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(communicated by J.-C. Bourin)

Abstract. The space of positive invertible operators of a unital C * -algebra has a natural structure
of reductive homogenious manifold with a Finsler metric. Then pairs of points A and B can

be joined by a natural geodesic A #; B = A2 (A_%BA_%)tA% for ¢ € [0,1], where is the
geometric mean in the sense of Kubo and Ando. In this paper, we consider estimates of the upper
bounds for the difference between the geodesic and extended interpolational paths by terms of
the spectra of positive operators. As applications, we investigate some properties of the velocity
vectors for interpolational paths. Also, we obtain estimates of the upper bounds for ¢ -operator
divergence as a noncommutative version of the « -divergence in the information geometry.

1. Introduction

Let </ be a unital C* -algebra, &/* (resp. /") be the set of all positive
invertible (resp. selfadjoint) operators of o7 . It is known that &/ is a real analytic
open submanifold of <7 and its tangent space (T.</*), atany A € /% is naturally
identified to 7", see for instance Corach, Porta and Recht [4,5]. Foreach A € &/, the
norm ||X|x = ||A"2XA~z||, X € (T/*), defined a Finsler structure on the tangent
bundle T/ . Forevery A, B € o/ ", there is a natural geodesic joining A and B:

Yap(t) =A% B fortel0,1],

where A f; B is the geometric mean in the sense of Kubo-Ando theory [13]:
TRV T L
At B=A? (A tBA z) Al
As usual, the length of a smooth curve y in &7 is defined by
1
i) = [ 17Ol

and the geodesic distance between A and B in &/ is
d(A,B) =inf{l(y) : y joins A and B}.
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Then it follows that
1 1
d(A,B) = |[log(A"ZBAT? )],

also see [2]. Itis a general fact that (27", d) is a complete metric space.
Kamei and Fujii [9, 10] defined the relative operator entropy S(A|B) which is a
relative version of the operator entropy defined by Nakamura-Umegaki [14]:

S(A|B) = A} log (A—%BA—%)A%. (1.2)
Then the velocity vector {4 5(0) is exactly the relative operator entropy S(A|B):

. . Af,B—A
7a.5(0) = lim ﬁ’f = S(A|B).

t—0

On the other hand, J. 1. Fujii [7] showed that if the manifold </" has a metric
L.(X) = ||X]|| (resp. Ln(X) = [[A"'XA~!||) on the tangent space T.</*, then the
geodesic and the distance from A to B for A, B € &/ are given by

the arithmeticmean AV,B=(1—-1A+tB and di(A,B)=|B—A]|
(resp.
the harmonic mean A [, B= ((1 —)A™"' + tB_l)f1 andd_;(A,B) = |A~' = B!
)

Here for m, = ;, V, and !;, their paths have the following interpolationality [10]:
(Amy, B) m; (Amy B) = Am_ypiig B

for 0 <p,q,t < 1.
Typical interpolational paths from A to B which include the arithmetic, geometric
and harmonic mean are as follows: For each r € [—1, 1]

1
AmgB=At (1=r+0(a7iBa7d) ) Al forief01]. (13)

In particular, Am;; B=AV,B, Amy;B=A#§;Band Am_,;,B=A;B.

In this paper, we investigate estimates of the upper bounds for the difference
between the geodesic A i B and interpolational paths A m,, B by terms of the spectra
of positive operators: For each s > 0 and 7 € (0, 1), there exists a suitable constant 3
such that

0<Ams; B—Af B<PA.

As applications, we investigate some properties of the velocity vectors for interpo-
lational paths. Also, we obtain estimates of the upper bounds for ¢ -operator divergence
introduced by [6] as a noncommutative version of the o -divergence in the information
geometry.
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2. Interpolational paths

First of all, we recall an interpolational path for symmetric operator means. Fol-
lowing [10, 11], for a symmetric mean &, a parametrized operator mean o; is called
an interpolational path for o if it satisfies

(1) AocyB=A,Ac,B=AcBand Ao B=B

(2) (Ao,B)o(Ao,B) =Aopa B

(3) themap t — A o, B is norm continous for each A and B.

Typical interpolational means are so-called power means;

1
1

1+ (A3BA 3\
Am, B=A? (#) AT forre[-1,1]

and their interpolational paths from A to B via A m, B are given by (1.3).

Here we consider them in the general setting: For positive invertible operators A
and B, an extended path A m,; B is defined as

1
Am,; B= A? (1 —t+ t(A*%BA*% )r) Al for all real numbers r € R
and ¢ € [0, 1]. The representing function f,, for m,, is defined as

Fr(€) =1my &= (1=t 41")7  for & >0

Notice that A m,, B for r € R is no longer a path of operator means for r ¢ [—1, 1],
but we list some properties of interpolational paths m,, and the representing function
Sre, also see [8].

Since every function f,,(&) is strictly increasing and strictly convex (resp. strictly
concave) for r > 1 (resp. r < 1), it follows that an extended path A m,, B for each
t € (0,1) is nondecreasing and norm continuous for » € R: For r < s

Am.; B<Am,; B.

Moreover, an extended path is also interpolational for all real numbers r € R. In
particular, the transposition formula holds:

Bmy, A=Am,_, A. (2.1)

For the sake of convenience, we prepare the following notation: For k» > k; > 0,
re€R and 7 € [0, 1]

alrn) = L I8) gy = BB ZRIl) )

We investigate estimates of the upper bounds for the difference between extended
interpolational paths:
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LEMMA 2.1. Let A and B be positive invertible operators such that kiA < B <
koA for some scalars 0 < ky < ky. Then for r < s and t € (0,1)

0<Amy; B—Am,;B<BA for r <1 (2.3)
and )
0<Amy,B—Am,B<PA forr>1 (2.4)
hold for
ﬁ = ﬁ(rasvt’ k17k2) = klréléaékz{fs’t(é) - a(ra t)g - b(ra t)},
and

B =B (rstki ko) = max {a(s,)E +b(s,1) = fr,(E)},

ki <E<k,

where a,b are defined by (2.2).

Proof. Suppose that r < 1. If we put C = A"iBA": , then we have kI > C >
kI > 0. Since f,,(&) is concave for r < 1, it follows from the definition of f that

B = feu(8) —a(r )& —b(r,t) 2 f5,(8) = fri(§)  forall § € [ki, ko],
and hence
Bl = f:4(C) = f1(C).
This fact implies
BA > Af,,(C)A? — A3f,,(C)A* = Amy, B—Am,, B,

which gives the desired result (2.3). Conversely, if r > 1, then f,,(§) is convex for
1 < r < s and the latter part (2.4) of Lemma 2.1 follows from the same way. ]

REMARK 2.2. The constant 8 = f(s,r,z,m,M) and ﬁ/ = Bl(s,r, t,m,M) in
Lemma 2.1 can be written explicitly as

a(r, t)(l a0 — ) —b(rh) for k<& <k
= Foulk)) — k) for & <k
Fsi(k2) = fri(ka) for kh< &

1
where éoz (ﬁ (a(:,t))l 5 —ﬁ) and

V(7T a(s, )7 — 1) T + b(s,1) for Kk

¢
B = Foalkt) = fralky) for & <k
fs,t(kZ) _fr,t(kZ) for k2 é

N

NN
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By lemma 2.1, we obtain estimates of the upper bounds for the difference between
the geodesic A f, B and extended interpolational paths:

THEOREM 2.3. Let A and B be positive invertible operators such that kiA <
B < kA for some scalars 0 < ky < ky. Then for each t € (0, 1)

0<Amg; B—AH# B<P(0,s,1,ki, k)A for s>0, (2.5)
and

0<Af#B—Am,;B<P(r,0,t,k1,k)A  for r<0, (2.6)
where B is defined by Remark 2.2.

As special cases of Theorem 2.3, we obtain an estimate of the upper bound for the
difference between the geodesic A f; B and the arithmetic interpolational paths A V; B,
and also the same for the geodesic A f; B and the harmonic interpolational paths A !, B:

THEOREM 2.4. Let A and B be positive invertible operators such that kiA <
B < kA for some scalars 0 < ky < ky. Then for each t € (0, 1)

0<AV,B—Af,B<max{l —r+tk; —kj,1 —1+1thky — k5 }A (2.7)

and

0<ALB—ALB<B(—1,0,1,ki, kA, (2.8)
where B(—1,0,1,k, k) =

_ 1
(e ey (((1 =k +1)(1 = ko +1)T7 — k1k2)
for K< ((1 =0k +0)((1 = ky +1) < kg,

kt _ kz
2 (17[)/{2%’)‘
for k"< ((1 =0k +1)((1 — )y + 1),
k
ktl - (1—t)1k1+z

for k> ((1 =0k +1)((1 — t)ky + 7).

Proof. If we put s = 1 in (2.5) of Theorem 2.3, then f1,(§) = 1 — ¢+ ¢£ and
foul&) = &' Since a(0,1) = S8 the condition f{,(M) < a(0,1) < f{,(m) is
equivalent to a(0,7) = . Therefore we have

1 t
L —t+tky—ky  for 2:2 <1,
BP=01—t4m—k for “h>y

Similarly, we have the latter part of this theorem by using (2.6) of Theorem 2.3. [

Next, we show estimates of the lower bounds of the ratio for extended interpola-
tional paths:

LEMMA 2.5. Let A and B be positive invertible operators such that kiA < B <
koA for some scalars 0 < ky < ky. Then for r < s and t € (0,1)

Am.; B> aAmg B for r<1 (2.9)
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and
Am,,B>oAmg,B for r>1 (2.10)
hold for
. ca(r )€ +b(r1)
o=o(rs,tk,k)= mn {—2——"2%
( 1K) klgégkz{ fsa(€) }
and

’

!
o = (F,S,l,kl,kz) =

. fr,t(é)
klglélgkz{m

h
where a,b are defined by (2.2).

Proof. Suppose that r < 1. Since f,,(&) is concave for r < 1, it follows that

fr,t(é) (l(l‘, t)é + b(l‘, t)
TG

and hence f.,(&) > af,(&) on [ki, k). Therefore we have

1

Amy, B =A%, ,(A"7BA"7)A? > aA*f,,(A"*BA"?)A% = aA my, B.

Similarly, since f&,(é) is convex for 1 < r < s, the latter part follows from the same
way. |

REMARK 2.6. The constant o = a(r,s,t, ki, k) and o = a/(r, s, 1.k, ky) in
Lemma 2.5 can be written explicitly as follows: In the case of s > 1,

Inthecaseof s <1,

% for ki <& <k,

TV o oese
Fralkr) 1 2 S0,

o
where &) = ( ?ZE:;;) T od
i

?ii&?i or k2 ; 517
Fsa(kr) L > &,

where & = (b“(”)
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As a special case of Lemma 2.5, we have the following theorem.

THEOREM 2.7. Let A and B be positive invertible operators such that kiA <
B < kA for some scalars 0 < ky < ky. Then for each t € (0, 1)

K K,
A% B > min{] —t1+tk1’ —t+thy PAV. B (2.11)
and
ALB > a(—1,0,1,ki, k) At B (2.12)
holds for
st Jor ki< 1<k
a(—1,0,1, ki, ky) = % for 1<k,
e for k<.

3. Velocity vector of extended paths

Following [9, 10], for positve invertible operators A and B, the relative operator
entropy S(A|B) is defined by

S(A|B) = A} (logA’%BA’%) Al

which is a relative version of the operator entropy —A logA considered by Nakamura-
Umegaki [14]. The relative operator entropy S(A|B) is exactly the velocity vector
74,5(0) of the geodesic A, B at t = 0:

A4B—AtyB
S(A‘B):lnéu
11—

= 74.5(0).

In [12], Kamei analogously generalizes the relative operator entropy: For each r € R
Am,,B—Am.oB

S/(AJB) = lim 20 =0 2

which is considered as the right differential coefficient at + = O of the extended path
A m,; B. By the fact that

1—t+EN)7 — 1 "1
lim( +1£") _s ,

it follows that

for r e R
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and the representing function is

r—1
re=2=1
In particular,
si4B) = lim AV EZA gy,
So(A[B) = S(A[B),
S_1(A|B) = }Lnéw =A—-AB'A.

For the sake of convenience, we prepare the following notation:
a(r) = L) = /) _ kafrlke) = kaf(k2)
k2 - kl k2 — kl

for 0 < k; < ky and r € R.
Since f,(&) is monotone increasing on r € R, the velocity vectors S,.(A|B) is
monotone increasing on r € R:

r<s implies S-(A|B) < Ss(A|B).
The left differentiable coefficient of A m,, B at t = 1 is —S,(B|A):

. Am,;B—Am, B
lim ' =
t—1 t*l

and b(r)

(3.1)

—S,(B|A).

If B > A, then the velocity vectors of exteded paths at = 0, 1 are positive:
S.(A|B) >0 and —S,(BJA) > 0.
We investigate estimetaes of the upper bounds for the difference between velocity
vectors of extended interpolational paths.

LEMMA 3.1. Let A and B be positive invertible operators such that kiA < B <
kyA for some scalars 0 < ky < ky. Then for r < s

S(AB) — S(AIB) <yA  for r<s<1, (3.2)
k-1 kK—-1kK-1 k-1
Sy(A|B) — S, (A|B) <max{-+— -1 — 2~ 2 WA for r<1<s
s r s r
(3.3

and )

Ss(A|B) —S,(A|IB) <YyA  for 1<r<s (3.4)
hold for

= ki, ky) = s(&) — —-b

v =rnskik) = max {fi(£) - a(r)& —b(r)}

and

v =y (rs.ki k) = max {a(s)E +b(s) —fr(&)},

ki <E<k,

where a,b are defined by (3.1).
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Proof. Suppose that » < 1. If we put C = A"3BA™> , then we have 0 < kI <
C < kyl . Since f,(&) is concave for r < 1, it follows that

[s(8) =fr(&) <fi(§) —a(ré —b(r) <y

and hence we have the desired result (3.2) and (3.3). The remainder part (3.4) follow
in the same way. ]

REMARK 3.2. Theconstant y = y(r, s, ki, kz) and }/’ = }/’(r7 s, ki, kz) inLemma 3.1
can be written explicitly as

%a(r)sr%l —b(r)—1  for k< a(”)%_l <k,

y = kzé:f@ for  ky <a(r)sT,

P B A | =

- for k; > a(r)=T,

and

, =la(s)7T +b(s) +1  for ki <als) T <k,

s_ r_ =

L

% _ lefl for ki > a(s)™

By Lemma 3.1, we obtain estimates of the upper bound for the difference between
the velocity vectors S(A|B) and S,(A|B) of the extended interpolational paths A m,, B
at t =0:

THEOREM 3.3. Let A and B be positive invertible operators such that kiA < B <
k)A for some scalars 0 < ky < ky. Then

Sy(A|B) — S(AIB) < yA  for 0<s<1 (3.5)

and

) )

K —1 k
Sy(A|B) — S(A|B) < max{ 1s — logk;, -2

1
—loghk}JA  for 1<s, (3.6)

N

where
_s_ 1
I1—s (logky—logk; \s=! _ kologki—kilogky 1 log ko —logk; | 5!
5 ( fo—ki ki v Jor ks (T < k2,
1
_ ky—1 log ky—log ki \ 51
Y = 2S — log k2 for k2 < ( o8 szk?g L 5
1
k-1 log ky—log k; \ =1
ls — logk1 for kl > (W .
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4. «-operator divergence

The concept of o -divergence plays an important role in the information geometry.
Following [1], o -divergence is defined as follows: For positive valued measurable
functions p and g, and o € R

4 11—« 1+O{ l—a lia
Da(pllq)zliaz/{ P+ — q—p 7 g7 Ydx, (a#=*l),

(4.1

D_\(plla) = Di(allp) = / (a—p+piogZax

If we put £ = 152 in (4.1), then

Dy (pllq) = (/{ Np+iq—p'lqtdx, (1#0,1).

From the viewpoint of this, J. I. Fujii [6] defined the following operator version of
a -divergence in the differential geometry: For positive invertible operators A and B,

Dy(A,B) = (AV4B—AtyB) (0<a<1).

1
ol —a)

In particular,

A—B Bi_,A—B
thJﬂ_hmDMAB)_Mn( _Bha >
all all

o ol —a)
=A—B— S(BJA)
- . (B—A Af,B-A
Do(A, B) = B?&DO‘(A’B) N E{%‘ (1 —a  all- a))
=B—A—S(AB).

By definition, o -operator divergence is considered as the difference between the arith-
metic and the geometric interpolational paths. In particular, for the case of ov = 1/2,
it follows that o -operator divergence coinsides with by four times the difference of the
geometric mean and the arithmetic mean. For the case of density operators, it coinsides
with a relative entropy introduced by Beravkin and Staszewski [3] in C * -algebra setting.
Also we have the following different interpretation of o -operator divergence:

THEOREM 4.1. The o -operator divergence is the difference between two velocity
vectors S\ (A|B) and Sq(A|B): Foreach o € (0,1)

Du(A,B) = 1 (Si(AIB) — Su(AIB))

p (S1(BJA) — S1-«(BJA)) .
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We investigate estimates of the upper bounds for o -operator divergence:

THEOREM 4.2. Let A and B be positive invertible operators such that kiA <
B < kyA for some scalars 0 < k; < ko. Then o -operator divergence is positive and
for every operator mean p and o € (0,1)

(BA) p (BB) > Dy(A,B) >0

holds for
ﬁ:max{lfaJraklfkf‘ lfoc+ock27k§‘}
ol —a) 7 ol — ) ’
- a+ (- =k a+(1— o)k — k¢!
B =max{ a(l —a) ’ a(l —a) g

Proof. Since AVy B > Aflg B (0 < a < 1), it follows that o -operator
divergence is positive, that is, Dy(A,B) > 0. On the other hand, it follows from
Theorem 2.4 that A > Dy(A,B) > 0. Since AV, B—At, B=BV|_qA—Bfi_4A
by (2.1), we applied B,A and 1 — a in Theorem 2.4 to obtain the constant f =
B(0,1,1 — a,ky ' k") such that BB > Dy (A, B) > 0 because k; 'B < A < k; 'B.
Therefore we have for every operator mean p

(BA) p (BB) > Dq(A, B) p Da(A, B) = Dqo(A, B) > 0.

If we put & — 0,1 in Theorem 4.2, then we have the following corollary:

COROLLARY 4.3. Let A and B be positive invertible operators such that kjA <
B < kA for some scalars 0 < ky < ky. Then for every operator mean p

(BA) p (BB) > Do(A, B) = S1(A|B) — So(A|B),

holds for B = max{k; — 1 — logki,k» — 1 — logks} and B = max{l — k' —
ky 'loghky, 1 — k' — k' logk, } and

(BA) p (BB) = Di(A, B) = Si(BJA) — So(B|A)

holds for B = max{l —k;' —k; ' logks, | — k;' + k; 'logk:} and B = max{k; —
1+ logk, k, — 1 —logky}.
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