OPERATOR FUNCTION ASSOCIATED WITH AN ORDER PRESERVING OPERATOR INEQUALITY

Takayuki Furuta
Dedicated to
Professor Sterling K. Berberian with respect and affection

(communicated by M. Fujii)

Abstract. A capital letter means a bounded linear operator on a Hilbert space H. The celebrated Löwner-Heinz inequality asserts that $A \geqslant B \geqslant 0$ ensures $A^{\alpha} \geqslant B^{\alpha}$ for any $\alpha \in[0,1]$, but $A^{p} \geqslant$ B^{p} does not always hold for $p>1$. From this point of view, we obtained: If $A \geqslant B \geqslant 0$ with $A>0$, then for $t \in[0,1]$ and $p \geqslant 1$,

$$
F_{A, B}(r, s)=A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}}
$$

is a decreasing function for $r \geqslant t$ and $s \geqslant 1$, and $F_{A, A}(r, s) \geqslant F_{A, B}(r, s)$ holds, that is,

$$
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}}
$$

holds for $t \in[0,1], p \geqslant 1, r \geqslant t$ and $s \geqslant 1$.
We shall prove the following further extension. Let $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, \ldots, p_{2 n} \geqslant 1$ for natural number n. Then

$$
G_{A, B}\left[r, p_{2 n}\right]
$$

is a decreasing function of $p_{2 n} \geqslant 1$ and $r \geqslant t$, and the following inequality holds: $G_{A, A}\left[r, p_{2 n}\right] \geqslant$ $G_{A, B}\left[r, p_{2 n}\right]$, that is,
where $q[2 n]=q\left[2 n ; p_{1}, p_{2}, \ldots, p_{2 n}\right]=\underbrace{\left\{\ldots\left[\left\{\left[\left(p_{1}-t\right) p_{2}+t\right] p_{3}-t\right\} p_{4}+t\right] p_{5}-\ldots-t\right\} p_{2 n}+t}_{-t \text { and } t \text { alternately } n \text { times appear }}$.

Mathematics subject classification (2000): 47A63.
Keywords and phrases: Löwner-Heinz inequality, order preserving operator inequality.
This work was supported by Grant-in-Aid for Scientific Research (C).

1. Introduction

An operator T is said to be positive (denoted by $T \geqslant 0)$ if $(T x, x) \geqslant 0$ for all $x \in H$, and T is said to be strictly positive (denoted by $T>0$) if T is positive and invertible.

THEOREM LH. (Löwner-Heinz inequality, denoted by (LH) briefly).
If $A \geqslant B \geqslant 0$ holds, then $A^{\alpha} \geqslant B^{\alpha}$ for any $\alpha \in[0,1]$.
This was originally proved in [17] and then in [14]. Many nice proofs of (LH) are known. We mention [18] and [2]. Although (LH) asserts that $A \geqslant B \geqslant 0$ ensures $A^{\alpha} \geqslant B^{\alpha}$ for any $\alpha \in[0,1]$, unfortunately $A^{\alpha} \geqslant B^{\alpha}$ does not always hold for $\alpha>1$. The following result has been obtained from this point of view.

Theorem A.
If $A \geqslant B \geqslant 0$, then for each $r \geqslant 0$,

$$
\begin{equation*}
\left(B^{\frac{r}{2}} A^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(B^{\frac{r}{2}} B^{p} B^{\frac{r}{2}}\right)^{\frac{1}{q}} \tag{i}
\end{equation*}
$$

and
(ii) $\quad\left(A^{\frac{r}{2}} A^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}} \geqslant\left(A^{\frac{r}{2}} B^{p} A^{\frac{r}{2}}\right)^{\frac{1}{q}}$
hold for $p \geqslant 0$ and $q \geqslant 1$ with $(1+r) q \geqslant p+r$.

The original proof of Theorem A is shown in [6], an elementary one-page proof is in [7] and alternative ones are in [3], [15]. It is shown in [19] that the conditions p, q and r in Figure 1 are best possible.

Theorem B. If $A \geqslant B \geqslant 0$ with $A>0$, then for $t \in[0,1]$ and $p \geqslant 1$,

$$
F_{A, B}(r, s)=A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} A^{\frac{-r}{2}}
$$

is a decreasing function for $r \geqslant t$ and $s \geqslant 1$, and $F_{A, A}(r, s) \geqslant F_{A, B}(r, s)$ holds, that is,

$$
\begin{equation*}
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t) s+r}} \tag{1.1}
\end{equation*}
$$

holds for $t \in[0,1], p \geqslant 1, r \geqslant t$ and $s \geqslant 1$.
The original proof of Theorem B is in [8], and an alternative one is in [4]. An elementary one-page proof of (1.1) is in [9]. Further extensions of Theorem B and related results are in [10], [12], [13], [16] and [22]. It is originally shown in [20] that the exponent value $\frac{1-t+r}{(p-t) s+r}$ of the right hand of (1.1) is best possible and alternative ones are in [5], [21]. It is known that the operator inequality (1.1) interpolates Theorem A and an inequality equivalent to the main result of Ando-Hiai log majorization [1] by the parameter $t \in[0,1]$.

2. Definitions of $C_{A, B}[2 n]$ and $q[2 n]$ and preparation

Let $A>0, B \geqslant 0, t \in[0,1]$ and $p_{1}, p_{2}, \ldots, p_{n}, \ldots, p_{2(n-1)}, p_{2 n-1}, p_{2 n} \geqslant 1$ for a natural number n. Let $C_{A, B}[2 n]$ be defined by:

$$
\begin{gather*}
C_{A, B}[2 n]=C_{A, B}\left[2 n ; p_{1}, p_{2}, \ldots, p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \\
=\underbrace{A^{\frac{t}{2}}\left\{A ^ { \frac { - t } { 2 } } \left[A ^ { \frac { t } { 2 } } \ldots \left[A ^ { \frac { - t } { 2 } } \left\{A ^ { \frac { t } { 2 } } \left(A^{\frac{-t}{2}}\right.\right.\right.\right.\right.}_{\leftarrow A^{\frac{-t}{2}} \text { and } A^{\frac{t}{2}} \text { alternately } n \text { times }} B^{p_{1}} \underbrace{\left.\left.\left.\left.A^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} \ldots A^{\frac{t}{2}}\right]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{p_{2 n}} A^{\frac{t}{2}}}_{\rightarrow A^{\frac{-t}{2}} \text { and } A^{\frac{t}{2}} \text { alternately } n \text { times }} \tag{2.1}
\end{gather*}
$$

For examples,

$$
C_{A, B}[2]=A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}
$$

and

$$
C_{A, B}[4]=A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}
$$

Particularly put $A=B$ in $C_{A, B}[2 n]$ in (2.1). Then

$$
\begin{gather*}
C_{A, A}[2 n]=C_{A, A}\left[2 n ; p_{1}, p_{2}, \ldots, p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \\
=\underbrace{A^{\frac{t}{2}}\left\{A ^ { \frac { - t } { 2 } } \left[A ^ { \frac { t } { 2 } } \ldots \left[A ^ { \frac { - t } { 2 } } \left\{A ^ { \frac { t } { 2 } } \left(A^{\frac{-t}{2}}\right.\right.\right.\right.\right.}_{\leftarrow A^{\frac{t}{2}} \text { and } A^{\frac{t}{2}} \text { alternately } n \text { times }} A^{p_{1}} \underbrace{\left.\left.\left.\left.\left.A^{\frac{t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} \ldots A^{\frac{t}{2}}\right]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{p_{2 n}} A^{\frac{t}{2}}}_{\rightarrow A^{\frac{-t}{2}} \text { and } A^{\frac{1}{2}} \text { alternately } n \text { times }} \\
=A^{\left.\left\{\cdots\left[\left\{\left[\left(p_{1}-t\right) p_{2}+t\right] p_{3}-t\right\} p_{4}+t\right] p_{5}-\ldots+t\right] p_{2 n-1}-t\right\} p_{2 n}+t .} . \tag{2.2}
\end{gather*}
$$

Let $q[2 n]$ be defined by

$$
\begin{align*}
q[2 n] & =q\left[2 n ; p_{1}, p_{2}, \ldots, p_{n}, \ldots, p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \\
& =\text { the exponential power of } A \text { in }(2.3) \\
& =\underbrace{\left\{\ldots\left[\left\{\left[\left(p_{1}-t\right) p_{2}+t\right] p_{3}-t\right\} p_{4}+t\right] p_{5}-\ldots-t\right\} p_{2 n}+t}_{-t \text { and } t \text { alternately } n \text { times appear }} . \tag{2.4}
\end{align*}
$$

For examples,

$$
q[2]=\left(p_{1}-t\right) p_{2}+t
$$

and

$$
q[4]=\left[\left\{\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+t
$$

For the sake of convenience, we define

$$
\begin{equation*}
C_{A, B}[0]=B \quad \text { and } \quad q[0]=1 \tag{2.5}
\end{equation*}
$$

and these definitions in (2.5) may be naturally defined by (2.1) and (2.4).

THEOREM C. [11] Let $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, \ldots, p_{2 n} \geqslant 1$ for natural number n. Then the following inequality holds for $r \geqslant t$:
where $q[2 n]$ is defined in (2.4).
We need the following lemmas.
Lemma A. [8, Lemma 1] Let X be a positive invertible operator and Y be an invertible operator. For any real number λ,

$$
\left(Y X Y^{*}\right)^{\lambda}=Y X^{\frac{1}{2}}\left(X^{\frac{1}{2}} Y^{*} Y X^{\frac{1}{2}}\right)^{\lambda-1} X^{\frac{1}{2}} Y^{*}
$$

The following lemma is easily shown by (2.1), (2.4) and (2.5).
LEMMA 2.1. For $A>0, B \geqslant 0$ and any natural number n, the following (i) and (ii) hold:
(i)

$$
\begin{equation*}
C_{A, B}[2 n]=A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}} C_{A, B}[2(n-1)]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{p_{2 n}} A^{\frac{t}{2}} \tag{2.7}
\end{equation*}
$$

and
(ii)

$$
\begin{equation*}
q[2 n]=\left\{q[2(n-1)] p_{2 n-1}-t\right\} p_{2 n}+t \tag{2.8}
\end{equation*}
$$

where $C_{A, B}[0]=B$ and $q[0]=1$.

3. Further extension of Theorem B

We shall state further extension of Theorem B.
THEOREM 3.1. Let $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, \ldots, p_{2 n} \geqslant 1$ for natural number n. Then

$$
=A^{\frac{-r}{2}}\{A^{\frac{r}{2}} \underbrace{G_{A, B}\left[r, p_{2 n}\right]}_{\begin{array}{c}
A^{\frac{t}{2}} A^{\frac{-t}{2}} n \text { times and } \\
A^{\frac{-t}{2}-1} \text { times by turns } \tag{3.1}
\end{array} A^{\frac{t}{2}} \ldots\left[A ^ { \frac { - t } { 2 } } \left\{A ^ { \frac { t } { 2 } } \left(A^{\frac{-t}{2}}\right.\right.\right.} \underbrace{\left.\left.\left.\left.\left.A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}} \ldots\right\} A^{\frac{-t}{2}}\right]}_{A^{p_{1}} A^{A^{\frac{-t}{2}}} n-1 \text { times and }}]^{p_{2 n}} A^{\frac{r}{2}}\}^{\frac{1+r-t}{q[2 n]^{2}+r-t}} A^{\frac{-r}{2}}
$$

is a decreasing function of $p_{2 n} \geqslant 1$ and $r \geqslant t$, and the following inequality holds

$$
G_{A, A}\left[r, p_{2 n}\right] \geqslant G_{A, B}\left[r, p_{2 n}\right],
$$

that is,
$A^{1-t+r} \geqslant\{A^{\frac{r}{2}}[\underbrace{n-1 \text { times by turns }}_{A^{\frac{t}{2}} A^{\frac{-t}{2}}} 0 A^{\frac{-t}{2}}\{A^{\frac{t}{2}} \ldots[A^{\frac{-t}{2}}\{A^{\frac{t}{2}}(A^{\frac{-t}{2}} B^{p_{1}} \underbrace{\left.\left.\left.\left.A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}} \ldots\right\} A^{\frac{-t}{2}}}_{A^{\frac{t}{2}} A^{\frac{-t}{2}} n \text { times and times by turns }}]^{p_{2 n} n} A^{\frac{r}{2}}\}^{\frac{1-t+r}{q[2 n]+r-t}}$
where $q[2 n]$ is defined by (2.4).

Corollary 3.2. If $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$, $G_{A, B}\left[r, p_{4}\right]=A^{\frac{-r}{2}}\left\{A^{\frac{r}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{r}{2}}\right\}^{\left.\left[1\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+r} A^{\frac{-r}{2}}$
is a decreasing function of $p_{4} \geqslant 1$ and $r \geqslant t$, and the following inequality holds $G_{A, A}\left[r, p_{4}\right] \geqslant G_{A, B}\left[r, p_{4}\right]$, that is,

$$
A^{1-t+r} \geqslant\left\{A^{\frac{r}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{r}{2}}\right\} \frac{1-t+r}{\left.\left.k\left(p_{1}-t\right) p_{2}+t\right\} p_{3}-t\right] p_{4}+r}
$$

holds for $t \in[0,1], r \geqslant t$ and $p_{1}, p_{2}, p_{3}, p_{4} \geqslant 1$.

REMARK 3.1. Theorem 3.1 yields Corollary 3.2 by putting $n=2$ and also Corollary 3.2 yields Theorem B by putting $p_{2}=p_{3}=1$.

Proof of Theorem 3.1. (3.2) is (2.6) itself of Theorem C. Recall that (3.2) can be described as by (2.1):

$$
\begin{equation*}
A^{1+r-t} \geqslant\left(A^{\frac{r-t}{2}} C_{A, B}[2 n] A^{\frac{r-t}{2}}\right)^{\frac{1+r-t}{q[2 n]+r-t}} \tag{3.3}
\end{equation*}
$$

By (2.7) we have

$$
\begin{equation*}
A^{\frac{r-t}{2}} C_{A, B}[2 n] A^{\frac{r-t}{2}}=A^{\frac{r}{2}}\left\{A^{\frac{-t}{2}} C_{A, B}[2(n-1)]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{p_{2 n}} A^{\frac{r}{2}} \tag{3.4}
\end{equation*}
$$

Put $D=A^{\frac{-t}{2}} C_{A, B}[2(n-1)]^{p_{2 n-1}} A^{\frac{-t}{2}}$ in (3.4) briefly in the proofs (a) and (b) under below.
(a) Proof of the result that $G_{A, B}\left[r, p_{2 n}\right]$ is a decreasing function of r.

Raise each side of (3.3) to the power $\frac{v}{1+r-t} \in[0,1]$ for $r \geqslant v \geqslant 0$, we have

$$
\begin{gather*}
A^{v} \geqslant\left(A^{\frac{r-t}{2}} C_{A, B}[2 n] A^{\frac{r-t}{2}}\right)^{\frac{v}{q[2 n]+r-t}} \\
=\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{v}{q[2 n]+r-t}} \quad \text { for } r \geqslant v \geqslant 0 \quad \text { by }(3.4) \tag{3.5}
\end{gather*}
$$

and we have

$$
\begin{align*}
G_{A, B}\left[r, p_{2 n}\right] & =A^{\frac{-r}{2}}\left\{A^{\frac{r-t}{2}} C_{A, B}[2 n] A^{\frac{r-t}{2}}\right\}^{\frac{1+r-t}{q[2 n]+r-t}} A^{\frac{-r}{2}} \quad \text { by }(3.1) \text { and (2.1) } \\
& =A^{\frac{-r}{2}}\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{1+r-t}{q[2 n]+r-t}} A^{\frac{-r}{2}} \quad \text { by }(3.4) \\
& =D^{\frac{p_{2 n}}{2}}\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{1-q[2 n]}{q[2 n]+r-t}} D^{\frac{p_{2 n}}{2}} \quad \text { by Lemma A } \\
& =D^{\frac{p_{2 n}}{2}}\left\{\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{q[2 n]+r+v-t}{q[2 n]+r-t}}\right\}^{\frac{1-q[2 n]}{q[2 n]+r+v-t}} D^{\frac{p_{2 n}}{2}} \\
& =D^{\frac{p_{2 n}}{2}}\left\{D^{\frac{p_{2 n}}{2}} A^{\frac{r}{2}}\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{v}{q[2 n]+r-t}} A^{\frac{r}{2}} D^{\frac{p_{2 n}}{2}}\right\}^{\frac{1-q[2 n]}{q[2 n]+r+v-t}} D^{\frac{p_{2 n}}{2}} \quad \text { by Lemma A } \\
& \geqslant D^{\frac{p_{2 n}}{2}}\left(D^{\frac{p_{2 n}}{2}} A^{r+v} D^{\frac{p_{2 n}}{2}}\right)^{\frac{1-q[2 n]}{q[2 n]+r+v-t}} D^{\frac{p_{2 n}}{2}} \\
& =G_{A, B}\left[r+v, p_{2 n}\right] \tag{3.6}
\end{align*}
$$

and the last inequality follows by LH because (3.5) and $\frac{1-q[2 n]}{q[2 n]+r+v-t} \in[-1,0]$ holds and taking inverses of both sides, so that $G_{A, B}\left[r, p_{2 n}\right]$ is decreasing function of r by (3.6).
(b) Proof of the result that $G_{A, B}\left[r, p_{2 n}\right]$ is a decreasing function of $p_{2 n}$.

Raise each side of (3.3) to the power $\frac{r}{1+r-t} \in[0,1]$, we have

$$
\begin{equation*}
A^{r} \geqslant\left(A^{\frac{r-t}{2}} C_{A, B}[2 n] A^{\frac{r-t}{2}}\right)^{\frac{r}{q[2 n]+r-t}}=\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{r}{q[2 n]+r-t}} \quad \text { by (3.4) } \tag{3.7}
\end{equation*}
$$

and applying Lemma A to (3.7) and taking inverses of both sides, we have

$$
\begin{equation*}
\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{q[2 n]-t}{q[2 n]+r-t}} \geqslant D^{p_{2 n}} \tag{3.8}
\end{equation*}
$$

(3.8) and (2.8) imply

$$
\begin{equation*}
\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{\left(q[2(n-1)] p_{2 n-1}-t\right) p_{2 n}}{\left(q[(n-1)] p_{2 n-1}-t\right) p_{2 n}+r}} \geqslant D^{p_{2 n}} \tag{3.9}
\end{equation*}
$$

and raise each side of (3.9) to the power $\frac{v}{p_{2 n}} \in[0,1]$ for $p_{2 n} \geqslant v \geqslant 0$, we have

$$
\begin{equation*}
\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{\left(q[2(n-1)] p_{2 n-1}-t\right) v}{\left.(q q 2(n-1)] p_{2 n-1}-t\right) p_{2 n}+r}} \geqslant D^{v} \quad \text { for } p_{2 n} \geqslant v \geqslant 0 . \tag{3.10}
\end{equation*}
$$

Then we have

$$
\begin{align*}
f\left(r, p_{2 n}\right) & =\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{1+r-t}{q[2 n]+r-t}} \\
& =\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{1+r-t}{\left(q[2(n-1)] p_{2 n-1}-t\right) p_{2 n}+r}} \quad \text { by }(2.8) \\
& =\left\{\left(A^{\frac{r}{2}} D^{p_{2 n}} A^{\frac{r}{2}}\right)^{\frac{\left(q[2(n-1)] p_{2 n-1}-t\right)\left(p_{2 n}+v\right)+r}{\left(q\left[2(n-1) p_{2 n-1}-t\right) p_{2 n}+r\right.}}\right\}^{\frac{1+r-t}{\left(q[2(n-1)] p_{2 n-1}-t\right)\left(p_{2 n}+v\right)+r}} \\
& =\left\{A^{\frac{r}{2}} D^{\frac{p_{2 n}}{2}}\left(D^{\frac{p_{2 n}}{2}} A^{r} D^{\frac{p_{2 n}}{2}}\right)^{\frac{\left(q[2(n-1)] p_{2 n-1}-t\right) v}{\left(q[2(n-1)] p_{2 n-1}-t\right) p_{2 n}+r}} D^{\frac{p_{2 n}}{2}} A^{\frac{r}{2}}\right\}^{\frac{1+r-t}{\left(q[2(n-1)] p_{2 n-1-t)\left(p_{2 n}+v\right)+r}\right.}} \quad \quad \quad \text { by Lemma A) }
\end{align*}
$$

and the last inequality follows by LH because (3.10) and $\frac{1-t+r}{\left(q[2(n-1)] p_{2 n-1}-t\right)\left(p_{2 n}+v\right)+r} \in$ $[0,1]$, so that $G_{A, B}\left[r, p_{2 n}\right]=A^{\frac{-r}{2}} f\left(r, p_{2 n}\right) A^{\frac{-r}{2}}$ is decreasing function of $p_{2 n} \geqslant 1$ by (3.11).

Finally $G_{A, B}\left[r, p_{2 n}\right]$ is a decreasing function of both $r \geqslant t$ and $p_{2 n} \geqslant 1$ by (a) and (b).

4. Satellite inequalities as an application of Theorem 3.1

PROPOSITION 4.1. $F\left[A, B ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]$ is defined as follows for natural number n;

$$
\begin{equation*}
F\left[A, B ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]=\left(C_{A, B}[2 n]\right)^{\frac{1}{q[2 n]}} . \tag{4.1}
\end{equation*}
$$

If $p_{2 n}=1$, then $\left(C_{A, B}[2 n]\right)^{\frac{1}{q[2 n]}}=\left(C_{A, B}[2(n-1)]\right)^{\frac{1}{q[2(n-1)]}}$ holds, that is,

$$
\begin{equation*}
F\left[A, B ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]=F\left[A, B ; p_{1}, p_{2}, \ldots, p_{2(n-1)}\right] \tag{4.2}
\end{equation*}
$$

Proof. If $p_{2 n}=1$, then

$$
\begin{align*}
C_{A, B}[2 n] & =C_{A, B}\left[2 n ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \\
& =A^{\frac{t}{2}}\left\{A^{\frac{-t}{2}} C_{A, B}[2(n-1)]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{1} A^{\frac{t}{2}} \quad \text { by putting } p_{2 n}=1 \text { in }(2.7) \\
& =C_{A, B}[2(n-1)]^{p_{2 n-1}} \tag{4.3}
\end{align*}
$$

on the other hand,

$$
\begin{align*}
q[2 n] & =q\left[2 n ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \\
& =\left(q[2(n-1)] p_{2 n-1}-t\right) 1+t \quad \text { by putting } p_{2 n}=1 \text { in }(2.8) \\
& =q[2(n-1)] p_{2 n-1} \tag{4.4}
\end{align*}
$$

and

$$
\begin{aligned}
& F\left[A, B ; p_{1},\right.\left.p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]=\left(C_{A, B}[2 n]\right)^{\frac{1}{q[2 n]}} \\
&=\left(C_{A, B}[2(n-1)]^{p_{2 n-1}}\right)^{\frac{1}{q\left[(n-1) p_{2 n-1}\right.}} \quad \text { by (4.3) and (4.4) } \\
&=\left(C_{A, B}[2(n-1)]\right)^{\frac{1}{q[2(n-1)]}} \\
&= F\left[A, B ; p_{1}, p_{2}, \ldots, p_{2(n-1)}\right]
\end{aligned}
$$

and (4.2) is shown.
THEOREM 4.2. If $A \geqslant B \geqslant 0$ with $A>0, t \in[0,1]$ and $p_{1}, p_{2}, \ldots, p_{2 n} \geqslant 1$, then the following inequality holds:

$$
\begin{aligned}
A & \geqslant B \\
& \geqslant\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left(p_{1}-t\right) p_{2}+t}} \\
& \geqslant\left\{A^{\frac{t}{2}}\left[A^{\frac{-t}{2}}\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p_{1}} A^{\frac{-t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} A^{\frac{t}{2}}\right\}^{\frac{1}{\left.\left\{\left(p_{1}-t\right) p_{2}+t\right] p_{3}-t\right\} p_{4}+t}}
\end{aligned}
$$

$$
\ldots
$$

$$
\geqslant
$$

$$
\begin{equation*}
\geqslant[\underbrace{A^{\frac{t}{2}}\left\{A ^ { \frac { - t } { 2 } } \left[A ^ { \frac { t } { 2 } } \ldots \left[A ^ { \frac { - t } { 2 } } \left\{A ^ { \frac { t } { 2 } } \left(A^{\frac{-t}{2}}\right.\right.\right.\right.\right.}_{\leftarrow A^{\frac{t}{2}} \text { and } A^{\frac{1}{2}} \text { alternately } n \text { times }} B^{p_{1}} \underbrace{\left.\left.\left.\left.\left.A^{\frac{t}{2}}\right)^{p_{2}} A^{\frac{t}{2}}\right\}^{p_{3}} A^{\frac{-t}{2}}\right]^{p_{4}} \ldots A^{\frac{t}{2}}\right]^{p_{2 n-1}} A^{\frac{-t}{2}}\right\}^{p_{2 n}} A^{\frac{t}{2}}}_{\rightarrow A^{\frac{-t}{2}} \text { and } A^{\frac{1}{2}} \text { alternately } n \text { times }}]^{\frac{1}{q[2 n]}} \tag{4.5}
\end{equation*}
$$

where $q[2 n]$ is defined in (2.4).
Proof. First of all, we recall the following relation by (4.1) and (3.1):

$$
\begin{equation*}
F\left[A, B ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]=C_{A, B}[2 n]^{\frac{1}{q[2 n]}}=A^{\frac{t}{2}} G_{A, B}\left[t, p_{2 n}\right] A^{\frac{t}{2}} \tag{4.6}
\end{equation*}
$$

Since $G_{A, B}\left[t, p_{2 n}\right]$ is a decreasing function of $p_{2 n} \geqslant 1$ by Theorem 3.1, (4.6) yields $F\left[A, B ; p_{1}, p_{2}, \ldots p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right] \quad$ is also a decreasing function of $p_{2 n} \geqslant 1$.

By (4.7) and Proposition 4.1, we have

$$
\begin{aligned}
A & \geqslant B=F\left[A, B ; p_{1}, 1\right] \\
& \geqslant F\left[A, B ; p_{1}, p_{2}\right] \\
& \cdots \\
& \geqslant \\
& \cdots \\
& \geqslant F\left[A, B ; p_{1}, p_{2}, \ldots, p_{2(n-1)}\right] \\
& =F\left[A, B ; p_{1}, p_{2}, \ldots, p_{2(n-1)}, p_{2 n-1}, 1\right] \\
& \geqslant F\left[A, B ; p_{1}, p_{2}, \ldots, p_{2(n-1)}, p_{2 n-1}, p_{2 n}\right]
\end{aligned}
$$

and the proof of (4.5) is complete.
REMARK 4.1. Corollary 2 in § 3.2.5 of [10] states that if $A \geqslant B>0$, then

$$
\begin{equation*}
A \geqslant B \geqslant\left\{A^{\frac{t}{2}}\left(A^{\frac{-t}{2}} B^{p} A^{\frac{-t}{2}}\right)^{s} A^{\frac{t}{2}}\right\}^{\frac{1}{(p-t) s+t}} \quad \text { holds for each } t \in[0,1] \text { and } p, s \geqslant 1 \tag{4.8}
\end{equation*}
$$

and Theorem 4.2 is further extension of (4.8).

REFERENCES

[1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Alg. and Its Appl., 197, 198 (1994), 113-131.
[2] R. Bhatia, Positive Definite Matrices, Princeton Univ. Press, 2007.
[3] M. Fujii, Furuta's inequality and its mean theoretic approach, J. Operator Theory, 23 (1990), 67-72.
[4] M. Fujir and E. Kamei, Mean theoretic approach to the grand Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 2751-2756.
[5] M. Fujii, A. Matsumoto and R. nakamoto, A short proof of the best possibility for the grand Furuta inequality, J. of Inequal. and Appl., 4 (1999), 339-344.
[6] T. Furuta, $A \geqslant B \geqslant 0$ assures $\left(B^{r} A^{p} B^{r}\right)^{1 / q} \geqslant B^{(p+2 r) / q}$ for $r \geqslant 0, p \geqslant 0, q \geqslant 1$ with $(1+2 r) q \geqslant$ $p+2 r$, Proc. Amer. Math. Soc., 101 (1987), 85-88.
[7] T. FURUTA, Elementary proof of an order preserving inequality, Proc. Japan Acad., 65 (1989), 126.
[8] T. Furuta, An extension of the Furuta inequality and Ando-Hiai log majorization, Linear Alg. and Its Appl., 219 (1995), 139-155.
[9] T. FURUTA, Simplified proof of an order preserving operator inequality, Proc, Japan Acad., 74 (1998), 114.
[10] T. FURUTA, Invitation to Linear Operators, Taylor \& and Francis, 2001, London.
[11] T. Furuta, Further extension of an order preserving operator inequality, J. Math. Inequal., 2 (2008), 465-472
[12] T. Furuta, M. Hashimoto and M. Ito, Equivalence relation between generalized Furuta inequality and related operator functions, Scientiae Mathematicae, 1(1998), 257-259.
[13] T. Furuta, M. Yanagida and T. Yamazaki, Operator functions implying Furuta inequality, Math. Inequal. Appl., 1 (1998), 123-130.
[14] E. HEinz, Beiträge zur Störungsteorie der Spektralzerlegung, Math. Ann., 123 (1951), 415-438.
[15] E. KAMEI, A sattelite to Furuta's inequality, Math. Japon., 33 (1988), 883-886.
[16] E. Kamei, Parametrized grand Furuta inequality, Math. Japon., 50 (1999), 79-83.
[17] K. LÖWNER, Über monotone MatrixFunktionen, Math. Z., 38 (1934), 177-216.
[18] G. K. Pedersen, Some operator monotone functions, Proc. Amer. Math. Soc., 36 (1972), 309-310.
[19] K. Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc., 124 (1996), 141146.
[20] K. Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc., 128 (2000), 511-519.
[21] T. YamaZaki, Simplified proof of Tanahashi's result on the best possibility of generalized Furuta inequality, Math. Inequal. Appl., 2 (1999), 473-477.
[22] J. Yuan and Z. GaO, Complete form of Furuta inequality, Proc. Amer. Math. Soc., 36 (2008), 2859-2867.

