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(communicated by G. Sinnamon)

Abstract. We split the classical Hilbert Transform H into the sum of two convolution integrals
H(δ ) +R(δ ) , where the kernel of H(δ ) is supported away from the origin in {|t| � δ} , while the
kernel of R(δ ) is supported near the origin in {|t| � δ} . We prove that the Lp -norm of H(δ ) ,
known in the literature as the Truncated Hilbert Transform, is equal to the norm of H . Namely
||H(δ ) ||p,p = cot(π/2p) for 2 � p < +∞ , and ||H(δ ) ||p,p = tan(π/2p) for 1 < p � 2 . We then
prove that the Lp -norm of R(δ ) is stricly larger. In particular ||R(δ )||2,2 = 1.17897... , a constant
related to the Gibbs phenomenon.

1. Introduction and statement of the two main theorems

Let us define, for any fixed δ > 0, the following two convolution integrals

(H(δ ) f )(x) = p.v.
1
π

∫
{|t|�δ}

f (x− t)
t

dt (1.1)

(R(δ ) f )(x) = p.v.
1
π

∫
{|t|�δ}

f (x− t)
t

dt. (1.2)

The operator H(δ ) is usually called the Truncated Hilbert Transform in the litera-
ture. Both H(δ ) and R(δ ) map boundedly Lp(R) into Lp(R) for 1 < p < ∞ . Clearly
H = H(δ ) +R(δ ) , where H is the Hilbert Transform. We will denote by np the the best
constant in the inequality of M. Riesz ‖H f‖p � np ‖ f‖p . This constant coincides with
the operator norm ||H||p,p of the Hilbert Transform H seen as a map from Lp(R) into
Lp(R) . It is given explicitly by the formula

np = ||H||p,p =

⎧⎨
⎩

tan
(

π
2p

)
if 1 < p � 2

cot
(

π
2p

)
if 2 � p <∞.

(1.3)

See Pichorides [6] or Grafakos [3] for a proof of this fact. It is easy to see and well
known that both ||H(δ )||p,p and ||R(δ )||p,p do not depend on the truncation constant
δ > 0 (Lemma 1). Furthermore, both norms ||H(δ )||p,p and ||R(δ )||p,p are bounded
below by np (Lemma 2). Our two main results are
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THEOREM 1. Let H(δ ) be the Truncated Hilbert Transform (1.1) . Then ||H(δ )||p,p

= np for 1 < p < +∞ , where np = ||H||p,p is the expression (1.3) .

THEOREM 2. Let R(δ ) be the operator (1.2) and let np = ||H||p,p be the ex-
pression (1.3) . Then ||R(δ )||p,p > np for an open interval of exponents p contain-
ing p = 2 . In particular ||R(δ )||2,2 = 2

π
∫ π
0

sint
t dt = 1.17897974447... a constant re-

lated to the Gibbs phenomenon. The operator R(δ ) satisfies the upper norm-estimate
||R(δ )||p,p � 2np .

2. Two lemmas and proof of the two theorems

LEMMA 1. The norms ||H(δ )||p,p and ||R(δ )||p,p do not depend on the truncation
constant δ > 0 for all 1 < p < +∞ .

Proof. This is easily seen by horizontal and vertical rescaling.

LEMMA 2. The lower norm-estimates ||H(δ )||p,p � np and ||R(δ )||p,p � np both
hold for all 1 < p < +∞ .

Proof. By lemma 1 we have that ||H(δ )||p,p is constant as δ → 0+ , on the other
hand lim

δ→0+
H(δ ) f = H f for any fixed f ∈ Lp(R) , therefore Fatou’s Lemma implies that

||H(δ )||p,p � np . In a similar fashion, having observed that lim
δ→+∞

R(δ ) f = H f , Fatou’s

Lemma implies that ||R(δ )||p,p � np . Note that lim
δ→+∞

H(δ ) f = 0 and lim
δ→0+

R(δ ) f = 0.

Proof of Theorem 1. Because of Lemma 1 we can work with δ = 1. We have

H(1) f (x) = p.v.
1
π

∫
{|t|�1}

f (x− t)
t

dt =
∫

R

m(ξ ) f̂ (ξ )e2π ixξdξ (2.1)

where we have associated to H(1) the multiplier function m(ξ ) which is equal to the

Fourier Transform of
1
πy

χ{|y|�1}(y) . We now observe that our truncated Hilbert trans-

form can be written as the composition of H with another operator K as follows

H(1) f (x) =
∫

R

[−i sgn(ξ )] [i sgn(ξ )m(ξ )] f̂ (ξ )e2π ixξdξ = HK f (x).

In fact, the multiplier function −i sgn(ξ ) defines the Hilbert Transform H , while
the other multiplier function i sgn(ξ )m(ξ ) defines another operator K as a Fourier
multiplier. Clearly, K is also given by a convolution with the kernel function

k(x) = −H

(
1
πy

χ{|y|�1}(y)
)

(x)
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which we now compute explicitly

k(x) = p.v.− 1
π2

∫
{|y|�1}

1
(x− y)y

dy = p.v.− 1
π2 x

∫
{|y|�1}

(
1
y

+
1

x− y

)
dy

= − 1
π2 x

lim
b→+∞

(
log

b
|x−b| − log

1
|x−1| + log

1
|x+1| − log

b
|x+b|

)

=
1

π2 x
log

∣∣∣∣x+1
x−1

∣∣∣∣.
We claim that ||K||p,p = 1 for all 1 < p < +∞ . The theorem follows, because

||H(1)||p,p = ||HK||p,p � ||H||p,p ||K||p,p = np and this inequality, together with the
reverse inequality of Lemma 2, proves that ||H(1)||p,p = np .

To prove our claim let us observe that k(x) =
1

π2 x
log

∣∣∣∣x+1
x−1

∣∣∣∣ is an integrable

function over the line R . In fact, k has two integrable logarithmic spikes at x = −1
and x = 1, a removable singularity at x = 0, and it is O(1/x2) as x → ±∞ . It’s also
easy to check that k is even and non-negative. If we show that

∫
R

1
π2 x

log

∣∣∣∣x+1
x−1

∣∣∣∣ dx = 1 (2.2)

then our claim will be a consequence of Minkowski’s inequality, because convolution
operators with non-negative and integrable kernels have (p, p) norm equal to the inte-
gral of their kernel. It is possible, but not completely straightforward, to compute this
integral directly. However, we can simply observe that our integral (2.2) is also equal
to k̂(0) where, remembering formula (2.1) and the definition of k , we have:

k̂(ξ ) = i sgn(ξ )
∫

R

1
πy

χ{|y|�1}(y)e−2π iyξ dy

= 2i sgn(ξ )
∫ +∞

1

1
πy

(−i sin(2πyξ )) dy

=
2
π

sgn(ξ )
∫ +∞

1

sin (2πyξ )
y

dy = 1− 2
π

sgn(ξ )S(2πξ ).

In the last equality we have used the special function S(x)=
∫ x
0

sint
t dt and the well-

known principal-value integral
∫

R

sin t
t

dt = π . Note that k̂(ξ ) is an even function,

continuous at ξ = 0 (although its derivative does not exist there) with k̂(0) = 1. The
theorem is proven. �

Proof of Theorem 2. We have

R(1) f (x) = p.v.
1
π

∫
{|t|�1}

f (x− t)
t

dt =
∫

R

r(ξ ) f̂ (ξ )e2π ixξdξ (2.3)

where r(ξ ) is a suitable multiplier function. Also, our operator R(1) can be written as
the composition of H with another operator G as follows
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R(1) f (x) =
∫

R

[−i sgn(ξ )] [i sgn(ξ )r(ξ )] f̂ (ξ )e2π ixξdξ = HGf (x). (2.4)

The multiplier function −i sgn(ξ ) defines the Hilbert Transform H , while i sgn(ξ )
r(ξ ) defines another operator G as a Fourier multiplier. We could compute the con-
volution kernel g(x) of G with a procedure similar to the one we used in the proof of
theorem 1, but it is easier to observe that from the equality H = H(1) +R(1) it follows

g(x) = δ (x)− 1
π2 x

log

∣∣∣∣x+1
x−1

∣∣∣∣. (2.5)

We have denoted by δ (x) the Dirac unit mass concentrated at the origin. It is easy
to check that (HG+HK) f (x) = H f (x) as it must be. From H = H(1) +R(1) it also
follows that the multiplier function r appearing in (2.3) and in (2.4) must be given by

r(ξ ) = −2i
π

S(2πξ ) (2.6)

where S(x) =
∫ x

0

sin t
t

dt as before. The Lp -norm asymmetry of H(1) and R(1) is due

to the different form of the two convolution kernels k(x) and g(x) . From (2.5) we
see that g is not given by an integrable function and it is not positive (Minkowski’s
inequality is no longer directly useful to obtain sharp constants). From (2.6) we see
that ||R(1)||2,2 which is equal to the L∞ norm of the corresponding multiplier function
r(ξ ) , is given by

sup
ξ∈ R

2
π
|S(2πξ )|= 2

π
S(π) =

2
π

∫ π

0

sin t
t

dt = 1.17897974447...

a “Gibbs” constant that is strictly larger than 1 = n2 . The continuity of operator norms
as functions of p implies that, at least for an open interval of exponents containing
p = 2, we must have ||R(δ )||p,p > np . Finally, taking (p, p) operator-norms on both
sides of the equality R(1) = H −H(1) and applying Theorem 1 we obtain the upper
estimate ||R(δ )||p,p � 2np . �

3. Related problems and final remarks

The (outer) Truncated Hilbert Transform (1.1) has a discrete analogue D which
maps boundedly the space of bilateral sequence {bn} ∈ l p(Z) into itself for 1 < p <∞ .
It is defined by

(Db)n = p.v.
1
π ∑k �=0

bn−k

k
. (3.1)

where k runs over all the non-zero integers in Z and the bilateral sum is taken in the
principal value sense (limit as N → ∞ of the balanced partial sums from −N to N ,
with cancellations playing a role in convergence). A challenging conjecture that dates
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back to the 1920s is that the (p, p) norms of the discrete operator D coincide with
the norms of the classical Hilbert Transform, i.e., with the expression np in (1.3) . See
Laeng [4] for some history, some partial results, and some information about other kinds
of discrete Hilbert Transform. Theorem 1 is conceivably relevant for this problem,
because there is a stricter analogy between the operators (1.1) and (3.1) than there
is between the classical Hilbert Transform and (3.1). More precisely, it can be proven
(theorem 4.5 in [4]) that when p = 2n for n = 1,2, . . . and when p = 2n/(2n−1) then in
fact ||D||p,p = np . It can also be proven (theorem 4.6 in [4]) that the difference between
the norms ||D||p,p and the norms ||H(δ )||p,p of the Truncated Hilbert Transform cannot
exceed, for 1 < p < ∞ , a small absolute constant independent of p . Putting together
Theorem 1 here and the two results quoted above, we see that the conjecture is true
on a discrete infinite subset of exponents and if there is a norm discrepancy for other
exponents this discrepancy is much smaller (especially for p close to 1 or ∞) than the
discrepancy given by complex Riesz interpolation between any two exponents where
the conjecture holds.
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