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Abstract. This paper is focused on the applications of Schur complements to determinant in-
equalities. It presents a monotonic characterization of Schur complements in the L öwner partial
ordering sense such that a new proof of the Hadamard-Fischer-Koteljanski inequality is obtained.
Meanwhile, it presents matrix identities and determinant inequalities involving positive semidef-
inite matrices and extends the Hua Loo-keng determinant inequality by the technique of Schur
complements.

1. Introduction

Let M be an n×n Hermitian matrix partitioned as

M =
(

M11 M12

M21 M22

)
, (1)

in which M11 is square and nonsingular k× k block with 1 � k < n . The Schur com-
plement of M11 in M is defined and denoted by

M/M11 = M22−M21M
−1
11 M12.

The Schur complement is a basic tool in many areas of matrix analysis, and is a rich
source of matrix inequalities. The idea of using the Schur complement technique to deal
with linear systems and matrix problems is classical. A famous determinant identity
presented by Schur 1917 was referred to as the formula of Schur (see [8]).

LEMMA 1.1. Let M be a square matrix partitioned as in (1). If M11 is nonsingu-
lar, then

|M| = |M11| · |M/M11|.
The following useful formula, due to Babachiewicz [1], presents the inverse of a

matrix in terms of Schur complements.
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THEOREM 1.2. Let M be a square matrix partitioned as in (1) and suppose M is
nonsinglar. Then M/M11 is nonsinglar and

M−1 =
(

M−1
11 +M−1

11 M12(M/M11)−1M21M
−1
11 −M−1

11 M12(M/M11)−1

−(M/M11)−1M21M
−1
11 (M/M11)−1

)
.

A fundamental and very useful fact is the following Schur complement lemma (see
[4]).

LEMMA 1.3. Let M be a square matrix partitioned as in (1). On the assump-
tion that M11 is positive definite, M is positive semidefinite if and only if the Schur
complement M/M11 is positive semidefinite.

LEMMA 1.4. Let A and B be two positive semidefinite Hermitian matrices with
the same size. Then

|A+B|� |A|+ |B|.

LEMMA 1.5. Let A and B be two positive definite Hermitian matrices with A �
B. Then A−1 � B−1 and |A| � |B| .

THEOREM 1.6. Let M be a positive semidefinite Hermitian matrix with the par-
tition (1). Assume that M11,M12,M21,M22 are four square matrices with the same size.
Then

|M11| · |M22|− |M21|2 � |M| � 0.

Proof: Without loss of generalization, we assume that M11 is positive definite (other-
wise, replaced M11 by M11 + εI , where ε is an enough small positive number and I is
an unit matrix with the size of M11 ). By the use of Lemma 1.1 and 1.4, we have

|M22| � |M22−M21M
−1
11 M12|+ |M21M

−1
11 M12|

=
|M|
|M11| +

|M21|2
|M11| ,

which implies the desired result. �
This paper is focused on the applications of Schur complements to determinant in-

equalities. Section 2 presents a monotonic characterization of Schur complements for
principle submatrices of a positive definite matrix and applies it to prove the Hadamard-
Fischer-Koteljanski inequality. Section 3 gives matrix identities and inequalities to ex-
tend the Hua Loo-keng determinant inequality.

2. A monotonic characterization of Schur complements and its applications

THEOREM 2.1. Let A be a Hermitian matrix partitioned as

A =

⎛
⎝A11 A12 A13

A21 A22 A23

A31 A32 A33

⎞
⎠ . (2)
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If the submatrix B of A defined by

B =
(

A11 A12

A21 A22

)

is positive definite, then there is the Löwner partial ordering

A32A
−1
22 A23 � (A31,A32)

(
A11 A12

A21 A22

)−1 (
A13

A23

)
, (3)

or equivalently,

A33−A32A
−1
22 A23 � A33− (A31,A32)

(
A11 A12

A21 A22

)−1 (
A13

A23

)
. (4)

Proof: Since the submatrix B of A is a positive definite Hermitian matrix, from Lemma
1.3, for any positive number ε > 0, the matrix

(
1
εA11 A12

A21 εA22

)
=

(
(1+ 1

ε )A11 0
0 (1+ ε)A22

)
−

(
A11 A12

A21 A22

)

is positive definite, which means that
(

(1+ 1
ε )A11 0
0 (1+ ε)A22

)
>

(
A11 A12

A21 A22

)
.

It shows, from Lemma 1.5, that

(
(1+ 1

ε )A11 0
0 (1+ ε)A22

)−1

�
(

A11 A12

A21 A22

)−1

.

Multiplying by (A31,A32) and its transpose of both sides, respectively, yields

(A31,A32)
(

(1+ 1
ε )A11 0
0 (1+ ε)A22

)−1 (
A13
A23

)
� (A31,A32)

(
A11 A12
A21 A22

)−1 (
A13
A23

)
,

or equivalently,

ε
1+ ε

A31A
−1
11 A13 +

1
1+ ε

A32A
−1
22 A23 � (A31,A32)

(
A11 A12

A21 A22

)−1 (
A13

A23

)
.

Since ε
1+εA31A

−1
11 A13 is positive semidefinite, then

1
1+ ε

A32A
−1
22 A23 � (A31,A32)

(
A11 A12

A21 A22

)−1 (
A13

A23

)
,

which implies the inequality (3) if ε tends to 0. �
The inequality (4) reveals the monotonic characterization of Schur complements

in the L öwner partial ordering.
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In 1893, Hadamard [2] discovered a fundamental fact about positive definite ma-
trices, viz., that, for such A = (ai j) ,

|A| � a11a22 · · ·ann (5)

with equality if and only if A is diagonal.
Let α and β be given index sets, i.e., subsets of {1,2, · · · ,n} . Let A(α) denote

the submatrix of A with rows and columns indexed by α . If α is empty, we define
A(α) = 1. An improvement of (5) is the following Hadamard-Fischer inequality [3]

|A(α ∪β )| � |A(α)| · |A(β )|,
where α ∩ β is an empty index set. One version of extended Hadamard-Fischer in-
equalities is the following Hadamard-Fischer-Koteljanski inequality (see [6]).

THEOREM 2.2. Let A be an n× n positive definite Hermitian matrix, α,β ⊂
{1, · · · ,n} . Then

|A(α ∪β )| � |A(α)| · |A(β )|
|A(α ∩β )| . (6)

Proof: We firstly prove (6) for the case α ∩β �= /0 . Without loss of generalization, we
assume that A(α ∪β ) = A with the partition (2), A(α ∩β ) = A22 and

A(α) =
(

A11 A12

A21 A22

)
,

A(β ) =
(

A22 A23

A32 A33

)
.

Using Lemma 1.1, we have

|A(α ∪β )| = |A(α)| ·
∣∣∣∣A33− (A31,A32)

(
A11 A12

A21 A22

)−1 (
A13

A23

)∣∣∣∣ ,
|A(β )| = |A(α ∩β )| · |A33−A32A

−1
22 A23|.

By the virtue of Theorem 2.1 and Lemma 1.5, we obtain the inequality (6) for the case
α ∩β �= /0 .

If α ∩β = /0 , the desired result follows from the former fact if we replace A22 by
the identity matrix, A12,A21,A23 and A32 by zero matrices, respectively. �

3. More inequality via positive semidefinite matrices

In this section we present some determinant inequalities involving positive semidef-
inite matrices.

THEOREM 3.1. Let X ,Y,A,B,C,D be square matrices with the same size. If X ,Y
be positive definite, then

|AXA∗+BYB∗| · |CXC∗+DYD∗| � |AXC∗ +BYD∗|2. (7)
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Proof: Since the matrix (
AXA∗+BYB∗ AXC∗ +BYD∗
CXA∗+DYB∗ CXC∗ +DYD∗

)

=
(

A B
C D

)(
X 0
0 Y

)(
A∗ C∗
B∗ D∗

)
(8)

is positive semidefinite, then the desire result is valid by the use of Lemma 1.6 for the
(2,2) block of the left hand side of (8). �

The inequality (7) contains some useful determinant inequalities. If A = D = I ,
for instance, then

|X +BYB∗| · |Y +CXC∗| � |XC∗ +BY |2,
which implies that

|I +BB∗| · |I +CC∗| � |B+C∗|2.
On the other hand, if X = Y = I , the equality (7) becomes

|AA∗ +BB∗| · |CC∗ +DD∗| � |AC∗ +BD∗|2.

THEOREM 3.2. Let X ,B,A be square matrices of the same size. Then

XX∗ −BB∗ = (X −BA∗)(I−A∗A)−1(X −BA∗)∗

−(B−XA)(I−A∗A)−1(B−XA)∗. (9)

Proof: If we assume that X −BA∗ is nonsinglar, then the matrix

P =
(

I A∗
B X

)(
I −B∗

−A X∗

)
=

(
I−A∗A A∗X∗ −B∗
B−XA XX∗−BB∗

)

is nonsinglar with the inverse

P−1 =
(

I −B∗
−A X∗

)−1 (
I A∗
B X

)−1

=
(

I +B∗(X∗ −AB∗)−1A B∗(X∗ −AB∗)−1

(X∗ −AB∗)−1A (X∗ −AB∗)−1

)

·
(

I +A∗(X −BA∗)−1B −A∗(X −BA∗)−1

−(X −BA∗)−1B (X −BA∗)−1

)
.

Compute the (2,2) block of this product and use Theorem 1.2 to get the identity

(P/(I−A∗A))−1 = −(X∗ −AB∗)−1AA∗(X −BA∗)−1

+(X∗ −AB∗)−1(X −BA∗)−1

= (X∗ −AB∗)−1(I−AA∗)(X −BA∗)−1.

Taking the inverse of both sides gives

P/(I−A∗A) = (X −BA∗)(I−AA∗)−1(X −BA∗)∗.
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On the other hand, we can compute directly the Schur complement of I−A∗A in P :

P/(I−A∗A) = XX∗−BB∗+(B−XA)(I−A∗A)−1(B−XA)∗.

The asserted identity results from equating these two representations for the Schur com-
plement P/(I−A∗A) .

If X −BA∗ is singlar, the desired equality follows form a continuity argument, that
is, replace X with X + εI and let ε → 0. �

Since both terms on the right side of (9) are positive semidefinite on the assump-
tion of I −A∗A > 0, we obtain a matrix inequality in the L öwner partial ordering by
omitting the second term, i.e.,

XX∗ −BB∗ � (X −BA∗)(I−A∗A)−1(X −BA∗)∗.

THEOREM 3.3. Let X ,B,A be square matrices of the same size. If both I −AA∗
and XX∗ −BB∗ are positive definite, then

|I−AA∗| · |XX∗−BB∗|+ |B−XA|2 � |X −BA∗|2. (10)

Proof: It is a directly result of both Theorem 3.2 and Lemma 1.4 for the fact |I−A∗A|=
|I−AA∗| . �

A special case of (10) is the Hua Loo-keng determinant inequality [5]

|I−A∗A| · |I−BB∗| � |I−BA∗|2.

More details can be found in Marshall and Olkin [7].
A similar result of Theorem 3.2 can be found in Fuzhen Zhang [4].

THEOREM 3.4. Let A,B,X be square matrices of the same size. Then

AA∗ +BB∗ = (B+AX)(I +X∗X)−1(B+AX)∗

+(A−BX)(I+X∗X)−1(A−BX)∗

.
Two directly results of theorem 3.4 are

AA∗ +BB∗ � (B+AX)(I+X∗X)−1(B+AX)∗,

and

|AA∗+BB∗| · |I +X∗X | � |B+AX |2.
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