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SCHUR COMPLEMENTS AND DETERMINANT INEQUALITIES

YAN ZI-ZONG

(Communicated by Y. Seo)

Abstract. This paper is focused on the applications of Schur complements to determinant in-
equalities. It presents a monotonic characterization of Schur complements in the L ¢ wner partial
ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained.
Meanwhile, it presents matrix identities and determinant inequalities involving positive semidef-
inite matrices and extends the Hua Loo-keng determinant inequality by the technique of Schur
complements.

1. Introduction

Let M be an n x n Hermitian matrix partitioned as
My My
M= , 1
(le M M

in which My, is square and nonsingular k x k block with 1 < k < n. The Schur com-
plement of M| in M is defined and denoted by

M /My = Mo — My M, M.

The Schur complement is a basic tool in many areas of matrix analysis, and is a rich
source of matrix inequalities. The idea of using the Schur complement technique to deal
with linear systems and matrix problems is classical. A famous determinant identity
presented by Schur 1917 was referred to as the formula of Schur (see [8]).

LEMMA 1.1. Let M be a square matrix partitioned as in (1). If M1, is nonsingu-
lar, then

M| = |Myy|-|M/M|.

The following useful formula, due to Babachiewicz [1], presents the inverse of a
matrix in terms of Schur complements.
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THEOREM 1.2. Let M be a square matrix partitioned as in (1) and suppose M is
nonsinglar. Then M /My is nonsinglar and

Ml (M“1 + M My (M /M) " Moy M —M“1M12(M/M11)1)
—(M/Myy) " "My M (M/My;)~!

A fundamental and very useful fact is the following Schur complement lemma (see

[4]).

LEMMA 1.3. Let M be a square matrix partitioned as in (1). On the assump-
tion that My, is positive definite, M is positive semidefinite if and only if the Schur
complement M /My is positive semidefinite.

LEMMA 1.4. Let A and B be two positive semidefinite Hermitian matrices with

the same size. Then
|A+B| > |A]+|B|.

LEMMA 1.5. Let A and B be two positive definite Hermitian matrices with A >
B. Then A~ <B~! and |A| > |B|.

THEOREM 1.6. Let M be a positive semidefinite Hermitian matrix with the par-

tition (1). Assume that My1,M12,M>1,M>, are four square matrices with the same size.
Then
2
M| [M| = [Ma|” = [M| > 0.

Proof: Without loss of generalization, we assume that Mj; is positive definite (other-
wise, replaced My by My + &l, where € is an enough small positive number and [ is
an unit matrix with the size of M| ). By the use of Lemma 1.1 and 1.4, we have

M| > |May — Moy M ' Mya| + Moy My My, |
_ M My, |?
‘MU‘ ‘M11| ’

which implies the desired result. [

This paper is focused on the applications of Schur complements to determinant in-
equalities. Section 2 presents a monotonic characterization of Schur complements for
principle submatrices of a positive definite matrix and applies it to prove the Hadamard-
Fischer-Koteljanski inequality. Section 3 gives matrix identities and inequalities to ex-
tend the Hua Loo-keng determinant inequality.

2. A monotonic characterization of Schur complements and its applications

THEOREM 2.1. Let A be a Hermitian matrix partitioned as

Al A Az
A=Ay Ap Ay |. ()
A3y A3y Asz
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If the submatrix B of A defined by

Ay Ap
B pr—
(Azl A

is positive definite, then there is the Lo wner partial ordering

~1
A1 Az A1z
ApAstAr < (A3, A , 3
3245, A2z < (A31,A3) <A21 A22) <A23> 3
or equivalently,
~1
- Ay Ap Az
Asz —A3A5) Asy > Az — (A3, A . 4
33 —A3Ay Ay > Azz — (A31,A3) <A21 Aoy Ans “4)

Proof: Since the submatrix B of A is a positive definite Hermitian matrix, from Lemma
1.3, for any positive number € > 0, the matrix

<éA11 A12> _ <(1 +hAn 0 ) _ (An A12)
Ayl €A 0 (1 + E)Azz Al Ap
is positive definite, which means that
((1 +4 )AU 0 ) S (Au A12)
0 (1+¢€)An AxiAxn )’

It shows, from Lemma 1.5, that

_1 _
((1 +1)An 0 ) < (Au Alz)
0 (1+e)An) ~\AxyAp

Multiplying by (A31,A3;) and its transpose of both sides, respectively, yields

1 -1
(1+3HAn 0 ) (A13) (An A12> (A13>

Az, A ¢ < (43,4 ’

(A3 32)( 0 (14+€)Ap Arz (A31,432) A Ay Az

or equivalently,

1 A AR\ /A
A31A11A13+1—A32A22A23 (A31,A32)( 1 12) (13)

l+e Az Ax A

Since ﬁAg lAfllA 13 is positive semidefinite, then
1 An A\ (A
A A LA < (Azg,A E
which implies the inequality (3) if € tends to 0. O

The inequality (4) reveals the monotonic characterization of Schur complements
in the Lo wner partial ordering.
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In 1893, Hadamard [2] discovered a fundamental fact about positive definite ma-
trices, viz., that, for such A = (a;;),
|A| <apax---am &)

with equality if and only if A is diagonal.

Let o and 8 be given index sets, i.e., subsets of {1,2,---,n}. Let A(a) denote
the submatrix of A with rows and columns indexed by o. If o is empty, we define
A(a) = 1. An improvement of (5) is the following Hadamard-Fischer inequality [3]

A(aUB)| < |A(a)]-|A(B)I,

where oo N f is an empty index set. One version of extended Hadamard-Fischer in-
equalities is the following Hadamard-Fischer-Koteljanski inequality (see [6]).

THEOREM 2.2. Let A be an n X n positive definite Hermitian matrix, o, C

{1,---,n}. Then

[A(a)[-|A(B)]
[A(anB)|
Proof: We firstly prove (6) for the case N 3 # 0. Without loss of generalization, we
assume that A(aUf) = A with the partition (2), A(ocN ) = Ay, and

(A1 Ap
Ale) = (Azl Azz) ’

o= ()

A(aUB)| < (6)

Using Lemma 1.1, we have

)

-1
Al A Az
A(aU = |A(00)| |A33 — (A31,A
AUB)| = @) o - () (31 42) (42)
IA(B)| = |A(aNB)|-|A33 — AnA5) Ans).

By the virtue of Theorem 2.1 and Lemma 1.5, we obtain the inequality (6) for the case

anPB #£0.

If anNp =0, the desired result follows from the former fact if we replace Ay by
the identity matrix, Aj2,As;,A23 and A3, by zero matrices, respectively. [

3. More inequality via positive semidefinite matrices

In this section we present some determinant inequalities involving positive semidef-
inite matrices.

THEOREM 3.1. Let X,Y,A,B,C,D be square matrices with the same size. If X,Y
be positive definite, then

|AXA* + BYB*| - |CXC* + DYD*| > |AXC* + BYD*|*. (7
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Proof: Since the matrix

AXA*+ BYB* AXC* + BYD*
CXA*+DYB* CXC* + DYD*

_(AB\ (X 0\ (A" C* @)
“\CD)\0Y)\B*D*
is positive semidefinite, then the desire result is valid by the use of Lemma 1.6 for the
(2,2) block of the left hand side of (8). [J
The inequality (7) contains some useful determinant inequalities. If A =D =1,

for instance, then
X + BYB*|-|[Y +CXC*| > |XC* + BY|?,

which implies that
\[ +BB*|-|I+CC*| > [B+C*.

On the other hand, if X =Y =1, the equality (7) becomes
|AA* + BB*| - |CC* + DD*| > |AC* + BD*|*.
THEOREM 3.2. Let X,B,A be square matrices of the same size. Then
XX*—BB* = (X — BA*)(I —A*A)"!(X — BA*)*
—(B—XA)(I-A*A)"(B—XA)". ©)
Proof: If we assume that X — BA* is nonsinglar, then the matrix
p_ I A" I —B*\ [I-A*A A*X*—-B*
" \BX)\-A X* )] \B—XAXX*—BB*
is nonsinglar with the inverse
pi_ (1 =B a7t
—-A X* B X
_ [1+B*(X*—AB*)"'A B*(X* —AB*)~!
- (X*—AB*)"'A  (X*—AB*)"!

IJrA*(XfBA*)*lB —A*(X *BA*)*l
( _(X—BA*)ilB (X—BA*)71 )

Compute the (2,2) block of this product and use Theorem 1.2 to get the identity

(P/(I—A*A)) ! = —(X* —AB") 'AA* (X —BA") !
+(X*—AB*)"'(X —BA*)™!
= (X*—AB") "' (I—AA")(X —BA") L.
Taking the inverse of both sides gives

P/(I—A*A) = (X — BA*)(I — AA*) "' (X — BA*)".
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On the other hand, we can compute directly the Schur complement of / —A*A in P:
P/(I—A*A) =XX* —BB*+ (B—XA)(I—A*A)"'(B— XA)*.
The asserted identity results from equating these two representations for the Schur com-
plement P/(I—A*A).
If X — BA* is singlar, the desired equality follows form a continuity argument, that
is, replace X with X +¢&l andlet e — 0. O
Since both terms on the right side of (9) are positive semidefinite on the assump-

tion of / —A*A > 0, we obtain a matrix inequality in the L.é wner partial ordering by
omitting the second term, i.e.,

XX* —BB* < (X —BA")(I—A*A) "1 (X — BA*)".

THEOREM 3.3. Let X,B,A be square matrices of the same size. If both I — AA*
and XX* — BB* are positive definite, then

I — AA*|-|XX* — BB*| + |B— XA|* < |X — BA**. (10)
Proof: It is a directly result of both Theorem 3.2 and Lemma 1.4 for the fact | —A*A| =
[I—AA*. O
A special case of (10) is the Hua Loo-keng determinant inequality [5]

I — A*A| - |I— BB*| < |I — BA*|.

More details can be found in Marshall and Olkin [7].
A similar result of Theorem 3.2 can be found in Fuzhen Zhang [4].

THEOREM 3.4. Let A,B,X be square matrices of the same size. Then

AA* +BB* = (B+AX)(I+X*X)"{(B+AX)"
+(A—BX)(I+X*X)"'(A—BX)*

Two directly results of theorem 3.4 are
AA* + BB* > (B+AX)(I+X"X) Y (B+AX)*,
and

|AA* + BB*| - |+ X*X| > |B+AX|*.
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