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Abstract. A capital letter means a bounded linear operator on a Hilbert space H . The celebrated
Löwner-Heinz inequality asserts that A � B � 0 ensures Aα � Bα for any α ∈ [0,1] , but Ap �
Bp does not always hold for p > 1 . From this point of view, we obtained: If A � B � 0 with
A > 0 , then for t ∈ [0,1] and p � 1 ,
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is a decreasing function for r � t and s � 1 , and FA,A(r,s) � FA,B(r,s) holds, that is,
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holds for t ∈ [0,1] , p � 1 , r � t and s � 1 .
We shall prove the following further extension. Let A � B � 0 with A > 0 , t ∈ [0,1] and

p1, p2, . . . , p2n � 1 for natural number n . Then
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is a decreasing function of p2n � 1 and r � t , and the following inequality holds: GA,A[r, p2n] �
GA,B[r, p2n ] , that is,
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where q[2n] = q[2n; p1 , p2, . . . , p2n] = {. . . [{[(p1− t)p2 + t]p3− t}p4 + t]p5− . . .− t}p2n + t︸ ︷︷ ︸
−t and t alternately n times appear

.
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1. Introduction

An operator T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all
x ∈ H , and T is said to be strictly positive (denoted by T > 0) if T is positive and
invertible.

THEOREM LH. (Löwner-Heinz inequality, denoted by (LH) briefly).

If A � B � 0 holds, then Aα � Bα for any α ∈ [0,1] . (LH)

This was originally proved in [17] and then in [14]. Many nice proofs of (LH)
are known. We mention [18] and [2]. Although (LH) asserts that A � B � 0 ensures
Aα � Bα for any α ∈ [0,1] , unfortunately Aα � Bα does not always hold for α > 1.
The following result has been obtained from this point of view.

THEOREM A.
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hold for p � 0 and q � 1 with (1+ r)q � p+ r .

p

q(1, 0)
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q = 1 p = q

(1 + r)q = p + r

Figure 1

The original proof of Theorem A is shown in [6], an elementary one-page proof is
in [7] and alternative ones are in [3], [15]. It is shown in [19] that the conditions p , q
and r in FIGURE 1 are best possible.

THEOREM B. If A � B � 0 with A > 0 , then for t ∈ [0,1] and p � 1 ,

FA,B(r,s) = A
−r
2 {A r
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is a decreasing function for r � t and s � 1 , and FA,A(r,s) � FA,B(r,s) holds, that is,

A1−t+r � {A r
2 (A

−t
2 BpA

−t
2 )sA

r
2 } 1−t+r

(p−t)s+r (1.1)

holds for t ∈ [0,1] , p � 1 , r � t and s � 1 .

The original proof of Theorem B is in [8], and an alternative one is in [4]. An
elementary one-page proof of (1.1) is in [9]. Further extensions of Theorem B and
related results are in [10], [12], [13], [16] and [22]. It is originally shown in [20] that

the exponent value
1− t + r

(p− t)s+ r
of the right hand of (1.1) is best possible and alternative

ones are in [5], [21]. It is known that the operator inequality (1.1) interpolates Theorem
A and an inequality equivalent to the main result of Ando-Hiai log majorization [1] by
the parameter t ∈ [0,1].
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2. Definitions of CA,B[2n] and q[2n] and preparation

Let A > 0, B � 0, t ∈ [0,1] and p1, p2, . . . , pn, . . . , p2(n−1), p2n−1, p2n � 1 for a
natural number n . Let CA,B[2n] be defined by:
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Particularly put A = B in CA,B[2n] in (2.1). Then
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Let q[2n] be defined by

q[2n] = q[2n; p1, p2, . . . , pn, . . . , p2(n−1), p2n−1, p2n]

= the exponential power of A in (2.3)

= { . . . [{[(p1− t)p2 + t]p3− t}p4 + t]p5− . . .− t}p2n + t︸ ︷︷ ︸
−t and t alternately n times appear

. (2.4)

For examples,
q[2] = (p1− t)p2 + t

and
q[4] =

[{(p1− t)p2 + t}p3− t
]
p4 + t.

For the sake of convenience, we define

CA,B[0] = B and q[0] = 1 (2.5)

and these definitions in (2.5) may be naturally defined by (2.1) and (2.4).
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THEOREM C. [11] Let A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, . . . , p2n � 1
for natural number n. Then the following inequality holds for r � t :
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where q[2n] is defined in (2.4).

We need the following lemmas.

LEMMA A. [8, Lemma 1] Let X be a positive invertible operator and Y be an
invertible operator. For any real number λ ,
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The following lemma is easily shown by (2.1), (2.4) and (2.5).

LEMMA 2.1. For A > 0 , B � 0 and any natural number n, the following (i) and
(ii) hold:
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where CA,B[0] = B and q[0] = 1.

3. Further extension of Theorem B

We shall state further extension of Theorem B.

THEOREM 3.1. Let A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, . . . , p2n � 1 for
natural number n. Then
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is a decreasing function of p2n � 1 and r � t , and the following inequality holds
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where q[2n] is defined by (2.4).
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COROLLARY 3.2. If A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, p3, p4 � 1 ,
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is a decreasing function of p4 � 1 and r � t , and the following inequality holds
GA,A[r, p4] � GA,B[r, p4] , that is,
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holds for t ∈ [0,1] , r � t and p1, p2, p3, p4 � 1 .

REMARK 3.1. Theorem 3.1 yields Corollary 3.2 by putting n = 2 and also Corol-
lary 3.2 yields Theorem B by putting p2 = p3 = 1.

Proof of Theorem 3.1. (3.2) is (2.6) itself of Theorem C. Recall that (3.2) can be
described as by (2.1):
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and the last inequality follows by LH because (3.5) and 1−q[2n]
q[2n]+r+v−t ∈ [−1,0] holds and

taking inverses of both sides, so that GA,B[r, p2n] is decreasing function of r by (3.6).

(b) Proof of the result that GA,B[r, p2n] is a decreasing function of p2n .
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4. Satellite inequalities as an application of Theorem 3.1

PROPOSITION 4.1. F [A,B; p1, p2, . . . p2(n−1), p2n−1, p2n] is defined as follows for
natural number n;

F[A,B; p1, p2, . . . p2(n−1), p2n−1, p2n] = (CA,B[2n])
1

q[2n] . (4.1)

If p2n = 1 , then (CA,B[2n])
1
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1
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= q[2(n−1)]p2n−1, (4.4)

and
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1
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1
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and (4.2) is shown. �

THEOREM 4.2. If A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, . . . , p2n � 1 , then
the following inequality holds:

A � B
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A
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−t
2 )p2A

t
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t
2
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. . .

�
. . .



28 TAKAYUKI FURUTA

�
[

A
t
2 {A−t

2 [A
t
2 . . . [A

−t
2 {A t

2 (A
−t
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← A
−t
2 and A

t
2 alternately n times

Bp1 A
−t
2 )p2A

t
2 }p3A

−t
2 ]p4 . . .A

t
2 ]p2n−1A

−t
2 }p2nA

t
2︸ ︷︷ ︸

→ A
−t
2 and A

t
2 alternately n times

] 1
q[2n]

(4.5)
where q[2n] is defined in (2.4).

Proof. First of all, we recall the following relation by (4.1) and (3.1):

F [A,B; p1, p2, . . . p2(n−1), p2n−1, p2n] = CA,B[2n]
1

q[2n] = A
t
2 GA,B[t, p2n]A

t
2 . (4.6)

Since GA,B[t, p2n] is a decreasing function of p2n � 1 by Theorem 3.1, (4.6) yields

F [A,B; p1, p2, . . . p2(n−1), p2n−1, p2n] is also a decreasing function of p2n � 1.
(4.7)

By (4.7) and Proposition 4.1, we have

A � B = F[A,B; p1,1]
� F [A,B; p1, p2]
. . .

�
. . .

� F [A,B; p1, p2, . . . , p2(n−1)]

= F [A,B; p1, p2, . . . , p2(n−1), p2n−1,1]

� F [A,B; p1, p2, . . . , p2(n−1), p2n−1, p2n]

and the proof of (4.5) is complete. �

REMARK 4.1. Corollary 2 in § 3.2.5 of [10] states that if A � B > 0 , then

A � B � {A t
2 (A

−t
2 BpA

−t
2 )sA

t
2 } 1

(p−t)s+t holds for each t ∈ [0,1] and p,s � 1 (4.8)

and Theorem 4.2 is further extension of (4.8).
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