SEVERAL q–INTEGRAL INEQUALITIES

YU MIAO AND FENG QI

(communicated by Sh. Abramovich)

1. Introduction

1.1. The q-derivative and q-integral

For $0 < q < 1$, the q-analog of the derivative, denoted by D_q in what follows, may be defined [26] by

$$ D_q f(x) = \frac{f(x) - f(qx)}{(1-q)x}, \quad x \neq 0. \quad (1) $$

If $f'(0)$ exists, then $D_q f(0) = f'(0)$. As q tends to 1^-, the q-derivative reduces to the usual derivative.

The q-analog of integration may be given [27] by

$$ \int_0^1 f(x) \, dq x = (1-q) \sum_{i=0}^{\infty} f(q^i) q^i, \quad (2) $$

which reduces to $\int_0^1 f(x) \, dx$ in the case $q \to 1^-$. More generally, the q-Jackson integral from 0 to $a \in \mathbb{R}$ can be defined [10, 11] by

$$ \int_0^a f(x) \, dq x = a(1-q) \sum_{k=0}^{\infty} f(aq^k) q^k \quad (3) $$

provided the sum converges absolutely. The q-Jackson integral on a general interval $[a, b]$ may be defined [10, 11] by

$$ \int_a^b f(x) \, dq x = \int_0^b f(x) \, dq x - \int_0^a f(x) \, dq x. \quad (4) $$

Keywords and phrases: q-derivative, q-integral, Qi type integral inequality, q-integral inequalities.

The second author was partially supported by the China Scholarship Council.
The q-Jackson integral and q-derivative are related by the “fundamental theorem of quantum calculus” which can be restated [11, p. 73] as follows: If F is an anti q-derivative of the function f, namely $D_q F = f$, continuous at $x = a$, then

$$\int_a^b f(x) \, d_q x = F(b) - F(a); \quad (5)$$

For any function f one has

$$D_q \left(\int_a^x f(t) \, d_q t \right) = f(x). \quad (6)$$

It is easy to check the q-analog of Leibniz’s rule

$$D_q [f(x)g(x)] = f(x)D_q [g(x)] + g(x)D_q [f(x)]. \quad (7)$$

For $b > 0$ and $a = bq^n$ with $n \in \mathbb{N}$, denote

$$[a, b)_q = \{ bq^k : 0 \leq k \leq n \} \quad \text{and} \quad (a, b]_q = [aq^{-1}, b]_q. \quad (8)$$

1.2. Two related open problems

In [20], the following problem was posed: Under what conditions does the inequality

$$\int_a^b [f(x)]^t \, d x \geq \left[\int_a^b f(x) \, d x \right]^{t-1} \quad (9)$$

hold for $t > 1$?

In [19], the above open problem was extended as follows: Under what conditions does the inequality

$$\int_a^b f^\alpha (x) \, d x \geq \left[\int_a^b f(x) \, d x \right]^\beta \quad (10)$$

hold for positive real numbers α and β?

There have been a lot of literature, for instances, [1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32] and related references therein, about investigations of the above open problems. In these investigations, different and various tools, ideas, methods and techniques, such as Jensen’s inequality [14, 17], the convexity method [8, 22, 31], functional inequalities in abstract spaces [2, 3, 14], probability measures viewpoint [8, 15], Hölder inequality and its reversed variants [3, 19], analytical methods [18, 25] and Cauchy’s mean value theorem [7, 21], have been created.

1.3. Main results

Motivated by (9) and (10), it is much natural to consider the following replanted problem: Under what conditions does the inequality

$$\int_a^b f^\alpha (x) d_q x \geq \left[\int_a^b f(x) \, d_q x \right]^\beta \quad (11)$$
hold for positive real numbers \(\alpha \) and \(\beta \) ? In other words, whether can all the inequalities obtained in \([1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 28, 29, 30, 31, 32]\) and related references therein, the so-called Qi type integral inequalities for the usual integrals, be replanted into the \(q \)-integral cases or other cases?

In [6], given are some sufficient conditions such that the inequality (11) validates, which can be recited as the following three propositions.

Proposition 1. ([6, Proposition 3.2]) If \(t \geq 3 \) and the function \(f(x) \) satisfies
\[
f(a) \geq 0 \quad \text{and} \quad D_q f(x) \geq (t - 2)(x - a)^{t-3}
\] for \(x \in (a, b]_q \), then
\[
\int_a^b [f(x)]^t \, d_q x \geq \left[\int_a^b f(qx) \, d_q x \right]^{t-1}.
\] (13)

Proposition 2. ([6, Proposition 3.5]) If \(p \geq 1 \) and the function \(f(x) \) satisfies \(f(a) \geq 0 \) and \(D_q f(x) \geq p \) for \(x \in (a, b]_q \), then
\[
\int_a^b [f(x)]^{p+2} \, d_q x \geq \frac{1}{(b - a)^{p-1}} \left[\int_a^b f(qx) \, d_q x \right]^{p+1}.
\] (14)

Proposition 3. ([6, Proposition 3.7]) If \(f(x) \) satisfies \(f(a) \geq 0 \) and \(D_q f(x) \geq 1 + q \) for \((a, b]_q \), then
\[
\int_a^b [f(x)]^{2p+1} \, d_q x > \left\{ \int_a^b [f(x)]^p \, d_q x \right\}^2
\] (15)
is valid for all \(p > 0 \).

The main aim of this paper is to provide more sufficient conditions such that the inequality (11) is valid, and so several \(q \)-integral inequalities, our main results, are presented as the following three theorems.

Theorem 1. If \(f(x) \) is a non-negative and increasing function on \([a, b]_q \) and satisfies
\[
(\alpha - 1)f^{\alpha-2}(qx)D_q f(x) \geq \beta(\beta - 1)f^{\beta-1}(x-a)^{\beta-2}
\] (16)
for \(\alpha \geq 1 \) and \(\beta \geq 1 \), then
\[
\int_a^b f^{\alpha}(x) \, d_q x \geq \left[\int_a^b f(x) \, d_q x \right]^\beta.
\] (17)

Theorem 2. If \(f(x) \) is a non-negative and increasing function on \([bq^{n+m}, b]_q \) for \(m, n \in \mathbb{N} \) and satisfies
\[
(\alpha - 1)D_q f(x) \geq \beta(\beta - 1)f^{\beta-\alpha+1}(q^m x - a)^{\beta-2}
\] (18)
on \([a, b]_q\) and for \(\alpha, \beta \geq 1\), then

\[
\int_a^b f^\alpha(x) \, dq \, x \geq \left[\int_a^b f(q^\alpha x) \, dq \, x \right]^\beta.
\] (19)

Theorem 3. If \(f(x)\) is a non-negative function on \([0, b]_q\) and satisfies

\[
\int_x^b f^\beta(t) \, dq \, t \geq \int_x^b t^\beta \, dq \, t
\] (20)

for \(x \in [0, b]_q\) and \(\beta > 0\), then the inequality

\[
\int_0^b f^{\beta+\alpha}(t) \, dq \, t \geq \int_0^b t^\alpha f^\beta(t) \, dq \, t
\] (21)

holds for all positive numbers \(\alpha\) and \(\beta\).

2. A lemma

In order to prove our main results, the following lemma is necessary.

Lemma 1. ([6, Lemma 3.1]) Let \(p \geq 1\) and \(g(x)\) be a non-negative and monotonic function on \([a, b]_q\). Then

\[
p g^{p-1}(qx) D_q g(x) \leq D_q [g^p(x)] \leq p g^{p-1}(x) D_q g(x), \quad x \in (a, b]_q.
\] (22)

3. Proofs of main results

Now we are in a position to demonstrate our main results, the three theorems stated in Section 1.3.

Proof of Theorem 1. For \(x \in [a, b]_q\), let

\[
F(x) = \int_a^x [f(t)]^\alpha \, dq \, t - \left[\int_a^x f(t) \, dq \, t \right]^\beta
\]

and

\[
h(x) = \int_a^x f(t) \, dq \, t.
\]

In virtue of Lemma 1, it follows that

\[
D_q F(x) = f^\alpha(x) - D_q [h^\beta(x)] \geq f^\alpha(x) - \beta h^{\beta-1}(x) f(x) = f(x) [f^{\alpha-1}(x) - \beta h^{\beta-1}(x)] \leq f(x) g(x).
\]

Since \(f(x)\) is a non-negative and increasing function, then

\[
h(x) = \int_a^x f(t) \, dq \, t \leq f(x)(x - a).
\]
By virtue of Lemma 1 again, it follows that

\[
D_qg(x) = D_q\left[f^{\alpha-1}(x)\right] - \beta D_q\left[h^{\beta-1}(x)\right]
\]

\[
\geq (\alpha - 1)f^{\alpha-2}(qx)D_qf(x) - \beta(\beta - 1)h^{\beta-2}(x)f(x)
\]

\[
\geq (\alpha - 1)f^{\alpha-2}(qx)D_qf(x) - \beta(\beta - 1)(x-a)^{\beta-2}f^{\beta-1}(x),
\]

which means \(D_qg(x) \geq 0\) by (16), and \(g(x) \geq 0\) and \(D_qF(x) \geq 0\), and so \(F(x) \geq 0\). The proof of Theorem 1 is complete. □

\textit{Proof of Theorem 2.} Let

\[
F(x) = \int_a^x \left[f(t)\right]^\alpha d_q t - \left[\int_a^x f(q^m t) d_q t\right]^\beta
\]

and

\[
h(x) = \int_a^x f(q^m t) d_q t.
\]

Utilizing Lemma 1 gives

\[
D_qF(x) = f^\alpha(t) - D_q\left[h^\beta(x)\right] \geq f^\alpha(t) - \beta h^{\beta-1}(x)f(q^m x)
\]

\[
\geq f(x)\left[f^{\alpha-1}(x) - \beta h^{\beta-1}(x)\right] \triangleq f(x)g(x).
\]

Since \(f(x)\) is a non-negative and increasing function, then

\[
h(x) = \int_a^x f(q^m t) d_q t \leq f(q^m x)(x-a).
\]

Using Lemma 1 once again leads to

\[
D_qg(x) = D_q\left[f^{\alpha-1}(x)\right] - \beta D_q\left[h^{\beta-1}(x)\right]
\]

\[
\geq (\alpha - 1)f^{\alpha-2}(qx)D_qf(x) - \beta(\beta - 1)h^{\beta-2}(x)f(q^m x)
\]

\[
\geq (\alpha - 1)f^{\alpha-2}(qx)D_qf(x) - \beta(\beta - 1)(x-a)^{\beta-2}f^{\beta-1}(q^m x)
\]

\[
= f^{\alpha-2}(qx)\left[(\alpha - 1)D_qf(x) - \beta(\beta - 1)(x-a)^{\beta-2}f^{\beta-1}(q^m x)\right],
\]

which means \(D_qg(x) \geq 0\) by (18), and \(g(x) \geq 0\) and \(D_qF(x) \geq 0\), and so \(F(x) \geq 0\). The proof of Theorem 2 is complete. □

\textit{Proof of Theorem 3.} By a fact in [11, p 106-107] that \(D_qx^\ell = [\ell]_q x^{\ell - 1}\) for \(t \in \mathbb{R}\), where \([\ell]_q = \frac{1-q}{1-q^\ell}\), it is easy to see that

\[
\int_0^b x^\beta f^\alpha(x) d_q x = \frac{1}{[\beta]_q} \int_0^b \left(\int_0^x u^{\beta-1} d_q u\right) d_q x
\]

\[
= \frac{1}{[\beta]_q} \int_0^b u^{\beta-1} \left[\int_u^b f^\alpha(x) d_q x\right] d_q u
\]

\[
\geq \frac{1}{[\beta]_q} \int_0^b u^{\beta-1} \left(\int_u^b x^\alpha d_q x\right) d_q u
\]

\[
= \frac{1}{[\beta]_q} \int_0^b x^\alpha \left(\int_0^x u^{\beta-1} d_q u\right) d_q x = \int_0^b x^{\alpha+\beta} d_q x.
\]

(23)
Using the arithmetic-geometric inequality yields
\[\frac{\beta}{\alpha + \beta} f^{\alpha + \beta}(x) + \frac{\alpha}{\alpha + \beta} x^{\alpha + \beta} \geq x^{\alpha} f^{\beta}(x). \] (24)

Integrating on both sides of (24) and combining with (23) reveal
\[\frac{\beta}{\alpha + \beta} \int_{\alpha}^{\beta} f^{\alpha + \beta}(x) \, d_q x + \frac{\alpha}{\alpha + \beta} \int_{\alpha}^{\beta} x^{\alpha + \beta} \, d_q x = \int_{\alpha}^{\beta} x^{\alpha} f^{\beta}(x) \, d_q x \geq \int_{\alpha}^{\beta} x^{\beta + \alpha} \, d_q x. \] (25)

The proof of Theorem 3 is complete. □

Acknowledgements. The authors would like to express many thanks to the anonymous referees for their corrections and comments on this manuscript.

REFERENCES

(Received October 5, 2008)

Yu Miao
College of Mathematics and Information Science
Henan Normal University
Xinxiang City
Henan Province
453007, China
e-mail: yumiao728@yahoo.com.cn, yumiao728@gmail.com

Feng Qi
Research Institute of Mathematical Inequality Theory
Henan Polytechnic University
Jiaozuo City
Henan Province
454010, China
e-mail: qifeng618@gmail.com, qifeng618@hotmail.com, qifeng618@qq.com

URL: http://qifeng618.spaces.live.com