# INEQUALITIES CORRESPONDING TO THE CLASSICAL JENSEN'S INEQUALITY 

LÁsZló Horváth<br>(Communicated by G. Sinnamon)

Abstract. In this paper some integral inequalities are proved in probability spaces, which go back to some discrete variants of the Jensen's inequality. Especially, we refine the classical Jensen's inequality. Convergence results corresponding to the inequalities are also studied.

## 1. Introduction and the main results

The classical Jensen's inequality says (see [3]):
THEOREM A. Let $I \subset R$ be an interval, and let $q: I \rightarrow R$ be a convex function on I. Let $(X, A, \mu)$ be a probability space, and let $f: X \rightarrow I$ be a $\mu$-integrable function over $X$. Then $\int_{X} f d \mu \in I$. If $q \circ f$ is $\mu$-integrable over $X$, then

$$
\begin{equation*}
q\left(\int_{X} f d \mu\right) \leqslant \int_{X} q \circ f d \mu . \tag{1}
\end{equation*}
$$

The following discrete Jensen's inequality is also well known (see [5]).
THEOREM B. Let $C$ be a convex subset of a real vector space $V$, and let $q: C \rightarrow \mathbb{R}$ be a convex function. If $p_{1}, \ldots, p_{k}$ are nonnegative numbers with $p_{1}+\ldots+p_{k}=1$, and $v_{1}, \ldots, v_{k} \in C$, then

$$
q\left(\sum_{i=1}^{k} p_{i} v_{i}\right) \leqslant \sum_{i=1}^{k} p_{i} q\left(v_{i}\right)
$$

Generalizations of these inequalities have been investigated by many authors, and they have important applications.

The following refinements of Theorem B are proved in [4] and in [2], respectively.

[^0]THEOREM C. Let $C$ be a convex subset of a real vector space $V$, and let $q: C \rightarrow \mathbb{R}$ be a convex function. If $r_{1}, \ldots, r_{k}$ are nonnegative numbers with $r_{1}+\ldots+r_{k}=1$, and $v_{1}, \ldots, v_{k} \in C$, then

$$
\begin{align*}
q\left(\sum_{i=1}^{k} r_{i} v_{i}\right) & \leqslant \sum_{i_{1}, \ldots, i_{n+1}=1}^{k} r_{i_{1}} \ldots r_{i_{n+1}} q\left(\frac{v_{i_{1}}+\ldots+v_{i_{n+1}}}{n+1}\right)  \tag{2}\\
& \leqslant \sum_{i_{1}, \ldots, i_{n}=1}^{k} r_{i_{1}} \ldots r_{i_{n}} q\left(\frac{v_{i_{1}}+\ldots+v_{i_{n}}}{n}\right) \leqslant \sum_{i=1}^{k} r_{i} q\left(v_{i}\right), \quad n \geqslant 1 .
\end{align*}
$$

THEOREM D. Let $C$ be a convex subset of a real vector space $V$, and let $q: C \rightarrow$ $\mathbb{R}$ be a convex function. Let $r_{1}, \ldots, r_{k}$ be nonnegative numbers with $r_{1}+\ldots+r_{k}=1$, and let $v_{1}, \ldots, v_{k} \in C$. If $p_{1}, \ldots, p_{n}$ are nonnegative numbers with $p_{1}+\ldots+p_{n}=1$, then

$$
\begin{align*}
q\left(\sum_{i=1}^{k} r_{i} v_{i}\right) & \leqslant \sum_{i_{1}, \ldots, i_{n}=1}^{k} r_{i_{1}} \ldots r_{i_{n}} q\left(\frac{v_{i_{1}}+\ldots+v_{i_{n}}}{n}\right)  \tag{3}\\
& \leqslant \sum_{i_{1}, \ldots, i_{n}=1}^{k} r_{i_{1}} \ldots r_{i_{n}} q\left(p_{1} v_{i_{1}}+\ldots p_{n} v_{i_{n}}\right) \leqslant \sum_{i=1}^{k} r_{i} q\left(v_{i}\right), \quad 1 \leqslant n \leqslant k
\end{align*}
$$

Inspired by (2) and (3), the aim of this paper is to establish some new inequalities in a measure theoretical setting. We have some refinements of (1) from the results.

Let $\mathbb{N}:=\{1,2, \ldots\}$. Let the index set $T$ be either $\{1, \ldots, n\}$ with $n \in \mathbb{N}$, or $\mathbb{N}$. Suppose we are given a family $\left\{A_{i} \mid i \in T\right\}$ of non-empty sets. If $S$ is a nonempty subset of $T$, then the projection mapping $p r_{S}^{T}: \underset{i \in T}{\times} A_{i} \rightarrow \underset{i \in S}{\times} A_{i}$ is defined by associating with every point of $\underset{i \in T}{\times} A_{i}$ its restriction to $S$. We write for short $p r_{i}^{n}$ for $p r_{\{i\}}^{T}(i \in T=\{1, \ldots, n\})$ and $p r_{i}^{\infty}$ for $p r_{\{i\}}^{T}(i \in T=\mathbb{N})$. Similarly, if $T=\mathbb{N}$, then $p r_{1 \ldots k}^{\infty}$ means $p r_{\{1, \ldots, k\}}^{T}(k \in \mathbb{N})$.

Although our notation and terminology is mostly standard, we recall a few facts from measure and integration theory (we refer to [3]).

Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), i \in T$ be probability spaces, where either $T:=\{1, \ldots, n\}$ with $n \in \mathbb{N}$, or $T:=\mathbb{N}$. The product of these spaces is denoted by $\left(Y^{T}, \mathscr{B}^{T}, v^{T}\right)$. This means that $Y^{T}:=\underset{i \in T}{\times} Y_{i}$, and $\mathscr{B}^{T}$ is the smallest $\sigma$-algebra in $Y$ such that each $p r_{\{i\}}^{T}$ is $\mathscr{B}^{T}-\mathscr{B}_{i}$ measurable $(i \in T)$. If $T=\{1, \ldots, n\}$, then $v^{T}$ is the only measure on $\mathscr{B}^{T}$ which satisfies

$$
v^{T}\left(B_{1} \times \ldots \times B_{n}\right)=v_{1}\left(B_{1}\right) \ldots v_{n}\left(B_{n}\right)
$$

for every $B_{i} \in \mathscr{B}_{i}$. If $T=\mathbb{N}$, then $v^{T}$ is the unique measure on $\mathscr{B}^{T}$ such that the image measure of $v^{T}$ under the projection mapping $p r_{1 \ldots k}^{\infty}$ is the product of the measures $v_{1}, \ldots, v_{k}(k \in \mathbb{N})$.

It is obvious that $\left(Y^{T}, \mathscr{B}^{T}, v^{T}\right)$ is also a probability space.
The $n$-fold $(n \geqslant 1$ or $n=\infty)$ product of the probability space $(X, \mathscr{A}, \mu)$ is denoted by $\left(X^{n}, \mathscr{A}^{n}, \mu^{n}\right)$. We suppose that the $\mu$-integrability of a function $g: X \rightarrow \mathbb{R}$ over $X$ implies the measurability of $g$.

Our first result corresponds to (3).
Theorem 1.1. Let $I \subset \mathbb{R}$ be an interval, and let $q: I \rightarrow \mathbb{R}$ be a convex function on I. Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), i \in T:=\{1, \ldots, n\}$ be probability spaces, and let $f_{i}: Y_{i} \rightarrow I$ be $a$ $v_{i}$-integrable function over $Y_{i}(i=1, \ldots, n)$. Suppose that $p_{1}, \ldots, p_{n}$ are nonnegative numbers with $p_{1}+\ldots+p_{n}=1$. If $q \circ f_{i}$ is $v_{i}$-integrable over $Y_{i}(i=1, \ldots, n)$, then

$$
\begin{equation*}
q\left(\sum_{i=1}^{n} p_{i} \int_{Y_{i}} f_{i} d v_{i}\right) \leqslant \int_{Y^{T}} q\left(\sum_{i=1}^{n} p_{i} f_{i}\left(y_{i}\right)\right) d v^{T}\left(y_{1}, \ldots, y_{n}\right) \leqslant \sum_{i=1}^{n} p_{i} \int_{Y_{i}} q \circ f_{i} d v_{i} \tag{4}
\end{equation*}
$$

The next result concerns the asymptotic behaviour of the sequence

$$
\begin{equation*}
\int_{Y\{1, \ldots, n\}} q\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}\right)\right) d v^{\{1, \ldots, n\}}\left(y_{1}, \ldots, y_{n}\right), \quad n \in \mathbb{N} \tag{5}
\end{equation*}
$$

in some cases. (5) corresponds to the middle member of (4).

THEOREM 1.2. Let $I \subset \mathbb{R}$ be an interval, and let $q: I \rightarrow \mathbb{R}$ be a convex and bounded function on $I$. Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), i \in \mathbb{N}$ be probability spaces, and let $f_{i}: Y_{i} \rightarrow I$ be a square $v_{i}$-integrable function over $Y_{i}(i \in \mathbb{N})$ such that

$$
\int_{Y_{i}} f_{i} d v_{i}=\int_{Y_{1}} f_{1} d v_{1}, \quad i \in \mathbb{N},
$$

and

$$
\sum_{i=1}^{\infty} \frac{1}{i^{2}} \int_{Y_{i}} f_{i}^{2} d v_{i}<\infty .
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{Y\{1, \ldots, n\}} q\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}\right)\right) d v^{\{1, \ldots, n\}}\left(y_{1}, \ldots, y_{n}\right)=q\left(\int_{Y_{1}} f_{1} d v_{1}\right) .
$$

The third main result refines (1), and corresponds to (2) and (3).
Theorem 1.3. Let $I \subset \mathbb{R}$ be an interval, and let $q: I \rightarrow \mathbb{R}$ be a convex function on I. Let $(X, \mathscr{A}, \mu)$ be a probability space, and let $f: X \rightarrow I$ be a $\mu$-integrable function over $X$ such that $q \circ f$ is also $\mu$-integrable over $X$. Suppose that $p_{1}, \ldots, p_{n}$ are nonnegative numbers with $p_{1}+\ldots+p_{n}=1$. Then
(a)

$$
\begin{equation*}
q\left(\int_{X} f d \mu\right) \leqslant \int_{X^{n}} q\left(\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \leqslant \int_{X} q \circ f d \mu . \tag{6}
\end{equation*}
$$

(b)

$$
\begin{gather*}
\int_{X^{n+1}} q\left(\frac{1}{n+1} \sum_{i=1}^{n+1} f\left(x_{i}\right)\right) d \mu^{n+1}\left(x_{1}, \ldots, x_{n+1}\right)  \tag{7}\\
\leqslant \int_{X^{n}} q\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \leqslant \int_{X^{n}} q\left(\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)
\end{gather*}
$$

(c) If $q$ is bounded, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{X^{n}} q\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)=q\left(\int_{X} f d \mu\right) . \tag{8}
\end{equation*}
$$

Suppose $V:=\mathbb{R}$ and $C:=I$ in Theorem C and Theorem D . Then the inequalities (2) and (3) can be obtained easily from the inequalities (4)-(7), but (4)-(7) are more general.

As an application, we study some discrete inequalities.

## 2. Preliminaries

In order to prove the main results as transparent as possible, we begin some preparatory lemmas.

First, we investigate the integrability properties of some functions.
Lemma 2.1. Let $I \subset \mathbb{R}$ be an interval, and let $q: I \rightarrow \mathbb{R}$ be a convex function on I. Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), i \in T:=\{1, \ldots, n\}$ be probability spaces, and let the function $f_{i}: Y_{i} \rightarrow I$ be $v_{i}$-integrable over $Y_{i}(i=1, \ldots, n)$.
(a) The function $f_{i} \circ p r_{i}^{n}$ is $v^{T}$-integrable over $Y^{T}$, and

$$
\begin{equation*}
\int_{Y^{T}} f_{i} \circ p r_{i}^{n} d v^{T}=\int_{Y_{i}} f_{i} d v_{i}, \quad i=1, \ldots, n \tag{9}
\end{equation*}
$$

(b) If $q \circ f_{i}$ is also $v_{i}$-integrable over $Y_{i}(i=1, \ldots, n)$, then the function

$$
\begin{equation*}
q \circ\left(\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right)\right), \quad \text { where } \quad p_{i} \geqslant 0 \quad(i=1, \ldots, n), \quad \sum_{i=1}^{n} p_{i}=1 \tag{10}
\end{equation*}
$$

is $v^{T}$-integrable over $Y^{T}$.
Proof. (a) Since the image measure of $v^{T}$ under the mapping $p r_{i}^{n}$ is $v_{i}(i=$ $1, \ldots, n)$, and $f_{i}$ is $v_{i}$-integrable over $Y_{i}(i=1, \ldots, n)$, we therefore get from the general transformation theorem for integrals (see [3]) that $f_{i} \circ p r_{i}^{n}$ is $v^{T}$-integrable over $Y^{T}(i=1, \ldots, n)$, and (9) holds.
(b) Since the range of $f_{i}$ is a subset of $I(i=1, \ldots, n)$, the properties of the numbers $p_{1}, \ldots, p_{n}$ in (10) imply that the range of the function

$$
\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right)
$$

is a subset of $I$ too. Thus the domain of the function (10) is $Y^{T}$.
The function $q$, being convex on $I$, is lower semicontinuous on $I$, and therefore $q$ is measurable on $I$.

The measurability of the function (10) now follows from the above statements.
Let $a$ be a fixed interior point of $I$. Now the convexity of $q$ on $I$ insures that

$$
q(t) \geqslant q(a)+q_{+}^{\prime}(a)(t-a), \quad t \in I,
$$

where $q_{+}^{\prime}(a)$ denotes the right-hand derivative of $q$ at $a$. Using the previous inequality, and the convexity of $q$ again, we have

$$
\begin{align*}
q(a)+q_{+}^{\prime}(a)\left(\sum_{i=1}^{n} p_{i} f_{i}\left(y_{i}\right)-a\right) & \leqslant q\left(\sum_{i=1}^{n} p_{i} f_{i}\left(y_{i}\right)\right)  \tag{11}\\
& \leqslant \sum_{i=1}^{n} p_{i} q\left(f_{i}\left(y_{i}\right)\right), \quad\left(y_{1}, \ldots, y_{n}\right) \in Y^{T}
\end{align*}
$$

By what has already been proved in (a) the lower bound for the function (10) in (11) is $v^{T}$-integrable over $Y^{T}$. The condition on $q \circ f_{i}$ ensures that $f_{i}$ can be replaced by $q \circ f_{i}$ in (a), and thus the upper bound for the function (10) in (11) is $v^{T}$-integrable over $Y^{T}$ too. These and the inequality (11), together with the measurability of the function (10) on $Y^{T}$ imply the $v^{T}$-integrability of the function (10) on $Y^{T}$.

The proof is now complete.
We derive an analog of Lemma 2.1 for a sequence of probability spaces.

Lemma 2.2. Let $I \subset \mathbb{R}$ be a bounded interval, and let $q: I \rightarrow \mathbb{R}$ be a convex and bounded function on $I$. Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), i \in T:=\mathbb{N}$ be probability spaces, and let the function $f_{i}: Y_{i} \rightarrow I$ be $v_{i}$-integrable over $Y_{i}(i \in \mathbb{N})$.
(a) The function $f_{i} \circ p r_{i}^{\infty}$ is $v^{T}$-integrable over $Y^{T}$, and

$$
\int_{Y^{T}} f_{i} \circ p r_{i}^{\infty} d v^{T}=\int_{Y_{i}} f_{i} d v_{i}, \quad i \in \mathbb{N}
$$

(b) If $q \circ f_{i}$ is also $v_{i}$-integrable over $Y_{i}(i \in \mathbb{N})$, then for every $n \in \mathbb{N}$

$$
\begin{equation*}
\int_{Y^{T}} q \circ\left(\frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{\infty}\right) d v^{T}=\int_{Y^{\{1, \ldots, n\}}} q \circ\left(\frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{n}\right) d v^{\{1, \ldots, n\}} \tag{12}
\end{equation*}
$$

Proof. (a) We argue as in the proof of Lemma 2.1 (a).
(b) According to Lemma 2.1 (b), the function

$$
q \circ\left(\frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{n}\right)
$$

is $v^{\{1, \ldots, n\}}$-integrable over $Y^{\{1, \ldots, n\}} \quad(n \in \mathbb{N})$. By the definition of $v^{T}$, the image measure of $v^{T}$ under the mapping $p r_{1 \ldots n}^{\infty}$ is $v^{\{1, \ldots, n\}}(n \in \mathbb{N})$. Therefore the general transformation theorem for integrals gives (12).

The result is completely proved.
The next result is simple to prove but useful.
Lemma 2.3. Let $(X, \mathscr{A}, \mu)$ be a probability space, and let $f: X^{n} \rightarrow \mathbb{R}$ be a $\mu^{n}-$ integrable function.
(a) Let $\pi$ be a permutation of the numbers $1, \ldots, n$, and let the mapping $T: X^{n} \rightarrow$ $X^{n}$ be defined by

$$
T\left(x_{1}, \ldots, x_{n}\right):=\left(x_{\pi(1)}, \ldots, x_{\pi(n)}\right)
$$

Then the function $f \circ T$ is $\mu^{n}$-integrable on $X^{n}$ and

$$
\int_{X^{n}} f \circ T d \mu^{n}=\int_{X^{n}} f d \mu^{n}
$$

(b) If $1 \leqslant i<n$, then

$$
\int_{X^{n}} f d \mu^{n}=\int_{X^{n-1}}\left(\int_{X} f\left(x_{1}, \ldots, x_{n}\right) d \mu\left(x_{i}\right)\right) d \mu^{n-1}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)
$$

Proof. (a) Since the image of $\mu^{n}$ under the mapping $T$ is $\mu^{n}$, the result follows from the general transformation theorem for integrals.
(b) We have only to apply (a) and the Fubini's theorem.

The last result that we discuss corresponds to the laws of large numbers.
LEMMA 2.4. Let $I \subset \mathbb{R}$ be an interval, and let $p: I \rightarrow \mathbb{R}$ be a function on $I$, which is continuous at every interior point of $I$, and bounded on $I$.
(a) Let $\left(Y_{i}, \mathscr{B}_{i}, v_{i}\right), \quad i \in T:=\mathbb{N}$ be probability spaces, and let $f_{i}: Y_{i} \rightarrow I$ be a square $v_{i}$-integrable function over $Y_{i}(i \in \mathbb{N})$ such that

$$
\int_{Y_{i}} f_{i} d v_{i}=\int_{Y_{1}} f_{1} d v_{1}, \quad i \in \mathbb{N}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{i^{2}} \int_{Y_{i}} f_{i}^{2} d v_{i}<\infty \tag{13}
\end{equation*}
$$

Then

$$
\lim _{n \rightarrow \infty} \int_{Y\{1, \ldots, n\}} p\left(\frac{1}{n} \sum_{i=1}^{n} f_{i}\left(y_{i}\right)\right) d v^{\{1, \ldots, n\}}\left(y_{1}, \ldots, y_{n}\right)=p\left(\int_{Y_{1}} f_{1} d v_{1}\right)
$$

(b) Let $(X, \mathscr{A}, \mu)$ be a probability space, and let $f: X \rightarrow I$ be a $\mu$-integrable function over $X$. Then

$$
\lim _{n \rightarrow \infty} \int_{X^{n}} p\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)=p\left(\int_{X} f d \mu\right)
$$

Proof. (a) Since $f_{i}$ is a square $v_{i}$-integrable function over $Y_{i}, f_{i}$ is $v_{i}$-integrable over $Y_{i}(i \in \mathbb{N})$. From Lemma 2.2 (a) we obtain that $f_{i} \circ p r_{i}^{\infty}$ and $f_{i}^{2} \circ p r_{i}^{\infty}(i \in \mathbb{N})$ are $v^{T}$-integrable over $Y^{T}$, and

$$
\begin{equation*}
\int_{Y^{T}} f_{i} \circ p r_{i}^{\infty} d v^{T}=\int_{Y_{i}} f_{i} d v_{i}=\int_{Y_{1}} f_{1} d v_{1} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{Y^{T}} f_{i}^{2} \circ p r_{i}^{\infty} d v^{T}=\int_{Y_{i}} f_{i}^{2} d v_{i} \tag{15}
\end{equation*}
$$

If $V\left(f_{i} \circ p r_{i}^{\infty}\right)$ means the variance of the random variable $f_{i} \circ p r_{i}^{\infty}(i \in \mathbb{N})$, then by using (14), (15) and (13), we have that

$$
\sum_{i=1}^{\infty} \frac{V\left(f_{i} \circ p r_{i}^{\infty}\right)}{i^{2}}=\sum_{i=1}^{\infty} \frac{1}{i^{2}}\left(\int_{Y_{i}} f_{i}^{2} d v_{i}-\left(\int_{Y_{1}} f_{1} d v_{1}\right)^{2}\right)<\infty
$$

It is easy to verify that the random variables $f_{i} \circ p r_{i}^{\infty}(i \in \mathbb{N})$ are independent. Now, Kolmogorov's criterion (see [1]) implies that the sequence $\left(f_{i} \circ p r_{i}^{\infty}\right)_{i \in \mathbb{N}}$ of random variables obeys the strong law of large numbers, that is

$$
\begin{align*}
& \qquad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{\infty}=\int_{Y_{1}} f_{1} d v_{1} \quad v^{T} \text {-almost everywhere on } Y^{T}  \tag{16}\\
& \text { If } \int_{Y_{1}} f_{1} d v_{1} \text { is an interior point of } I \text {, then the continuity of } p \text { at } \int_{Y_{1}} f_{1} d v_{1} \text { and (16) }
\end{align*}
$$ yield that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} p \circ\left(\frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{\infty}\right)=p\left(\int_{Y_{1}} f_{1} d v_{1}\right) \quad v^{T} \text {-almost everywhere on } Y^{T} \tag{17}
\end{equation*}
$$

Suppose $\int_{Y_{1}} f_{1} d v_{1}$ is either the left-hand endpoint or the right-hand endpoint of $I$. In either case

$$
f_{i}=\int_{Y_{1}} f_{1} d v_{1} \quad v_{i} \text {-almost everywhere on } Y_{i} \quad i \in \mathbb{N}
$$

hence

$$
f_{i} \circ p r_{i}^{\infty}=\int_{Y_{1}} f_{1} d v_{1} \quad v^{T} \text {-almost everywhere on } Y^{T}, \quad i \in \mathbb{N}
$$

and this justifies (17).
Since $p$ is bounded on $I$, it follows from (17) and Lebesgue's convergence theorem that

$$
\lim _{n \rightarrow \infty} \int_{Y^{T}} p \circ\left(\frac{1}{n} \sum_{i=1}^{n} f_{i} \circ p r_{i}^{\infty}\right) d v^{T}=p\left(\int_{Y_{1}} f_{1} d v_{1}\right)
$$

thus we can apply Lemma 2.2 (b).
(b) In this case the proof of (a) also works if instead of Kolmogorov's criterion Kolmogorov's law of large numbers (see [1]) is used, since the random variables $f \circ p r_{i}^{\infty}$ $(i \in \mathbb{N})$ are independent, $v^{T}$-integrable over $Y^{T}$, and identically distributed.

The whole theorem is proved.

## 3. Proofs of the main results

Let us now prove Theorem 1.1.
Proof. By Lemma 2.1 (a) and (b), the functions

$$
\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right) \quad \text { and } \quad q \circ\left(\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right)\right)
$$

are $v^{T}$-integrable over $Y^{T}$. An application of Theorem A now yields that

$$
q\left(\int_{Y^{T}}\left(\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right)\right) d v^{T}\right) \leqslant \int_{Y^{T}}\left(q \circ\left(\sum_{i=1}^{n} p_{i}\left(f_{i} \circ p r_{i}^{n}\right)\right) d v^{T}\right)
$$

The first inequality in (4) follows from this, by (9).
It remains to prove the second inequality in (4). By Lemma 2.1 (a) (replaced $f_{i}$ by $\left.q \circ f_{i}\right)$, the function $q \circ\left(f_{i} \circ p r_{i}^{n}\right)$ is $v^{T}$-integrable over $Y^{T}(i=1, \ldots, n)$, and

$$
\int_{Y^{T}} q \circ\left(f_{i} \circ p r_{i}^{n}\right) d v^{T}=\int_{Y_{i}} q \circ f_{i} d v_{i}
$$

Applying this and taking account of the convexity of $q$ on $I$, we calculate

$$
\begin{gathered}
\int_{Y^{T}} q\left(\sum_{i=1}^{n} p_{i} f_{i}\left(y_{i}\right)\right) d v^{T}\left(y_{1}, \ldots, y_{n}\right) \leqslant \int_{Y^{T}} \sum_{i=1}^{n} p_{i} q\left(f_{i}\left(y_{i}\right)\right) d v^{T}\left(y_{1}, \ldots, y_{n}\right) \\
=\sum_{i=1}^{n} p_{i} \int_{Y_{i}} q \circ f_{i} d v_{i}
\end{gathered}
$$

and this completes the proof.
Next, we prove Theorem 1.2.
Proof. This is an immediate consequence of Lemma 2.2 (b), since $q$ is continuous at every interior point of $I$.

We are now in a position to prove Theorem 1.3.
Proof. (a) This is an immediate consequence of Theorem 1.1.
(b) Since $q$ is convex on $I$

$$
\begin{array}{rl}
\int_{X^{n+1}} & q\left(\frac{1}{n+1} \sum_{i=1}^{n+1} f\left(x_{i}\right)\right) d \mu^{n+1}\left(x_{1}, \ldots, x_{n+1}\right) \\
& =\int_{X^{n+1}} q\left(\frac{1}{n+1} \sum_{i=1}^{n+1}\left(\frac{1}{n} \sum_{j \in\{1, \ldots, n+1\} \backslash\{i\}} f\left(x_{j}\right)\right)\right) d \mu^{n+1}\left(x_{1}, \ldots, x_{n+1}\right) \\
& \leqslant \int_{X^{n+1}} \frac{1}{n+1} \sum_{i=1}^{n+1} q\left(\frac{1}{n} \sum_{j \in\{1, \ldots, n+1\} \backslash\{i\}} f\left(x_{j}\right)\right) d \mu^{n+1}\left(x_{1}, \ldots, x_{n+1}\right) .
\end{array}
$$

By the Fubini's theorem (see Lemma 2.3 (b)), the right-hand side of the previous inequality can be written in the form

$$
\begin{aligned}
& \frac{1}{n+1} \sum_{i=1}^{n+1} \int_{X^{n}}\left(\int_{X} q\left(\frac{1}{n} \sum_{j \in\{1, \ldots, n+1\} \backslash\{i\}} f\left(x_{j}\right)\right) d \mu\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right) \\
& \quad=\frac{1}{n+1} \sum_{i=1}^{n+1} \int_{X^{n}} q\left(\frac{1}{n} \sum_{j \in\{1, \ldots, n+1\} \backslash\{i\}} f\left(x_{j}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n+1}\right) \\
& \quad=\int_{X^{n}} q\left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

confirming the first inequality in (7).
Finally, we prove the second inequality in (7). Let $\pi_{i}(j)$ be the unique number from $\{1, \ldots, n\}$ for which

$$
\pi_{i}(j) \equiv i+j-1 \quad(\bmod n), \quad i, j=1, \ldots, n
$$

Then the functions $\pi_{i}(i=1, \ldots, n)$ are permutations of the numbers $1, \ldots, n$. Clearly, $\sum_{j=1}^{n} p_{\pi_{i}(j)}=1(i=1, \ldots, n)$, and $\pi_{i}(j)=\pi_{j}(i), i, j=1, \ldots, n$.

The convexity of $q$ on $I$ implies that

$$
\begin{align*}
\int_{X^{n}} q & \left(\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)  \tag{18}\\
& =\int_{X^{n}} q\left(\frac{1}{n} \sum_{i=1}^{n}\left(\sum_{j=1}^{n} p_{\pi_{i}(j)} f\left(x_{i}\right)\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \\
& =\int_{X^{n}} q\left(\frac{1}{n} \sum_{j=1}^{n}\left(\sum_{i=1}^{n} p_{\pi_{j}(i)} f\left(x_{i}\right)\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \\
& \leqslant \int_{X^{n}} \sum_{j=1}^{n} \frac{1}{n} q\left(\sum_{i=1}^{n} p_{\pi_{j}(i)} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \\
& =\sum_{j=1}^{n} \frac{1}{n} \int_{X^{n}} q\left(\sum_{i=1}^{n} p_{\pi_{j}(i)} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right)
\end{align*}
$$

It follows from Lemma 2.3 (a) that

$$
\begin{aligned}
\int_{X^{n}} q & \left(\sum_{i=1}^{n} p_{\pi_{j}(i)} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right) \\
& =\int_{X^{n}} q\left(\sum_{i=1}^{n} p_{i} f\left(x_{i}\right)\right) d \mu^{n}\left(x_{1}, \ldots, x_{n}\right), \quad(j=1, \ldots, n)
\end{aligned}
$$

This fact and (18) yields the result, bringing the proof to an end.
(c) It comes from Lemma 2.4 (b), since $q$ is continuous at every interior point of $I$.

## 4. An application

Let $I \subset \mathbb{R}$ be an interval, and let $q: I \rightarrow \mathbb{R}$ be a convex function on $I$. Suppose $Y_{i}:=\left\{1, \ldots, k_{i}\right\} \quad(i \in \mathbb{N}), \mathscr{B}_{i}$ is the power set of $Y_{i}(i \in \mathbb{N})$, and $v_{i}(\{j\}):=r_{i j} \geqslant 0$ $\left(i \in \mathbb{N}, j=1, \ldots, k_{i}\right)$ such that $\sum_{j=1}^{k_{i}} r_{i j}=1(i \in \mathbb{N})$. Let $f_{i}(j):=v_{i j} \in I \quad(i \in \mathbb{N}, j=$ $\left.1, \ldots, k_{i}\right)$.

Suppose that for a fixed $n \in \mathbb{N}, p_{1}, \ldots, p_{n}$ are nonnegative numbers with $p_{1}+$
$\ldots+p_{n}=1$. Now inequality (4) gives that

$$
\begin{align*}
q\left(\sum_{i=1}^{n} p_{i}\left(\sum_{j=1}^{k_{i}} r_{i j} v_{i j}\right)\right) & \leqslant \sum_{\left(j_{1}, \ldots, j_{n}\right) \in Y\{1, \ldots, n\}} q\left(\sum_{i=1}^{n} p_{i} v_{i j_{i}}\right) r_{1 j_{1}} \ldots r_{n j_{n}}  \tag{19}\\
& \leqslant \sum_{i=1}^{n} p_{i}\left(\sum_{j=1}^{k_{i}} r_{i j} q\left(v_{i j}\right)\right)
\end{align*}
$$

which generalizes (3) (except the second member).
If $q$ is bounded on $I$ and

$$
\begin{equation*}
\sum_{j=1}^{k_{i}} r_{i j} v_{i j}=m, \quad i \in \mathbb{N} \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{i^{2}}\left(\sum_{j=1}^{k_{i}} r_{i j} v_{i j}^{2}\right)<\infty \tag{21}
\end{equation*}
$$

then it comes from Theorem 1.2 that

$$
\lim _{n \rightarrow \infty} \sum_{\left(j_{1}, \ldots, j_{n}\right) \in Y\{1, \ldots, n\}} q\left(\frac{1}{n} \sum_{i=1}^{n} v_{i j_{i}}\right) r_{1 j_{1}} \ldots r_{n j_{n}}=q(m)
$$

Especially, suppose $q:=-\ln , p_{i}>0(i=1, \ldots, n), r_{i j}>0$ and $v_{i j}>0(i \in \mathbb{N}$, $\left.j=1, \ldots, k_{i}\right)$. Then (19) yields that

$$
\begin{aligned}
-\ln \left(\sum_{i=1}^{n} p_{i}\left(\sum_{j=1}^{k_{i}} r_{i j} v_{i j}\right)\right) & \leqslant-\ln \left(\prod_{\left(j_{1}, \ldots, j_{n}\right) \in Y^{\{1, \ldots, n\}}}\left(\sum_{i=1}^{n} p_{i} v_{i j_{i}}\right)^{r_{1 j_{1} \ldots} \ldots r_{n j}}\right) \\
& \leqslant-\ln \left(\prod_{i=1}^{n}\left(\left(\prod_{j=1}^{k_{i}} v_{i j}^{r_{i j}}\right)^{p_{i}}\right)\right)
\end{aligned}
$$

which shows the next inequality

$$
\begin{align*}
\sum_{i=1}^{n} p_{i}\left(\sum_{j=1}^{k_{i}} r_{i j} v_{i j}\right) & \geqslant \prod_{\left(j_{1}, \ldots, j_{n}\right) \in Y^{\{1, \ldots, n\}}}\left(\sum_{i=1}^{n} p_{i} v_{i j_{i}}\right)^{r_{1 j_{1}} \ldots r_{n j_{n}}}  \tag{22}\\
& \geqslant \prod_{i=1}^{n}\left(\left(\prod_{j=1}^{k_{i}} v_{i j}^{r_{i j}}\right)^{p_{i}}\right)
\end{align*}
$$

Further, if there are positive numbers $a$ and $b$ such that

$$
a \leqslant v_{i j} \leqslant b, \quad i \in \mathbb{N}, \quad j=1, \ldots, k_{i}
$$

and (20) holds (obviously, (21) satisfies too), then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \prod_{\left(j_{1}, \ldots, j_{n}\right) \in Y\{1, \ldots, n\}}\left(\frac{1}{n} \sum_{i=1}^{n} v_{i j_{i}}\right)^{r_{1 j_{1}} \ldots r_{n j_{n}}}=m \tag{23}
\end{equation*}
$$

## REFERENCES

[1] H. Bauer, Probability theory, de Gruyter Stud. Math. 23. Walter de Gruyter, Berlin-New York, 1996.
[2] S. S. Dragomir, A further improvement of Jensen's inequality, Tamkang J. Math., 25, 1 (1994), 29-36.
[3] E. Hewitt and K. R. Stromberg, Real and abstract analysis, Graduate Text in Mathematics 25, Springer-Verlag, Berlin-Heidelberg-New York, 1965.
[4] J. E. Pečarić and S. S. Dragomir, A refinements of Jensen inequality and applications, Studia Univ. Babeş-Bolyai, Mathematica, 24, 1 (1989), 15-19.
[5] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.
e-mail: lhorvath@almos.uni-pannon.hu


[^0]:    Mathematics subject classification (2000): 26D15, 60E15.
    Keywords and phrases: products of probability spaces, the classical Jensen's inequality.
    Supported by Hungarian National Foundation for Scientific Research Grant No. K73274.

