SCHUR CONVEXITY AND SCHUR-GEOMETRICALLY CONCAVITY OF GENERALIZED EXPONENT MEAN

DA-MAO LI AND HUAN-NAN SHI

(Communicated by G. Toader)

Abstract. The monotonicity, the Schur-convexity and the Schur-geometrically convexity with variables (x,y) in \mathbb{R}^2_{++} for fixed *a* of the generalized exponent mean $I_a(x,y)$ is proved. Besides, the monotonicity with parameters *a* in \mathbb{R} for fixed (x,y) of $I_a(x,y)$ is discussed by using the hyperbolic composite function. Furthermore, some new inequalities are obtained.

1. Introduction

Throughout the paper we denote the set of the real numbers, the nonnegative real numbers and the positive real numbers by \mathbb{R}, \mathbb{R}_+ and \mathbb{R}_{++} respectively.

Let $(a,b) \in \mathbb{R}^2$, $(x,y) \in \mathbb{R}^2_{++}$. The extended mean (or Stolarsky mean) of (x,y) is defined in [1, p. 43] as

$$E(a,b;x,y) = \begin{cases} \left(\frac{b}{a} \cdot \frac{y^a - x^a}{y^b - x^b}\right)^{1/(a-b)}, & ab(a-b)(x-y) \neq 0, \\ \left(\frac{1}{a} \cdot \frac{y^a - x^a}{\ln y - \ln x}\right)^{1/a}, & a(x-y) \neq 0, \ b = 0; \\ \frac{1}{e^{1/a}} \left(\frac{x^{x^a}}{y^{y^a}}\right)^{1/(x^a - y^a)}, & a(x-y) \neq 0, \ a = b; \\ \sqrt{xy}, & a = b = 0, \ x \neq y; \\ x, & x = y. \end{cases}$$

In particular, for $a \neq 0$,

$$E(a,a;x,y) = \begin{cases} \frac{1}{e^{1/a}} \left(\frac{x^{x^a}}{y^{y^a}}\right)^{1/(x^a - y^a)}, & x \neq y; \\ x, & x = y \end{cases}$$

is called the generalized exponent or identric mean, in symbols $I_a(x,y)$.

The Schur-convexity of the extended mean E(r,s;x,y) with (x,y) was discussed in [2] and the following conclusion is obtained:

© EXIV, Zagreb Paper JMI-03-22

Mathematics subject classification (2000): 26D15, 26A51.

Keywords and phrases: Generalized exponent mean, monotonicity, Schur-convexity, Schurgeometrically concavity inequality, hyperbolic function.

The authors are supported in part by the Scientific Research Common Program of Beijing Municipal Commission of Education (KM200611417009).

THEOREM A. For fixed $(a,b) \in \mathbb{R}^2$,

- (i) if 2 < 2a < b or $2 \leq 2b \leq a$, then E(a,b;x,y) is Schur-convex with (x,y) on \mathbb{R}^2_{++} ,
- (*ii*) *if* $(a,b) \in \{a < b \le 2a, 0 < a \le 1\} \cup \{b < a \le 2b, 0 < b \le 1\} \cup \{0 < b < a \le 1\} \cup \{0 < a < b \le 1\} \cup \{b \le 2a < 0\} \cup \{a \le 2b < 0\}, then E(a,b;x,y) is Schurconcave with (x,y) on \mathbb{R}^2_{++}.$

But this conclusion is not related to the case a = b. In other words, the Schurconvexity of the generalized exponent mean $I_a(x,y)$ with (x,y) is not discussed in [2].

In this paper, the monotonicity, the Schur-convexity and the Schur-geometrically convexity with variables (x, y) in \mathbb{R}^2_{++} for fixed *a* of the generalized exponent mean $I_a(x, y)$ is proved. Besides, the monotonicity with parameters *a* in \mathbb{R} for fixed (x, y) of $I_a(x, y)$ is discussed by using the hyperbolic composite function. Furthermore, some new inequalities are obtained.

2. Definitions and Lemmas

We need the following definitions and lemmas.

DEFINITION 1. ([3, 4]) Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n$.

- (*i*) *x* is said to be majorized by *y* (in symbols $x \prec y$) if $\sum_{i=1}^{k} x_{[i]} \leq \sum_{i=1}^{k} y_{[i]}$ for k = 1, 2, ..., n-1 and $\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i$, where $x_{[1]} \geq \cdots \geq x_{[n]}$ and $y_{[1]} \geq \cdots \geq y_{[n]}$ are rearrangements of *x* and *y* in a descending order.
- (*ii*) $x \ge y$ means $x_i \ge y_i$ for all i = 1, 2, ..., n. Let $\Omega \subset \mathbb{R}^n$. The function $\varphi \colon \Omega \to \mathbb{R}$ is said to be increasing if $x \ge y$ implies $\varphi(x) \ge \varphi(y)$. φ is said to be decreasing if and only if $-\varphi$ is increasing.
- (*iii*) $\Omega \subset \mathbb{R}^n$ is called a convex set if $(\alpha x_1 + \beta y_1, \dots, \alpha x_n + \beta y_n) \in \Omega$ for every *x* and $y \in \Omega$, where α and $\beta \in [0, 1]$ with $\alpha + \beta = 1$.
- (*iv*) let $\Omega \subset \mathbb{R}^n$. The function $\varphi \colon \Omega \to \mathbb{R}$ be said to be a Schur-convex function on Ω if $x \prec y$ on Ω implies $\varphi(x) \leq \varphi(y)$. φ is said to be a Schur-concave function on Ω if and only if $-\varphi$ is Schur-convex.

DEFINITION 2. ([5, 6]) Let $x = (x_1, ..., x_n)$ and $y = (y_1, ..., y_n) \in \mathbb{R}^n_{++}$.

- (*i*) $\Omega \subset \mathbb{R}^n_{++}$ is called a geometrically convex set if $(x_1^{\alpha} y_1^{\beta}, \dots, x_n^{\alpha} y_n^{\beta}) \in \Omega$ for all x and $y \in \Omega$, where α and $\beta \in [0, 1]$ with $\alpha + \beta = 1$.
- (*ii*) Let $\Omega \subset \mathbb{R}^n_{++}$. The function $\varphi \colon \Omega \to \mathbb{R}_+$ is said to be Schur-geometrically convex function on Ω if $(\ln x_1, \dots, \ln x_n) \prec (\ln y_1, \dots, \ln y_n)$ on Ω implies $\varphi(x) \leq \varphi(y)$. The function φ is said to be a Schur-geometrically concave on Ω if and only if $-\varphi$ is Schur-geometrically convex.

DEFINITION 3. ([4]) (*i*) $\Omega \subset \mathbb{R}^n$ is called symmetric set, if $x \in \Omega$ implies $Px \in \Omega$ for every $n \times n$ permutation matrix *P*.

(*ii*) The function $\varphi : \Omega \to \mathbb{R}$ is called symmetric if for every permutation matrix *P*, $\varphi(Px) = \varphi(x)$ for all $x \in \Omega$.

LEMMA 1. ([3, 4]) A function $\varphi(x)$ is increasing if and only if $\nabla \varphi(x) \ge 0$ for $x \in \Omega$, where $\Omega \subset \mathbb{R}^n$ is an open set, $\varphi : \Omega \to R$ is differentiable, and

$$abla \phi(x) = \left(\frac{\partial \phi(x)}{\partial x_1}, \dots, \frac{\partial \phi(x)}{\partial x_n}\right) \in \mathbb{R}^n.$$

LEMMA 2. ([3, 4]) Let $\Omega \subset \mathbb{R}^n$ be a symmetric set and with a nonempty interior Ω^0 , $\varphi : \Omega \to \mathbb{R}$ be a continuous on Ω and differentiable in Ω^0 . Then φ is the Schur-convex(Schur-concave) function, if and only if φ is symmetric on Ω and

$$(x_1 - x_2) \left(\frac{\partial \varphi}{\partial x_1} - \frac{\partial \varphi}{\partial x_2} \right) \ge 0 (\leqslant 0)$$

holds for any $x = (x_1, x_2, \cdots, x_n) \in \Omega^0$.

LEMMA 3. ([5, p. 108]) Let $\Omega \subset \mathbb{R}^n_{++}$ be symmetric with a nonempty interior geometrically convex set. Let $\varphi : \Omega \to \mathbb{R}_+$ be continuous on Ω and differentiable in Ω^0 . If φ is symmetric on Ω and

$$(\ln x_1 - \ln x_2) \left(x_1 \frac{\partial \varphi}{\partial x_1} - x_2 \frac{\partial \varphi}{\partial x_2} \right) \ge 0 (\leqslant 0)$$

holds for any $x = (x_1, x_2, \dots, x_n) \in \Omega^0$, then φ is a Schur-geometrically convex (Schurgeometrically concave) function.

LEMMA 4. Let $x \leq y$, u(t) = tx + (1-t)y, v(t) = ty + (1-t)x. If $1/2 \leq t_2 \leq t_1 \leq 1$ or $0 \leq t_1 \leq t_2 \leq 1/2$, then

$$(u(t_2), v(t_2)) \prec (u(t_1), v(t_1)) \prec (x, y).$$
(1)

Proof. Case 1. When $1/2 \le t_2 \le t_1 \le 1$, it is easy to see that $u(t_1) \ge v(t_1)$, $u(t_2) \ge v(t_2)$, $u(t_1) \ge u(t_2)$ and $u(t_2) + v(t_2) = u(t_1) + v(t_1) = x + y$, that is (1) holds.

Case 2. When $0 \le t_1 \le t_2 \le 1$, then $1/2 \le 1 - t_2 \le 1 - t_1 \le 1$, by the Case 1, it follows

$$(u(1-t_2),v(1-t_2)) \prec (u(1-t_1),v(1-t_1)),$$

i.e. $(u(t_2), v(t_2)) \prec (u(t_1), v(t_1))$. \Box

LEMMA 5. ([4, 7]) Let $0 \leq x \leq y$, $c \geq 0$. Then

$$\left(\frac{x+c}{x+y+2c}, \frac{y+c}{x+y+2c}\right) \prec \left(\frac{x}{x+y}, \frac{y}{x+y}\right).$$
(2)

LEMMA 6. For x in \mathbb{R} with $x \neq 0$, we have

$$\sinh^2 x > x^2. \tag{3}$$

Proof. Let $f(x) = \sinh^2 x - x^2$. Then $f'(x) = \sinh 2x - 2x$. Since $f''(x) = 2(\cosh 2x - 1) > 0$ for $x \in \mathbb{R}$ with $x \neq 0$, f'(x) is strictly increasing. It follows that f'(x) > f'(0) = 0, so f(x) > f(0) = 0 for x > 0. As f(-x) = f(x), (3) holds for any $x \in \mathbb{R}$ with $x \neq 0$. \Box

LEMMA 7. Let (x,y) and $(a,b) \in \mathbb{R}^2_{++}$ with x < y, a < b, a+b=1. Then

$$ax + by > \frac{x + y}{2},\tag{4}$$

$$bx + ay < \frac{x + y}{2},\tag{5}$$

Proof. As

$$ax + by - \frac{x+y}{2} = \left(a - \frac{1}{2}\right)x + \left(b - \frac{1}{2}\right)y$$

= $\left(1 - b - \frac{1}{2}\right)x + \left(b - \frac{1}{2}\right)y = -\left(b - \frac{1}{2}\right)x + \left(b - \frac{1}{2}\right)y$
= $\left(b - \frac{1}{2}\right)(y - x) > 0,$

(4) holds. (5) can be proved similarly. \Box

LEMMA 8. Let $(x,y) \in \mathbb{R}^2_{++}$ and $(a,b) \in \mathbb{R}^2$ with $ab(a-b)(x-y) \neq 0$. Then

$$E(a,b;x,y) = \sqrt{xy} \left(\frac{b\sinh(a\ln\sqrt{u})}{a\sinh(b\ln\sqrt{u})}\right)^{\frac{1}{a-b}},$$
(6)

where u = y/x.

Proof. Without loss of generality, we may assume 0 < x < y. Then

$$\begin{split} E(a,b;x,y) &= \left(\frac{b}{a} \cdot \frac{y^a - x^a}{y^b - x^b}\right)^{\frac{1}{a-b}} = \left(\frac{b}{a} \cdot \frac{u^a - 1}{u^b - 1} x^{a-b}\right)^{1/(a-b)} \\ &= x \left(\frac{b}{a} \cdot \frac{e^{2a\ln\sqrt{u}} - 1}{e^{2b\ln\sqrt{u}} - 1}\right)^{\frac{1}{a-b}} = x \left(\frac{b}{a} \cdot \frac{\frac{e^{2a\ln\sqrt{u}} - 1}{2e^{b\ln\sqrt{u}} - 1}}{2e^{b\ln\sqrt{u}}} e^{(a-b)\ln\sqrt{u}}\right)^{\frac{1}{a-b}} \\ &= x \sqrt{u} \left(\frac{b\sinh(a\ln\sqrt{u})}{a\sinh(b\ln\sqrt{u})}\right)^{\frac{1}{a-b}} = \sqrt{xy} \left(\frac{b\sinh(a\ln\sqrt{u})}{a\sinh(b\ln\sqrt{u})}\right)^{\frac{1}{a-b}}. \end{split}$$

LEMMA 9. Let $(x,y) \in \mathbb{R}^2_{++}$ with $x \neq y$, and let $a \in \mathbb{R}$ with $a \neq 0$. Then

$$I_a(x,y) = \sqrt{xy} \exp\left\{\frac{t}{\tanh(at)} - \frac{1}{a}\right\}$$
(7)

where $t = \ln \sqrt{u}$, u = y/x.

Proof. For $b \in \mathbb{R}$ with $b \neq a$, let

$$v = \frac{b\sinh(a\ln\sqrt{u}) - a\sinh(b\ln\sqrt{u})}{a\sinh(b\ln\sqrt{u})}$$

Then from Lemma 8 we have

$$\begin{split} I_{a}(x,y) &= \lim_{b \to a} E(a,b;x,y) = \lim_{b \to a} \sqrt{xy} \left(\frac{b \sinh(a \ln \sqrt{u})}{a \sinh(b \ln \sqrt{u})} \right)^{\frac{1}{a - b}} \\ &= \sqrt{xy} \lim_{b \to a} \left[(1+v)^{\frac{1}{v}} \right]^{\frac{b \sinh(a \ln \sqrt{u}) - a \sinh(b \ln \sqrt{u})}{a - b}} \\ &= \sqrt{xy} \exp \left\{ \lim_{b \to a} \frac{b \sinh(a \ln \sqrt{u}) - a \sinh(b \ln \sqrt{u})}{a - b} \frac{1}{a \sinh(b \ln \sqrt{u})} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{1}{a \sinh(a \ln \sqrt{u})} \lim_{b \to a} \frac{b \sinh(a \ln \sqrt{u}) - a \sinh(b \ln \sqrt{u})}{a - b} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{1}{a \sinh(a \ln \sqrt{u})} \lim_{b \to a} \frac{\sinh(a \ln \sqrt{u}) - a \sinh(b \ln \sqrt{u})}{a - b} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{1}{a \sinh(a \ln \sqrt{u})} \lim_{b \to a} \frac{\sinh(a \ln \sqrt{u}) - a \sinh(b \ln \sqrt{u})}{a - b} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{1}{a \sinh(a \ln \sqrt{u})} \lim_{b \to a} \frac{\sinh(a \ln \sqrt{u}) - a (\ln \sqrt{u}) \cosh(b \ln \sqrt{u})}{a - b} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{a (\ln \sqrt{u}) \cosh(a \ln \sqrt{u}) - \sinh(a \ln \sqrt{u})}{a \sinh(a \ln \sqrt{u})} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{(a t) \cosh(a t) - \sinh(a t)}{a \sinh(a t)} \right\} \\ &= \sqrt{xy} \exp \left\{ \frac{t}{\tanh(a t)} - \frac{1}{a} \right\}. \qquad \Box$$

3. Main results and their proofs

THEOREM 1. For fixed $(x,y) \in \mathbb{R}^2_{++}$, $I_a(x,y)$ is increasing with a on \mathbb{R} .

Proof. For $a \neq 0$, set $f(a) = \frac{t}{\tanh(at)} - \frac{1}{a}$, where $t = \ln \sqrt{u}$, u = y/x. Then

$$f'(a) = \frac{-t^2}{\tanh^2(at)\cosh^2(at)} + \frac{1}{a^2} = \frac{-t^2}{\sinh^2(at)} + \frac{1}{a^2} = \frac{\sinh^2(at) - (at)^2}{a^2\sinh^2(at)}.$$

Thus from Lemma 6 it follows that f'(a) > 0, that is f(a) is increasing on \mathbb{R} with a and

$$I_a(x,y) = \sqrt{xy} \exp\left\{\frac{t}{\tanh(at)} - \frac{1}{a}\right\} = \sqrt{xy}e^{f(a)}$$

is increasing on \mathbb{R} with a. The proof of Theorem 1 is completed. \Box

THEOREM 2. For fixed $a \in \mathbb{R}$, $I_a(x,y)$ is increasing with (x,y) on \mathbb{R}^2_{++} .

Proof. Let $A = x^a$, $B = y^a$. Then

$$\ln I_a(x,y) = \frac{x^a \ln x - y^a \ln y}{x^a - y^a} - \frac{1}{a} = \frac{1}{a} \left(\frac{A \ln A - B \ln B}{A - B} - 1 \right).$$

$$\frac{\partial \ln I_a}{\partial x} = \frac{\partial \ln I_a}{\partial A} \frac{dA}{dx} = \frac{1}{a} \frac{\partial}{\partial a} \left(\frac{A \ln A - B \ln B}{A - B} - 1 \right) a x^{a-1}$$

$$= \frac{A}{x} \left[\frac{(A - B) - B(\ln A - \ln B)}{(A - B)^2} \right]$$

$$= \frac{A}{x(A - B)} \left(1 - \frac{\ln A - \ln B}{A - B} \cdot B \right)$$

$$= \frac{A}{x(A - B)} \left(1 - \frac{B}{\xi} \right) \quad \text{(where } \xi \text{ lies between } A \text{ and } B \text{)}$$

$$= \frac{A}{x(A - B)} \frac{\xi - B}{\xi} = \frac{A}{x\xi} \cdot \frac{\xi - B}{A - B} \ge 0;$$

Similarly can be proved that $\frac{\partial \ln I_a}{\partial y} \ge 0$.

By Lemma 1, it follows that $\ln I_a(x,y)$ is increasing with (x,y) on \mathbb{R}^2_{++} , and then $I_a(x,y)$ is increasing with (x,y) on \mathbb{R}^2_{++} too.

The proof of Theorem 2 is completed. \Box

THEOREM 3. If $0 < a \leq 1$, then $I_a(x,y)$ is Schur-concave with (x,y) on \mathbb{R}^2_{++} .

Proof. For $(x,y) \in \mathbb{R}^2_{++}$, $0 < a \leq 1$, let $A = x^a$, $B = y^a$. When $x \neq y$, we have

$$\frac{\partial \ln I_a}{\partial x} = \frac{A}{x} \cdot \frac{(A-B) - B(\ln A - \ln B)}{(A-B)^2}$$
$$\frac{\partial \ln I_a}{\partial y} = \frac{B}{y} \cdot \frac{A(\ln A - \ln B) - (A-B)}{(A-B)^2}$$

and then

$$\Delta := (x - y) \left(\frac{\partial \ln I_a}{\partial x} - \frac{\partial \ln I_a}{\partial y} \right)$$
$$= (x - y) \left[\frac{A}{x} \cdot \frac{(A - B) - B(\ln A - \ln B)}{(A - B)^2} - \frac{B}{y} \cdot \frac{A(\ln A - \ln B) - (A - B)}{(A - B)^2} \right]$$

$$\begin{split} &= \frac{x-y}{(A-B)^2} \left[\frac{A}{x} (A-B) - \frac{AB}{x} (\ln A - \ln B) - \frac{AB}{y} (\ln A - \ln B) + \frac{B}{y} (A-B) \right] \\ &= \frac{x-y}{(A-B)^2} \left[\left(\frac{A}{x} + \frac{B}{y} \right) (A-B) - AB \left(\frac{1}{x} + \frac{1}{y} \right) (\ln A - \ln B) \right] \\ &= \frac{x-y}{A-B} \cdot \frac{\ln A - \ln B}{A-B} \left[\left(\frac{A}{x} + \frac{B}{y} \right) \frac{A-B}{\ln A - \ln B} - AB \left(\frac{1}{x} + \frac{1}{y} \right) \right] \\ &= \frac{x-y}{A-B} \cdot \frac{\ln A - \ln B}{A-B} \left(\frac{A}{x} + \frac{B}{y} \right) \left[\frac{A-B}{\ln A - \ln B} - \frac{\left(\frac{1}{x} + \frac{1}{y} \right) AB}{\frac{A}{x} + \frac{B}{y}} \right] \\ &= \frac{x-y}{A-B} \cdot \frac{\ln A - \ln B}{A-B} \left(\frac{A}{x} + \frac{B}{y} \right) \left(\frac{x^a - y^a}{\ln x^a - \ln y^a} - \frac{y^{a-1}x^a + x^{a-1}y^a}{x^{a-1} + y^{a-1}} \right) \\ &= \frac{x-y}{A-B} \cdot \frac{\ln A - \ln B}{A-B} \left(\frac{A}{x} + \frac{B}{y} \right) \left[L(x^a, y^a) - \left(\frac{y^{a-1}}{x^{a-1} + y^{a-1}} x^a + \frac{x^{a-1}}{x^{a-1} + y^{a-1}} y^a \right) \right] \end{split}$$

where L denotes the logarithm mean.

Without loss of generality, we may assume 0 < x < y. When 0 < a < 1 we have

$$\frac{y^{a-1}}{x^{a-1} + y^{a-1}} < \frac{x^{a-1}}{x^{a-1} + y^{a-1}}$$

and

$$\frac{y^{a-1}}{x^{a-1}+y^{a-1}} + \frac{x^{a-1}}{x^{a-1}+y^{a-1}} = 1,$$

and then by Lemma 7, it follows that

$$\frac{y^{a-1}}{x^{a-1}+y^{a-1}}x^a + \frac{x^{a-1}}{x^{a-1}+y^{a-1}}y^a > \frac{x^a+y^a}{2} = A(x^a, y^a)$$

Furthermore notice that $L(x^a, y^a) < A(x^a, y^a)$, we have

$$L(x^{a}, y^{a}) - \left(\frac{y^{a-1}}{x^{a-1} + y^{a-1}}x^{a} + \frac{x^{a-1}}{x^{a-1} + y^{a-1}}y^{a}\right) < L(x^{a}, y^{a}) - A(x^{a}, y^{a}) < 0.$$

Hence $\Delta < 0$ for 0 < a < 1. It is easy to see that $\Delta < 0$ for a = 1. By Lemma 2, it follows that for $0 < a \le 1$, $\ln I_a(x, y)$ is Schur-concave on \mathbb{R}^2_{++} with (x, y), and then $I_a(x, y)$ is Schur-concave on \mathbb{R}^2_{++} with (x, y) too.

The proof of Theorem 3 is completed. \Box

THEOREM 4. If a > 0, then $I_a(x, y)$ is Schur-geometrically convex with (x, y) on \mathbb{R}^2_{++} ; If a < 0, then $I_a(x, y)$ is Schur-geometrically concave with (x, y) on \mathbb{R}^2_{++} .

Proof. For $(x,y) \in \mathbb{R}^2_{++}, a \in \mathbb{R}$, let $A = x^a, B = y^a$. When $x \neq y$, we have

$$\frac{\partial \ln I_a}{\partial x} = \frac{A}{x} \cdot \frac{(A-B) - B(\ln A - \ln B)}{(A-B)^2}$$

$$\frac{\partial \ln I_a}{\partial y} = \frac{B}{y} \cdot \frac{A(\ln A - \ln B) - (A - B)}{(A - B)^2}$$

and then

$$\begin{split} \Lambda &:= (x-y) \left(x \frac{\partial \ln I_a}{\partial x} - y \frac{\partial \ln I_a}{\partial y} \right) \\ &= \frac{x-y}{(A-B)^2} \left[A(A-B) - AB(\ln A - \ln B) - AB(\ln A - \ln B) + B(A-B) \right] \\ &= \frac{x-y}{(A-B)^2} \left[(A+B)(A-B) - 2AB(\ln A - \ln B) \right] \\ &= \frac{(x-y)(A+B)(\ln A - \ln B)}{(A-B)^2} \left(\frac{A-B}{\ln A - \ln B} - \frac{2AB}{A+B} \right) \\ &= \frac{(x-y)(A+B)(\ln A - \ln B)}{(A-B)^2} \left(L(A,B) - H(A,B) \right). \end{split}$$

where H denote the harmonic mean.

For $(x,y) \in \mathbb{R}^2_{++}$ with $x \neq y$ and $a \in \mathbb{R}$, we have L(A,B) > H(A,B). If a > 0 < < 0, then $(x-y)(\ln A - \ln B) = a(x-y)(\ln x - \ln y) > 0 < 0$, and then $\Lambda > 0 < 0$. By Lemma 3, it follows that $\ln I_a(x,y)$ is Schur-geometrically convex (concave) on \mathbb{R}^2_{++} with (x,y), and then $I_a(x,y)$ is Schur-geometrically convex (concave) on \mathbb{R}^2_{++} with (x,y) too.

The proof of Theorem 4 is completed. \Box

4. Applications

THEOREM 5. Let $0 < a \le 1$, and let $x \le y, u(t) = tx + (1-t)y, v(t) = ty + (1-t)x$. If $1/2 \le t_2 \le t_1 \le 1$ or $0 \le t_1 \le t_2 \le 1/2$, then we have

$$G(x,y) \leq I_a \left(x^{u(t_1)} y^{v(t_1)}, x^{v(t_1)} y^{u(t_1)} \right) \leq I_a \left(x^{u(t_2)} y^{v(t_2)}, x^{v(t_2)} y^{u(t_2)} \right)$$

$$\leq I_a(x,y) \leq I_a \left(u(t_2), v(t_2) \right) \leq I_a \left(u(t_1), v(t_1) \right) \leq A(x,y).$$
(8)

Proof. Combining Lemma 4 with Theorem 3, we have

$$I_a(x,y) \leq I_a(u(t_2),v(t_2)) \leq I_a(u(t_1),v(t_1))$$

$$\leq I_a((x+y)/2,(x+y)/2) = A(x,y).$$

On the other hand, since

$$(\ln\sqrt{xy},\ln\sqrt{xy}) \prec \left(\ln x^{u(t_1)}y^{v(t_1)},\ln x^{v(t_1)}y^{u(t_1)}\right)$$
$$\prec \left(\ln x^{u(t_2)}y^{v(t_2)},\ln x^{v(t_2)}y^{u(t_2)}\right) \prec (\ln x,\ln y),$$

from Theorem 4, it follows

$$G(x,y) = I_a(\sqrt{xy}, \sqrt{xy}) \leqslant I_a\left(x^{u(t_1)}y^{v(t_1)}, x^{v(t_1)}y^{u(t_1)}\right)$$

224

$$\leq I_a\left(x^{u(t_2)}y^{v(t_2)}, x^{v(t_2)}y^{u(t_2)}\right) \leq I_a(x, y).$$

The proof is complete. \Box

THEOREM 6. Let $0 \leq x \leq y$, $c \geq 0$, $0 < a \leq 1$. Then

$$I_a\left(\frac{x+c}{x+y+2c},\frac{y+c}{x+y+2c}\right) \ge I_a\left(\frac{x}{x+y},\frac{y}{x+y}\right).$$
(9)

Proof. By Lemma 5 and Theorem 3, it follows that (9) holds. The proof is complete. \Box

Acknowledgements. The authors are indebted to the referees for their helpful suggestions.

REFERENCES

- [1] K. B. STOLARSKY, Generalizations of the logarithmic mean, Math. Mag., 48, 2 (1975), 87–92.
- [2] HUAN-NAN SHI, SHAN-HE WU AND FENG QI, An alternative note on the Schur-convexity of the extended mean values, Mathematical Inequalities and Applications, **9**, 2 (2006), 219–224.
- [3] BO-YING WANG, Foundations of Majorization Inequalities, Beijing Normal Univ. Press, Beijing, China, 1990. (Chinese)
- [4] A. M. MARSHALL AND I. OLKIN, *Inequalities: theory of majorization and its application*, New York: Academies Press, 1979.
- [5] XIAO-MING ZHANG, Geometrically Convex Functions, Hefei: An'hui University Press, 2004. (Chinese)
- [6] CONSTANTIN P. NICULESCU, Convexity According to the Geometric Mean, Mathematical Inequalities & Applications, 3, 2 (2000), 155–167.
- [7] DA-MAO LI, CHUN GU AND HUAN-NAN SHI, Schur Convexity of the Power-Type Generalization of Heronian Mean, Mathematics in practice and theory, 36, 9 (2006), 387–390. (Chinese)

(Received September 2, 2008)

Da-Mao Li Department of Electronic information Teacher's College Beijing Union University Beijing City, 100011 P.R.China e-mail: sftdamao@buu.com.cn

Huan-Nan Shi Department of Electronic Information Teacher's College Beijing Union University Beijing City, 100011 P.R.China e-mail: shihuannan@yahoo.com.cn shihuannan@263.net sfthuannan@buu.com.cn