and
A !t B � α(−1, 0, t, k1, k2) A �t B (2.12)

holds for

α(−1, 0, t, k1, k2) =

⎧⎪⎪⎨
⎪⎪⎩

(k1k2)1−t

((1−t)k1+t)((1−t)k2+t) for k1 � 1 � k2

k1−t
2

(1−t)k2+t for 1 � k1,
k1−t
1

(1−t)k1+t for k2 � 1.

3. Velocity vector of extended paths

Following [9, 10], for positve invertible operators A and B , the relative operator
entropy S(A|B) is defined by

S(A|B) = A
1
2

(
logA− 1

2 BA− 1
2

)
A

1
2 ,

which is a relative version of the operator entropy −A logA considered by Nakamura-
Umegaki [14]. The relative operator entropy S(A|B) is exactly the velocity vector
γ̇A,B(0) of the geodesic A �t B at t = 0 :

S(A|B) = lim
t→0

A �t B − A �0 B
t

= γ̇A,B(0).

In [12], Kamei analogously generalizes the relative operator entropy: For each r ∈ R

Sr(A|B) = lim
t→0

A mr,t B − A mr,0 B
t

,

which is considered as the right differential coefficient at t = 0 of the extended path
A mr,t B . By the fact that

lim
t→0

(1 − t + tξ r)
1
r − 1

t
=

ξ r − 1
r

,

it follows that

Sr(A|B) =
A

1
2

(
A− 1

2 BA− 1
2

)r
A

1
2 − A

r
for r ∈ R
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and the representing function is

f r(ξ) =
ξ r − 1

r
.

In particular,

S1(A|B) = lim
t→0

A ∇t B − A
t

= B − A,

S0(A|B) = S(A|B),

S−1(A|B) = lim
t→0

A !t B − A
t

= A − AB−1A.

For the sake of convenience, we prepare the following notation:

a(r) =
f r(k2) − f r(k1)

k2 − k1
and b(r) =

k2f r(k1) − k1f r(k2)
k2 − k1

(3.1)

for 0 < k1 < k2 and r ∈ R .
Since f r(ξ) is monotone increasing on r ∈ R , the velocity vectors Sr(A|B) is

monotone increasing on r ∈ R :

r � s implies Sr(A|B) � Ss(A|B).

The left differentiable coefficient of A mr,t B at t = 1 is −Sr(B|A) :

lim
t→1

A mr,t B − A mr,1 B
t − 1

= −Sr(B|A).

If B � A , then the velocity vectors of exteded paths at t = 0, 1 are positive:

Sr(A|B) � 0 and − Sr(B|A) � 0.

We investigate estimetaes of the upper bounds for the difference between velocity
vectors of extended interpolational paths.

LEMMA 3.1. Let A and B be positive invertible operators such that k1A � B �
k2A for some scalars 0 < k1 < k2 . Then for r � s

Ss(A|B) − Sr(A|B) � γA for r � s � 1, (3.2)

Ss(A|B) − Sr(A|B) � max{ks
1 − 1
s

− kr
1 − 1
r

,
ks
2 − 1
s

− kr
2 − 1
r

}A for r � 1 � s

(3.3)
and

Ss(A|B) − Sr(A|B) � γ
′
A for 1 � r � s (3.4)

hold for
γ = γ (r, s, k1, k2) = max

k1�ξ�k2

{f s(ξ) − a(r)ξ − b(r)}
and

γ
′
= γ

′
(r, s, k1, k2) = max

k1�ξ�k2

{a(s)ξ + b(s) − f r(ξ)},
where a, b are defined by (3.1).
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Proof. Suppose that r � 1 . If we put C = A− 1
2 BA− 1

2 , then we have 0 < k1I �
C � k2I . Since f r(ξ) is concave for r � 1 , it follows that

f s(ξ) − f r(ξ) � f s(ξ) − a(r)ξ − b(r) � γ

and hence we have the desired result (3.2) and (3.3). The remainder part (3.4) follow
in the same way. �

REMARK3.2. The constant γ = γ (r, s, k1, k2) and γ
′
= γ

′
(r, s, k1, k2) in Lemma3.1

can be written explicitly as

γ =

⎧⎪⎨
⎪⎩

1−s
s a(r)

s
s−1 − b(r) − 1

s for k1 � a(r)
1

s−1 � k2,
ks
2−1
s − kr

2−1
r for k2 � a(r)

1
s−1 ,

ks
1−1
s − kr

1−1
r for k1 � a(r)

1
s−1 ,

and

γ
′
=

⎧⎪⎨
⎪⎩

r−1
r a(s)

r
r−1 + b(s) + 1

r for k1 � a(s)
1

r−1 � k2,
ks
2−1
s − kr

2−1
r for k2 � a(s)

1
r−1 ,

ks
1−1
s − kr

1−1
r for k1 � a(s)

1
r−1 .

By Lemma 3.1, we obtain estimates of the upper bound for the difference between
the velocity vectors S(A|B) and Sr(A|B) of the extended interpolational paths A mr,t B
at t = 0 :

THEOREM 3.3. Let A and B be positive invertible operators such that k1A � B �
k2A for some scalars 0 < k1 < k2 . Then

Ss(A|B) − S(A|B) � γA for 0 � s � 1 (3.5)

and

Ss(A|B) − S(A|B) � max{ks
1 − 1
s

− log k1,
ks
2 − 1
s

− log k2}A for 1 � s, (3.6)

where

γ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1−s
s

(
log k2−log k1

k2−k1

) s
s−1 − k2 log k1−k1 log k2

k2−k1
− 1

s for k1 �
(

log k2−log k1

k2−k1

) 1
s−1 � k2,

ks
2−1
s − log k2 for k2 �

(
log k2−log k1

k2−k1

) 1
s−1

,

ks
1−1
s − log k1 for k1 �

(
log k2−log k1

k2−k1

) 1
s−1

.
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4. α -operator divergence

The concept of α -divergence plays an important role in the information geometry.
Following [1], α -divergence is defined as follows: For positive valued measurable
functions p and q , and α ∈ R

Dα(p‖q) ≡ 4
1 − α2

∫
{1 − α

2
p +

1 + α
2

q − p
1−α

2 q
1+α

2 }dx, (α �= ±1),
(4.1)

D−1(p‖q) = D1(q‖p) ≡
∫
{q − p + p log

p
q
}dx.

If we put t = 1+α
2 in (4.1), then

Dα(p‖q) ≡ 1
t(1 − t)

∫
{(1 − t)p + tq − p1−tqt}dx, (t �= 0, 1).

From the viewpoint of this, J. I. Fujii [6] defined the following operator version of
α -divergence in the differential geometry: For positive invertible operators A and B ,

Dα(A, B) ≡ 1
α(1 − α)

(A ∇α B − A �α B) (0 < α < 1).

In particular,

D1(A, B) ≡ lim
α↑1

Dα(A, B) = lim
α↑1

(
A − B
α

− B�1−αA − B
α(1 − α)

)
= A − B − S(B|A)

D0(A, B) ≡ lim
α↓0

Dα(A, B) = lim
α↓0

(
B − A
1 − α

− A�αB − A
α(1 − α)

)
= B − A − S(A|B).

By definition, α -operator divergence is considered as the difference between the arith-
metic and the geometric interpolational paths. In particular, for the case of α = 1/2 ,
it follows that α -operator divergence coinsides with by four times the difference of the
geometric mean and the arithmetic mean. For the case of density operators, it coinsides
with a relative entropy introduced by Beravkin and Staszewski [3] in C ∗ -algebra setting.

Also we have the following different interpretation of α -operator divergence:

THEOREM 4.1. The α -operator divergence is the difference between two velocity
vectors S1(A|B) and Sα(A|B) : For each α ∈ (0, 1)

Dα(A, B) =
1

1 − α
(S1(A|B) − Sα(A|B))

=
1
α

(S1(B|A) − S1−α(B|A)) .
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We investigate estimates of the upper bounds for α -operator divergence:

THEOREM 4.2. Let A and B be positive invertible operators such that k1A �
B � k2A for some scalars 0 < k1 < k2 . Then α -operator divergence is positive and
for every operator mean ρ and α ∈ (0, 1)

(βA) ρ (βB) � Dα(A, B) � 0

holds for

β = max{1 − α + αk1 − kα1
α(1 − α)

,
1 − α + αk2 − kα2

α(1 − α)
},

β = max{α + (1 − α)k−1
2 − kα−1

2

α(1 − α)
,
α + (1 − α)k−1

1 − kα−1
1

α(1 − α)
}.

Proof. Since A ∇α B � A �α B (0 � α � 1 ), it follows that α -operator
divergence is positive, that is, Dα(A, B) � 0 . On the other hand, it follows from
Theorem2.4 that βA � Dα(A, B) � 0 . Since A∇α B−A �α B = B∇1−α A−B �1−α A
by (2.1), we applied B, A and 1 − α in Theorem 2.4 to obtain the constant β =
β(0, 1, 1 − α, k−1

2 , k−1
1 ) such that βB � Dα(A, B) � 0 because k−1

2 B � A � k−1
1 B .

Therefore we have for every operator mean ρ

(βA) ρ (βB) � Dα(A, B) ρ Dα(A, B) = Dα(A, B) � 0.

�
If we put α → 0, 1 in Theorem 4.2, then we have the following corollary:

COROLLARY 4.3. Let A and B be positive invertible operators such that k1A �
B � k2A for some scalars 0 < k1 < k2 . Then for every operator mean ρ

(βA) ρ (βB) � D0(A, B) = S1(A|B) − S0(A|B),

holds for β = max{k1 − 1 − log k1, k2 − 1 − log k2} and β = max{1 − k−1
2 −

k−1
2 log k2, 1 − k−1

1 − k−1
1 log k1} and

(βA) ρ (βB) � D1(A, B) = S1(B|A) − S0(B|A)

holds for β = max{1 − k−1
2 − k−1

2 log k2, 1 − k−1
1 + k−1

1 log k1} and β = max{k1 −
1 + log k1, k2 − 1 − log k2} .
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