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INEQUALITIES CORRESPONDING TO

THE CLASSICAL JENSEN’S INEQUALITY

LÁSZLÓ HORVÁTH

(Communicated by G. Sinnamon)

Abstract. In this paper some integral inequalities are proved in probability spaces, which go back
to some discrete variants of the Jensen’s inequality. Especially, we refine the classical Jensen’s
inequality. Convergence results corresponding to the inequalities are also studied.

1. Introduction and the main results

The classical Jensen’s inequality says (see [3]):

THEOREM A. Let I ⊂ R be an interval, and let q : I → R be a convex function on
I . Let (X ,A,μ) be a probability space, and let f : X → I be a μ -integrable function

over X . Then
∫
X

f dμ ∈ I . If q ◦ f is μ -integrable over X , then

q

⎛
⎝∫

X

f dμ

⎞
⎠�

∫
X

q ◦ f dμ . (1)

The following discrete Jensen’s inequality is also well known (see [5]).

THEOREM B. Let C be a convex subset of a real vector space V , and let q :C→R

be a convex function. If p1, . . . , pk are nonnegative numbers with p1 + . . .+ pk = 1 , and
v1, . . . ,vk ∈C, then

q

(
k

∑
i=1

pivi

)
�

k

∑
i=1

piq(vi).

Generalizations of these inequalities have been investigated by many authors, and
they have important applications.

The following refinements of Theorem B are proved in [4] and in [2], respectively.
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THEOREM C. Let C be a convex subset of a real vector space V , and let q :C→R

be a convex function. If r1, . . . ,rk are nonnegative numbers with r1 + . . .+ rk = 1 , and
v1, . . . ,vk ∈C, then

q

(
k

∑
i=1

rivi

)
�

k

∑
i1,...,in+1=1

ri1 . . . rin+1q

(
vi1 + . . .+ vin+1

n+1

)
(2)

�
k

∑
i1,...,in=1

ri1 . . . rinq

(
vi1 + . . .+ vin

n

)
�

k

∑
i=1

riq(vi), n � 1.

THEOREM D. Let C be a convex subset of a real vector space V , and let q :C →
R be a convex function. Let r1, . . . ,rk be nonnegative numbers with r1 + . . .+ rk = 1 ,
and let v1, . . . ,vk ∈ C. If p1, . . . , pn are nonnegative numbers with p1 + . . .+ pn = 1 ,
then

q

(
k

∑
i=1

rivi

)
�

k

∑
i1,...,in=1

ri1 . . . rinq

(
vi1 + . . .+ vin

n

)
(3)

�
k

∑
i1,...,in=1

ri1 . . . rinq(p1vi1 + . . . pnvin) �
k

∑
i=1

riq(vi), 1 � n � k.

Inspired by (2) and (3), the aim of this paper is to establish some new inequalities
in a measure theoretical setting. We have some refinements of (1) from the results.

Let N := {1,2, . . .} . Let the index set T be either {1, . . . ,n} with n ∈ N , or
N . Suppose we are given a family {Ai | i ∈ T} of non-empty sets. If S is a non-
empty subset of T , then the projection mapping prT

S : ×
i∈T

Ai → ×
i∈S

Ai is defined by

associating with every point of ×
i∈T

Ai its restriction to S . We write for short prn
i for

prT
{i} (i ∈ T = {1, . . . ,n}) and pr∞i for prT

{i} (i ∈ T = N) . Similarly, if T = N , then

pr∞1...k means prT
{1,...,k} (k ∈ N) .

Although our notation and terminology is mostly standard, we recall a few facts
from measure and integration theory (we refer to [3]).

Let (Yi,Bi,νi) , i ∈ T be probability spaces, where either T := {1, . . . ,n} with
n ∈ N , or T := N . The product of these spaces is denoted by (YT ,BT ,νT ) . This
means that YT := ×

i∈T
Yi , and BT is the smallest σ -algebra in Y such that each prT

{i} is

BT −Bi measurable (i ∈ T ) . If T = {1, . . . ,n} , then νT is the only measure on BT

which satisfies
νT (B1× . . .×Bn) = ν1(B1) . . .νn(Bn)

for every Bi ∈Bi . If T = N , then νT is the unique measure on BT such that the image
measure of νT under the projection mapping pr∞1...k is the product of the measures
ν1, . . . ,νk (k ∈ N) .

It is obvious that (YT ,BT ,νT ) is also a probability space.
The n -fold (n� 1 or n=∞) product of the probability space (X ,A ,μ) is denoted

by (Xn,A n,μn) . We suppose that the μ -integrability of a function g : X → R over X
implies the measurability of g .
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Our first result corresponds to (3).

THEOREM 1.1. Let I ⊂ R be an interval, and let q : I → R be a convex function
on I . Let (Yi,Bi,νi) , i ∈ T := {1, . . . ,n} be probability spaces, and let fi : Yi → I be a
νi -integrable function over Yi (i = 1, . . . ,n) . Suppose that p1, . . . , pn are nonnegative
numbers with p1 + . . .+ pn = 1 . If q ◦ fi is νi -integrable over Yi (i = 1, . . . ,n) , then

q

⎛
⎝ n

∑
i=1

pi

∫
Yi

fidνi

⎞
⎠�

∫
YT

q

(
n

∑
i=1

pi fi(yi)

)
dνT (y1, . . . ,yn) �

n

∑
i=1

pi

∫
Yi

q ◦ fidνi. (4)

The next result concerns the asymptotic behaviour of the sequence

∫
Y {1,...,n}

q

(
1
n

n

∑
i=1

fi(yi)

)
dν{1,...,n}(y1, . . . ,yn), n ∈ N, (5)

in some cases. (5) corresponds to the middle member of (4).

THEOREM 1.2. Let I ⊂ R be an interval, and let q : I → R be a convex and
bounded function on I . Let (Yi,Bi,νi) , i ∈ N be probability spaces, and let fi : Yi → I
be a square νi -integrable function over Yi (i ∈ N) such that

∫
Yi

fidνi =
∫
Y1

f1dν1, i ∈ N,

and
∞

∑
i=1

1
i2

∫
Yi

f 2
i dνi < ∞.

Then

lim
n→∞

∫
Y {1,...,n}

q

(
1
n

n

∑
i=1

fi(yi)

)
dν{1,...,n}(y1, . . . ,yn) = q

⎛
⎝∫

Y1

f1dν1

⎞
⎠ .

The third main result refines (1), and corresponds to (2) and (3).

THEOREM 1.3. Let I ⊂ R be an interval, and let q : I → R be a convex function
on I . Let (X ,A ,μ) be a probability space, and let f : X → I be a μ -integrable
function over X such that q ◦ f is also μ -integrable over X . Suppose that p1, . . . , pn

are nonnegative numbers with p1 + . . .+ pn = 1 . Then
(a)

q

⎛
⎝∫

X

f dμ

⎞
⎠�

∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, . . . ,xn) �

∫
X

q ◦ f dμ . (6)
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(b)

∫
Xn+1

q

(
1

n+1

n+1

∑
i=1

f (xi)

)
dμn+1(x1, . . . ,xn+1) (7)

�
∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, . . . ,xn) �

∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, . . . ,xn).

(c) If q is bounded, then

lim
n→∞

∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, . . . ,xn) = q

⎛
⎝∫

X

f dμ

⎞
⎠ . (8)

Suppose V := R and C := I in Theorem C and Theorem D. Then the inequalities
(2) and (3) can be obtained easily from the inequalities (4)–(7), but (4)–(7) are more
general.

As an application, we study some discrete inequalities.

2. Preliminaries

In order to prove the main results as transparent as possible, we begin some
preparatory lemmas.

First, we investigate the integrability properties of some functions.

LEMMA 2.1. Let I ⊂ R be an interval, and let q : I → R be a convex function
on I . Let (Yi,Bi,νi) , i ∈ T := {1, . . . ,n} be probability spaces, and let the function
fi : Yi → I be νi -integrable over Yi (i = 1, . . . ,n) .

(a) The function fi ◦ prn
i is νT -integrable over YT , and

∫
YT

fi ◦ prn
i dν

T =
∫
Yi

fidνi, i = 1, . . . ,n. (9)

(b) If q ◦ fi is also νi -integrable over Yi (i = 1, . . . ,n) , then the function

q ◦
(

n

∑
i=1

pi ( fi ◦ prn
i )

)
, where pi � 0 (i = 1, . . . ,n),

n

∑
i=1

pi = 1 (10)

is νT -integrable over YT .

Proof. (a) Since the image measure of νT under the mapping prn
i is νi (i =

1, . . . ,n) , and fi is νi -integrable over Yi (i = 1, . . . ,n) , we therefore get from the gen-
eral transformation theorem for integrals (see [3]) that fi ◦ prn

i is νT -integrable over
YT (i = 1, . . . ,n) , and (9) holds.
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(b) Since the range of fi is a subset of I (i = 1, . . . ,n) , the properties of the
numbers p1, . . . , pn in (10) imply that the range of the function

n

∑
i=1

pi ( fi ◦ prn
i )

is a subset of I too. Thus the domain of the function (10) is YT .
The function q , being convex on I , is lower semicontinuous on I , and therefore q

is measurable on I .
The measurability of the function (10) now follows from the above statements.
Let a be a fixed interior point of I . Now the convexity of q on I insures that

q(t) � q(a)+q�

+(a)(t−a), t ∈ I,

where q�
+(a) denotes the right-hand derivative of q at a . Using the previous inequality,

and the convexity of q again, we have

q(a)+q�

+(a)

(
n

∑
i=1

pi fi(yi)−a

)
� q

(
n

∑
i=1

pi fi(yi)

)
(11)

�
n

∑
i=1

piq( fi(yi)), (y1, . . . ,yn) ∈YT .

By what has already been proved in (a) the lower bound for the function (10) in (11) is
νT -integrable over YT . The condition on q◦ fi ensures that fi can be replaced by q◦ fi
in (a), and thus the upper bound for the function (10) in (11) is νT -integrable over YT

too. These and the inequality (11), together with the measurability of the function (10)
on YT imply the νT -integrability of the function (10) on YT .

The proof is now complete. �

We derive an analog of Lemma 2.1 for a sequence of probability spaces.

LEMMA 2.2. Let I ⊂R be a bounded interval, and let q : I → R be a convex and
bounded function on I . Let (Yi,Bi,νi) , i ∈ T := N be probability spaces, and let the
function fi : Yi → I be νi -integrable over Yi (i ∈ N) .

(a) The function fi ◦ pr∞i is νT -integrable over YT , and

∫
YT

fi ◦ pr∞i dνT =
∫
Yi

fidνi, i ∈ N.

(b) If q ◦ fi is also νi -integrable over Yi (i ∈ N) , then for every n ∈ N

∫
YT

q ◦
(

1
n

n

∑
i=1

fi ◦ pr∞i

)
dνT =

∫
Y {1,...,n}

q ◦
(

1
n

n

∑
i=1

fi ◦ prn
i

)
dν{1,...,n}. (12)
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Proof. (a) We argue as in the proof of Lemma 2.1 (a).
(b) According to Lemma 2.1 (b), the function

q ◦
(

1
n

n

∑
i=1

fi ◦ prn
i

)

is ν{1,...,n} -integrable over Y {1,...,n} (n ∈ N) . By the definition of νT , the image
measure of νT under the mapping pr∞1...n is ν{1,...,n} (n ∈ N) . Therefore the general
transformation theorem for integrals gives (12).

The result is completely proved. �
The next result is simple to prove but useful.

LEMMA 2.3. Let (X ,A ,μ) be a probability space, and let f : Xn → R be a μn -
integrable function.

(a) Let π be a permutation of the numbers 1, . . . ,n, and let the mapping T : Xn →
Xn be defined by

T (x1, . . . ,xn) := (xπ(1), . . . ,xπ(n)).

Then the function f ◦T is μn -integrable on Xn and∫
Xn

f ◦Tdμn =
∫
Xn

f dμn.

(b) If 1 � i < n, then

∫
Xn

f dμn =
∫

Xn−1

⎛
⎝∫

X

f (x1, . . . ,xn)dμ(xi)

⎞
⎠dμn−1(x1, . . . ,xi−1,xi+1, . . . ,xn).

Proof. (a) Since the image of μn under the mapping T is μn , the result follows
from the general transformation theorem for integrals.

(b) We have only to apply (a) and the Fubini’s theorem. �
The last result that we discuss corresponds to the laws of large numbers.

LEMMA 2.4. Let I ⊂ R be an interval, and let p : I → R be a function on I ,
which is continuous at every interior point of I , and bounded on I .

(a) Let (Yi,Bi,νi) , i ∈ T := N be probability spaces, and let fi : Yi → I be a
square νi -integrable function over Yi (i ∈ N) such that∫

Yi

fidνi =
∫
Y1

f1dν1, i ∈ N,

and
∞

∑
i=1

1
i2

∫
Yi

f 2
i dνi < ∞. (13)
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Then

lim
n→∞

∫
Y {1,...,n}

p

(
1
n

n

∑
i=1

fi(yi)

)
dν{1,...,n}(y1, . . . ,yn) = p

⎛
⎝∫

Y1

f1dν1

⎞
⎠ .

(b) Let (X ,A ,μ) be a probability space, and let f : X → I be a μ -integrable
function over X . Then

lim
n→∞

∫
Xn

p

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, . . . ,xn) = p

⎛
⎝∫

X

f dμ

⎞
⎠ .

Proof. (a) Since fi is a square νi -integrable function over Yi , fi is νi -integrable
over Yi (i ∈ N) . From Lemma 2.2 (a) we obtain that fi ◦ pr∞i and f 2

i ◦ pr∞i (i ∈ N) are
νT -integrable over YT , and

∫
YT

fi ◦ pr∞i dνT =
∫
Yi

fidνi =
∫
Y1

f1dν1, (14)

and ∫
YT

f 2
i ◦ pr∞i dνT =

∫
Yi

f 2
i dνi. (15)

If V ( fi ◦ pr∞i ) means the variance of the random variable fi ◦ pr∞i (i ∈ N) , then by
using (14), (15) and (13), we have that

∞

∑
i=1

V ( fi ◦ pr∞i )
i2

=
∞

∑
i=1

1
i2

⎛
⎜⎝∫

Yi

f 2
i dνi −

⎛
⎝∫

Y1

f1dν1

⎞
⎠

2
⎞
⎟⎠< ∞.

It is easy to verify that the random variables fi ◦ pr∞i (i ∈ N) are independent. Now,
Kolmogorov’s criterion (see [1]) implies that the sequence ( fi ◦ pr∞i )i∈N of random
variables obeys the strong law of large numbers, that is

lim
n→∞

1
n

n

∑
i=1

fi ◦ pr∞i =
∫
Y1

f1dν1 νT -almost everywhere on YT . (16)

If
∫
Y1

f1dν1 is an interior point of I , then the continuity of p at
∫
Y1

f1dν1 and (16)

yield that

lim
n→∞

p ◦
(

1
n

n

∑
i=1

fi ◦ pr∞i

)
= p

⎛
⎝∫

Y1

f1dν1

⎞
⎠ νT -almost everywhere on YT . (17)
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Suppose
∫
Y1

f1dν1 is either the left-hand endpoint or the right-hand endpoint of I .

In either case

fi =
∫
Y1

f1dν1 νi-almost everywhere on Yi i ∈ N,

hence

fi ◦ pr∞i =
∫
Y1

f1dν1 νT -almost everywhere on YT , i ∈ N,

and this justifies (17).
Since p is bounded on I , it follows from (17) and Lebesgue’s convergence theo-

rem that

lim
n→∞

∫
YT

p ◦
(

1
n

n

∑
i=1

fi ◦ pr∞i

)
dνT = p

⎛
⎝∫

Y1

f1dν1

⎞
⎠ ,

thus we can apply Lemma 2.2 (b).
(b) In this case the proof of (a) also works if instead of Kolmogorov’s criterion

Kolmogorov’s law of large numbers (see [1]) is used, since the random variables f ◦ pr∞i
(i ∈ N) are independent, νT -integrable over YT , and identically distributed.

The whole theorem is proved. �

3. Proofs of the main results

Let us now prove Theorem 1.1.

Proof. By Lemma 2.1 (a) and (b), the functions

n

∑
i=1

pi( fi ◦ prn
i ) and q ◦

(
n

∑
i=1

pi( fi ◦ prn
i )

)

are νT -integrable over YT . An application of Theorem A now yields that

q

⎛
⎝∫

YT

(
n

∑
i=1

pi( fi ◦ prn
i )

)
dνT

⎞
⎠�

∫
YT

(
q ◦
(

n

∑
i=1

pi( fi ◦ prn
i )

)
dνT

)
.

The first inequality in (4) follows from this, by (9).
It remains to prove the second inequality in (4). By Lemma 2.1 (a) (replaced fi by

q ◦ fi ), the function q ◦ ( fi ◦ prn
i ) is νT -integrable over YT (i = 1, . . . ,n) , and

∫
YT

q ◦ ( fi ◦ prn
i )dν

T =
∫
Yi

q ◦ fidνi.
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Applying this and taking account of the convexity of q on I , we calculate

∫
YT

q

(
n

∑
i=1

pi fi(yi)

)
dνT (y1, . . . ,yn) �

∫
YT

n

∑
i=1

piq( fi(yi))dνT (y1, . . . ,yn)

=
n

∑
i=1

pi

∫
Yi

q ◦ fidνi,

and this completes the proof. �
Next, we prove Theorem 1.2.

Proof. This is an immediate consequence of Lemma 2.2 (b), since q is continuous
at every interior point of I . �

We are now in a position to prove Theorem 1.3.

Proof. (a) This is an immediate consequence of Theorem 1.1.
(b) Since q is convex on I

∫
Xn+1

q

(
1

n+1

n+1

∑
i=1

f (xi)

)
dμn+1(x1, . . . ,xn+1)

=
∫

Xn+1

q

(
1

n+1

n+1

∑
i=1

(
1
n ∑

j∈{1,...,n+1}\{i}
f (x j)

))
dμn+1(x1, . . . ,xn+1)

�
∫

Xn+1

1
n+1

n+1

∑
i=1

q

(
1
n ∑

j∈{1,...,n+1}\{i}
f (x j)

)
dμn+1(x1, . . . ,xn+1).

By the Fubini’s theorem (see Lemma 2.3 (b)), the right-hand side of the previous in-
equality can be written in the form

1
n+1

n+1

∑
i=1

∫
Xn

⎛
⎝∫

X

q

(
1
n ∑

j∈{1,...,n+1}\{i}
f (x j)

)
dμ(xi)

⎞
⎠dμn(x1, . . . ,xi−1,xi+1, . . . ,xn+1)

=
1

n+1

n+1

∑
i=1

∫
Xn

q

(
1
n ∑

j∈{1,...,n+1}\{i}
f (x j)

)
dμn(x1, . . . ,xi−1,xi+1, . . . ,xn+1)

=
∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, . . . ,xn),

confirming the first inequality in (7).
Finally, we prove the second inequality in (7). Let πi( j) be the unique number

from {1, . . . ,n} for which

πi( j) ≡ i+ j−1 (mod n), i, j = 1, . . . ,n.
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Then the functions πi (i = 1, . . . ,n) are permutations of the numbers 1, . . . ,n . Clearly,
n

∑
j=1

pπi( j) = 1 (i = 1, . . . ,n) , and πi( j) = π j(i) , i, j = 1, . . . ,n .

The convexity of q on I implies that

∫
Xn

q

(
1
n

n

∑
i=1

f (xi)

)
dμn(x1, . . . ,xn) (18)

=
∫
Xn

q

(
1
n

n

∑
i=1

(
n

∑
j=1

pπi( j) f (xi)

))
dμn(x1, . . . ,xn)

=
∫
Xn

q

(
1
n

n

∑
j=1

(
n

∑
i=1

pπ j(i) f (xi)

))
dμn(x1, . . . ,xn)

�
∫
Xn

n

∑
j=1

1
n
q

(
n

∑
i=1

pπ j(i) f (xi)

)
dμn(x1, . . . ,xn)

=
n

∑
j=1

1
n

∫
Xn

q

(
n

∑
i=1

pπ j(i) f (xi)

)
dμn(x1, . . . ,xn).

It follows from Lemma 2.3 (a) that

∫
Xn

q

(
n

∑
i=1

pπ j(i) f (xi)

)
dμn(x1, . . . ,xn)

=
∫
Xn

q

(
n

∑
i=1

pi f (xi)

)
dμn(x1, . . . ,xn), ( j = 1, . . . ,n).

This fact and (18) yields the result, bringing the proof to an end.

(c) It comes from Lemma 2.4 (b), since q is continuous at every interior point of
I . �

4. An application

Let I ⊂ R be an interval, and let q : I → R be a convex function on I . Suppose
Yi := {1, . . . ,ki} (i ∈ N) , Bi is the power set of Yi (i ∈ N) , and νi({ j}) := ri j � 0

(i ∈ N, j = 1, . . . ,ki) such that
ki

∑
j=1

ri j = 1 (i ∈ N) . Let fi( j) := vi j ∈ I (i ∈ N, j =

1, . . . ,ki) .
Suppose that for a fixed n ∈ N, p1, . . . , pn are nonnegative numbers with p1 +
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. . .+ pn = 1. Now inequality (4) gives that

q

(
n

∑
i=1

pi

(
ki

∑
j=1

ri jvi j

))
� ∑

( j1,..., jn)∈Y {1,...,n}
q

(
n

∑
i=1

pivi ji

)
r1 j1 . . .rn jn (19)

�
n

∑
i=1

pi

(
ki

∑
j=1

ri jq(vi j)

)
,

which generalizes (3) (except the second member).
If q is bounded on I and

ki

∑
j=1

ri jvi j = m, i ∈ N, (20)

and
∞

∑
i=1

1
i2

(
ki

∑
j=1

ri jv
2
i j

)
< ∞. (21)

then it comes from Theorem 1.2 that

lim
n→∞ ∑

( j1,..., jn)∈Y {1,...,n}
q

(
1
n

n

∑
i=1

vi ji

)
r1 j1 . . . rn jn = q(m).

Especially, suppose q := − ln , pi > 0 (i = 1, . . . ,n) , ri j > 0 and vi j > 0 (i ∈ N,
j = 1, . . . ,ki) . Then (19) yields that

− ln

(
n

∑
i=1

pi

(
ki

∑
j=1

ri jvi j

))
� − ln

⎛
⎝ ∏

( j1,..., jn)∈Y {1,...,n}

(
n

∑
i=1

pivi ji

)r1 j1
...rn jn

⎞
⎠

� − ln

(
n

∏
i=1

((
ki

∏
j=1

v
ri j
i j

)pi
))

,

which shows the next inequality

n

∑
i=1

pi

(
ki

∑
j=1

ri jvi j

)
� ∏

( j1,..., jn)∈Y{1,...,n}

(
n

∑
i=1

pivi ji

)r1 j1
...rn jn

(22)

�
n

∏
i=1

((
ki

∏
j=1

v
ri j
i j

)pi
)

.

Further, if there are positive numbers a and b such that

a � vi j � b, i ∈ N, j = 1, . . . ,ki,

and (20) holds (obviously, (21) satisfies too), then

lim
n→∞ ∏

( j1,..., jn)∈Y {1,...,n}

(
1
n

n

∑
i=1

vi ji

)r1 j1
...rn jn

= m. (23)
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[5] D. S. MITRINOVIĆ, J. E. PEČARIĆ AND A. M. FINK, Classical and new inequalities in analysis,

Kluwer Academic, Dordrecht, 1993.

(Received September 22, 2008) László Horváth
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