THE HIERARCHY OF CONVEXITY AND SOME CLASSIC INEQUALITIES

Gheorghe Toader

Dedicated to Professor Josip Pečarić
on the occasion of his 60th birthday

Abstract

In what follows, a hierarchy of m-convexity is considered: we define m-starshaped functions, m-superadditive functions, Jensen m-convex functions, weak Jensen m-convex functions, Jensen m-superadditive functions, and weak m-superadditive functions. Some inclusions between such classes of functions are established. We also analyze the validity of the HermiteHadamard inequality, and of the Chebyshev-Andersson inequality for m-convex functions.

1. Introduction

Let us consider the sets of continuous, convex, starshaped, and superadditive functions on $[a, b]$ given by:

$$
\begin{gathered}
C[a, b]=\{f:[a, b] \longrightarrow \mathbb{R}, f \quad \text { continuous }\}, \\
K[a, b]=\{f \in C[a, b] ; f(t x+(1-t) y) \leqslant t f(x)+(1-t) f(y), \forall x, y \in[a, b], t \in[0,1]\}, \\
S^{*}[a, b]=\left\{f \in C[a, b] ; \frac{f(x)-f(a)}{x-a} \leqslant \frac{f(y)-f(a)}{y-a}, a<x<y \leqslant b\right\},
\end{gathered}
$$

and

$$
S[a, b]=\{f \in C[a, b] ; f(x)+f(y) \leqslant f(x+y-a)+f(a), \forall x, y, x+y-a \in[a, b]\},
$$

respectively. For $a=0$ we denote by $C(b), K(b), S^{*}(b)$, and $S(b)$ respectively, the corresponding set of functions, restricted also under the condition $f(0)=0$. A. M. Bruckner and E. Ostrow have proven in [1] the strict inclusions:

$$
K(b) \subset S^{*}(b) \subset S(b)
$$

These inclusions, extended with some results of preservation of the above properties by the arithmetic integral mean, are collectively referred to in [6] as the hierarchy of convexity. Simple proofs and generalizations of the results of [1] may be found in [8].

[^0]Let us remark that we can also define a superadditive function by

$$
f(x)+f(y) \leqslant f(x+y-a)+f(a), \forall x, y \in[a, b]
$$

thus assuming $f \in C[a, 2 b-a]$. This is the preferred layout for superadditive functions in what follows.

In [9], one of the many generalizations on the convexity of functions - called m -convexity-was introduced. The set of m-convex functions is defined by:

$$
\begin{gathered}
K_{m}[a, b]=\{f \in C[a, b] ; f(t x+m(1-t) y) \leqslant t f(x)+m(1-t) f(y), \\
\forall x, y \in[a, b], t \in[0,1]\}, m \in[0,1] .
\end{gathered}
$$

If $a=0$ and $f(0) \leqslant 0$, we also obtain a hierarchy of convexity:

$$
K[a, b] \subset K_{m}[a, b] \subset K_{n}[a, b] \subset S^{*}[a, b], \text { for } 1>m>n>0
$$

A much larger generalization of convexity was given in [12]: the function $f:[a, b] \rightarrow \mathbb{R}$ is called (g, h, λ, μ)-convex if

$$
g(f(t x+(1-t) \lambda(y))) \leqslant h(t) g(f(x))+[1-h(t)] \mu(f(y)), \forall x, y \in[a, b], \forall t \in[0,1] .
$$

It is shown that more interesting results can be obtained for $h(t)=t^{\alpha}$, with $\alpha \in[0,1]$. This case was combined with the m-convexity in [5] giving the (α, m)-convexity. In the next paragraph we define a hierarchy of (α, m)-convexity. Taking $\alpha=1$, we obtain a more fruitful hierarchy of m-convexity. Finally we study the Fejér inequality (generalization of the Hermite-Hadamard inequality) and the Chebyshev-Andersson inequality for m-convex functions.

2. A hierarchy of (α, m)-convexity

The set of (α, m)-convex functions is defined by

$$
\begin{gathered}
K_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f(t x+m(1-t) y) \leqslant t^{\alpha} f(x)+m\left(1-t^{\alpha}\right) f(y)\right. \\
\forall x, y \in[a, b], t \in[0,1]\}, m, \alpha \in[0,1]
\end{gathered}
$$

Note that for $t=0$ and $y=a$ we have the condition $f(m a) \leqslant m f(a)$ meaning that the function must be defined on $m a \leqslant a$. In fact, to assure that all the definitions and results that follow are valid we will assume that the functions are defined on $[m a, 2 b-m a]$. Assuming $\alpha \neq 0, m \neq 0$, we define the following sets of functions:

$$
S_{m, \alpha}^{*}[a, b]=\left\{f \in C[m a, 2 b-m a] ; \frac{f(x)-m f(a)}{(x-m a)^{\alpha}} \geqslant \frac{f(z)-m f(a)}{(z-m a)^{\alpha}}, a<z<x \leqslant b\right\}
$$

called (α, m)-starshaped functions;

$$
S_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ;[f(x)-m f(a)](x-m a)^{1-\alpha}+[f(y)-m f(a)](y-m a)^{1-\alpha}\right.
$$

$$
\left.\leqslant[f(x+y-m a)-m f(a)](x+y-2 m a)^{1-\alpha}, \forall x, y \in[a, b]\right\},
$$

called (α, m)-superadditive functions;
$J_{m, \alpha}^{*}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f(2 x-m a)-m f(a) \geqslant 2^{\alpha}[f(x)-m f(a)], \forall x \in[a, b]\right\}$, called Jensen (α, m)-starshaped functions;

$$
\begin{aligned}
& J_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f\left(\frac{m^{\frac{1}{\alpha}} x+m y}{1+m^{\frac{1}{\alpha}}}\right)\right. \\
& \left.\leqslant \frac{m f(x)+m\left[\left(1+m^{\frac{1}{\alpha}}\right)^{\alpha}-m\right] f(y)}{\left(1+m^{\frac{1}{\alpha}}\right)^{\alpha}}, \forall x, y \in[a, b]\right\},
\end{aligned}
$$

called (α, m)-Jensen convex functions;

$$
\begin{gathered}
H_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f(t x) \leqslant\left[m+(t-m)^{\alpha}(1-m)^{1-\alpha}\right] f(x),\right. \\
a \leqslant x \leqslant b, m \leqslant t \leqslant 1\},
\end{gathered}
$$

called (α, m)-subhomogenous functions;

$$
\begin{aligned}
& H_{m, \alpha}^{*}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f\left(\frac{m+m^{\frac{1}{\alpha}}}{1+m^{\frac{1}{\alpha}}} x\right)\right. \\
& \left.\quad \leqslant m\left[1+\frac{1-m}{\left(1+m^{\frac{1}{\alpha}}\right)^{\alpha}}\right] f(x), a \leqslant x \leqslant b\right\},
\end{aligned}
$$

called Jensen (α, m)-subhomogenous functions;

$$
\begin{gathered}
w S_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ;[f(a+t)-m f(a)](a+t-m a)^{1-\alpha}\right. \\
+[f(b-t)-m f(a)] \cdot(b-t-m a)^{1-\alpha} \leqslant[f(b+(1-m) a)-m f(a)](a+b-2 m a)^{1-\alpha}, \\
\forall t \in[0,(b-a) / 2]\},
\end{gathered}
$$

called weak (α, m)-superadditive; and

$$
\begin{gathered}
w J_{m, \alpha}[a, b]=\left\{f \in C[m a, 2 b-m a] ; \frac{m}{\left(1+m^{\frac{1}{\alpha}}\right)^{\alpha}}\left\{f(a+t)+\left[\left(1+m^{\frac{1}{\alpha}}\right)^{\alpha}-m\right] f(b-t)\right\}\right. \\
\left.\geqslant f\left(\frac{m^{\frac{1}{\alpha}}(a+t)+m(b-t)}{1+m^{\frac{1}{\alpha}}}\right), \forall t \in[0,(b-a) / 2]\right\}
\end{gathered}
$$

called weak (α, m)-Jensen convex.
For these sets, we have the following main results.

THEOREM 1. The following inclusions

$$
\begin{gathered}
K_{m, \alpha}[a, b] \subseteq S_{m, \alpha}^{*}[a, b] \subseteq S_{m, \alpha}[a, b] \subseteq J_{m, \alpha}^{*}[a, b], S_{m, \alpha}[a, b] \subseteq w S_{m, \alpha}[a, b] \\
H_{m, \alpha}^{*}[a, b] \supseteq H_{m, \alpha}[a, b] \supseteq K_{m, \alpha}[a, b] \subseteq J_{m, \alpha}[a, b] \subseteq H_{m, \alpha}^{*}[a, b]
\end{gathered}
$$

and

$$
J_{m, \alpha}[a, b] \subseteq w J_{m, \alpha}[a, b]
$$

hold.

Proof. a) Taking $f \in K_{m, \alpha}[a, b]$ and $y=a$ we obtain

$$
f(x t+m(1-t) a)-m f(a) \leqslant t^{\alpha}[f(x)-m f(a)] .
$$

Denoting $x t+m(1-t) y=z$ we prove that $f \in S_{m, \alpha}^{*}[a, b]$.
b) Assuming that $f \in S_{m, \alpha}^{*}[a, b]$ we have

$$
\begin{aligned}
{[f(x+y} & -m a)-m f(a)](x+y-2 m a)^{1-\alpha} \\
& =\frac{f(x+y-m a)-m f(a)}{(x+y-2 m a)^{\alpha}} \cdot(x+y-2 m a) \\
& =\frac{f(x+y-m a)-m f(a)}{(x+y-2 m a)^{\alpha}}(x-m a)+\frac{f(x+y-m a)-m f(a)}{(x+y-2 m a)^{\alpha}}(y-m a) \\
& \geqslant \frac{f(x)-m f(a)}{(x-m a)^{\alpha}}(x-m a)+\frac{f(y)-m f(a)}{(y-m a)^{\alpha}}(y-m a),
\end{aligned}
$$

thus $f \in S_{m, \alpha}[a, b]$.
c) For $f \in S_{m, \alpha}[a, b]$ if we take $x=y$ we obtain

$$
2[f(x)-m f(a)](x-m a)^{1-\alpha} \leqslant[f(2 x-m a)-m f(a)](2 x-2 m a)^{1-\alpha}
$$

implying that $f \in J_{m, \alpha}^{*}[a, b]$.
d) For $f \in S_{m, \alpha}[a, b]$ if we take $x=a-t, y=b-t$ we obtain $f \in w S_{m, \alpha}[a, b]$.
e) If $f \in K_{m, \alpha}[a, b]$ for $t=m^{1 / \alpha} /\left(1+m^{1 / \alpha}\right)$ we deduce that $f \in J_{m, \alpha}[a, b]$.
f) For $f \in J_{m, \alpha}[a, b]$ if we take $x=y$ we obtain that $f \in H_{m, \alpha}^{*}[a, b]$.
g) If $f \in K_{m, \alpha}[a, b]$ for $x=y$ we obtain

$$
f\left(x(m+t(1-m)) \leqslant\left[t^{\alpha}+m\left(1-t^{\alpha}\right)\right] f(x)\right.
$$

and denoting $m+t(1-m)=s$ we deduce that $f \in H_{m, \alpha}[a, b]$.
h) If $f \in H_{m, \alpha}[a, b]$, for $t=\left(m+m^{1 / \alpha}\right) /\left(1+m^{1 / \alpha}\right)$ it follows that $f \in H_{m, \alpha}^{*}[a, b]$.
k) For $f \in J_{m, \alpha}[a, b]$ if we take $x=a+t, y=b-t$ we obtain that $f \in w J_{m, \alpha}[a, b]$.

3. A hierarchy of m-convexity

For $\alpha=1$ we obtain the following sets of functions:

$$
S_{m}^{*}[a, b]=\left\{f \in C[m a, 2 b-m a] ; \frac{f(x)-m f(a)}{x-m a} \geqslant \frac{f(z)-m f(a)}{z-m a}, a \leqslant z<x \leqslant b\right\}
$$

called m-starshaped functions;

$$
S_{m}[a, b]=\{f \in C[m a, 2 b-m a] ; f(x)+f(y) \leqslant f(x+y-m a)+m f(a), \forall x, y \in[a, b]\}
$$

called m-superadditive functions;

$$
J_{m}^{*}[a, b]=\{f \in C[m a, 2 b-m a] ; f(2 x-m a)-m f(a) \geqslant 2[f(x)-m f(a)], a \leqslant x \leqslant b\},
$$

called Jensen m-starshaped functions;

$$
J_{m}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f\left(\frac{m(x+y)}{1+m}\right) \leqslant \frac{m[f(x)+f(y)]}{1+m}, \forall x, y \in[a, b]\right\}
$$

called m-Jensen convex functions;

$$
H_{m}[a, b]=\{f \in C[m a, 2 b-m a] ; f(t x) \leqslant t f(x), a \leqslant x \leqslant b, m \leqslant t \leqslant 1\}
$$

called m-subhomogenous functions;

$$
H_{m}^{*}[a, b]=\left\{f \in C[m a, 2 b-m a] ; f\left(\frac{2 m x}{1+m}\right) \leqslant \frac{2 m}{1+m} f(x), a \leqslant x \leqslant b\right\}
$$

called Jensen m-subhomogenous functions;

$$
\begin{gathered}
w S_{m}[a, b]=\{f \in C[m a, 2 b-m a] ; f(a+t)+f(b-t) \leqslant f(b+(1-m) a)+m f(a), \\
\forall t \in[0,(b-a) / 2]\},
\end{gathered}
$$

called weak m-superadditive; and

$$
\begin{aligned}
w J_{m}[a, b] & =\left\{f \in C[m a, 2 b-m a] ; \frac{m[f(a+t)+f(b-t)]}{1+m}\right. \\
& \left.\geqslant f\left(\frac{m(a+b)}{1+m}\right), \forall t \in[0,(b-a) / 2]\right\}
\end{aligned}
$$

called weak m-Jensen convex.
From the hierarchy of m-convexity we underline only some results.
THEOREM 2. The following inclusions

$$
K_{m}[a, b] \subseteq S_{m}^{*}[a, b] \subseteq S_{m}[a, b] \subseteq w S_{m}[a, b]
$$

and

$$
H_{m}^{*}[a, b] \supseteq H_{m}[a, b] \supseteq K_{m}[a, b] \subseteq J_{m}[a, b] \subseteq w J_{m}[a, b]
$$

hold.

Moreover, in this simple case $\alpha=1$ we can characterize the functions of $w S_{m}[a, b]$ and those of $w J_{m}[a, b]$. For this we begin with the following:

LEMMA 3. For every function $f \in C[a, b]$ we can determine two functions f_{1} : $[a(1-m),(b+(1-2 m) a) / 2] \longrightarrow \mathbb{R}$ and $f_{2}:[0,(b+(1-2 m) a) / 2] \longrightarrow \mathbb{R}$ such that:

$$
f(x)= \begin{cases}f_{1}(x-m a) & \text { for } x \in\left[a, \frac{a+b}{2}\right] \\ f_{1}\left(\frac{b+(1-2 m) a}{2}\right)+f_{2}\left(\frac{b+(1-2 m) a}{2}\right) & \\ -f_{2}(b+(1-m) a-x) & \text { for } x \in\left[\frac{a+b}{2}, b\right]\end{cases}
$$

Proof. We can take:

$$
f_{1}(t)=f(m a+t), \forall t \in[a(1-m),(b+(1-2 m) a) / 2]
$$

and

$$
f_{2}(t)=f((b+a) / 2)+c-f(b+a(1-m)-t), \forall t \in[0,(b+(1-2 m) a) / 2]
$$

where c is an arbitrary real number.
Using this lemma we can obtain the characterization and a method of construction of functions from $w S_{m}[a, b]$ and $w J_{m}[a, b]$.

THEOREM 4. The function f belongs to:
a) $w S_{m}[a, b]$ if and only if

$$
f_{1}(t+a(1-m))-m f_{1}(a(1-m)) \leqslant f_{2}(t+a(1-m))-f_{2}(0) ;
$$

b) $w J_{m}[a, b]$ if and only if

$$
\begin{gathered}
f_{1}(t+a(1-m))+f_{1}\left(\frac{b+(1-2 m) a}{2}\right)-\frac{1+m}{m} f_{1}\left(\frac{m(b-a m)}{1+m}\right) \\
\geqslant f_{2}(t+a(1-m))-f_{2}\left(\frac{b+(1-2 m) a}{2}\right)
\end{gathered}
$$

Corollary 1. The function f belongs to $w J_{m}[a, b]$ if

$$
f_{1}(t)=f_{2}(t), \forall t \in[a(1-m),(b+(1-2 m) a) / 2]
$$

and

$$
f_{1}\left(\frac{b+(1-2 m) a}{2}\right) \geqslant \frac{1+m}{2 m} f_{1}\left(\frac{m(b-a m)}{1+m}\right) .
$$

Corollary 2. The function f belongs to $w S_{m}[a, b]$ if

$$
f_{1}(t)=f_{2}(t), \forall t \in[a(1-m),(b+(1-2 m) a) / 2]
$$

and

$$
f_{2}(0) \leqslant m f_{1}(a(1-m)) .
$$

Corollary 3. The function f belongs to $w S_{m}[a, b] \cap w J_{m}[a, b]$ if

$$
\begin{gathered}
f_{1}(t)=f_{2}(t), \forall t \in[a(1-m),(b+(1-2 m) a) / 2] \\
f_{2}(0) \leqslant m f_{1}(a(1-m))
\end{gathered}
$$

and

$$
f_{1}\left(\frac{b+(1-2 m) a}{2}\right) \geqslant \frac{1+m}{2 m} f_{1}\left(\frac{m(b-a m)}{1+m}\right) .
$$

Remark 5. For $m=1$ these results were proven in [11].

4. Fejér's inequality

Let $L(\cdot, a, b): C[a, b] \longrightarrow \mathbb{R}$ be an isotonic linear functional, that is, for $t, s \in \mathbb{R}$, $f, g \in C[a, b]:$

$$
\begin{gathered}
L(f ; a, b) \geqslant 0 \quad \text { if } \quad f \geqslant 0 \\
L(t f+s g ; a, b)=t L(f ; a, b)+s L(g ; a, b) .
\end{gathered}
$$

If $f \in C[a, b]$ we denote by f_{-}the function defined by:

$$
f_{-}(x)=f(a+b-x) \quad \text { for } \quad x \in[a, b] .
$$

Definition 6. The functional $L(\cdot, a, b)$ is symmetric if:

$$
L\left(f_{-} ; a, b\right)=L(f ; a, b), \forall f \in C[a, b] .
$$

Theorem 7. If $L(\cdot ; a, b)$ is a symmetric isotonic linear functional, such that $L(1 ; a, b)=1$, then:

$$
L(f ; a, b) \leqslant[f(b+(1-m) a)+m f(a)] / 2, \forall f \in w S_{m}[a, b]
$$

and

$$
L(f ; a, b) \geqslant \frac{m+1}{2 m} f\left(\frac{m(a+b)}{1+m}\right), \forall f \in w J_{m}[a, b] .
$$

Proof. Indeed in the first case we have

$$
\begin{aligned}
f(a+t)+f(b-t) & =f(x)+f_{-}(x) \\
& \leqslant f(b+(1-m) a)+m f(a), \forall x \in[a, b]
\end{aligned}
$$

while in the second:

$$
f(x)+f_{-}(x) \geqslant \frac{m+1}{m} f\left(\frac{m(a+b)}{1+m}\right), \forall x \in[a, b] .
$$

We need only to apply the functional $L(\cdot ; a, b)$.
COROLLARY 4. If $L(\cdot ; a, b)$ is a symmetric isotonic linear functional, such that $L(1 ; a, b)=1$, then:

$$
\begin{aligned}
& \frac{m+1}{2 m} f\left(\frac{m(a+b)}{1+m}\right) \leqslant L(f ; a, b) \leqslant[f(b+(1-m) a)+m f(a)] / 2 \\
& \forall f \in w S_{m}[a, b] \cap w J_{m}[a, b]
\end{aligned}
$$

REMARK 8. If $g \in C[a, b]$ is symmetric with respect to $\frac{a+b}{2}$, the functional defined by:

$$
L(f ; a, b)=\int_{a}^{b} f(x) g(x) d x / \int_{a}^{b} g(x) d x
$$

is a symmetric isotonic linear functional. As $K_{m}[a, b] \subset w S_{m}[a, b] \cap w J_{m}[a, b]$ we obtained a generalization of the result of L. Fejér from [3], thus also of the HermiteHadamard inequality. The generalization is effective even for $m=1$ as was pointed out in [11]. Other generalizations of the Hermite-Hadamard inequality for m-convex functions were given in [2], [7], and [4].

5. Chebyshev-Andersson's inequality

In [10] we have shown that Chebyshev-Andersson's inequality is not only valid for convex functions but also for starshaped functions. A general result of this type was also proven in [12]. Let us now consider the case of (α, m)-starshaped functions. Denote by e the function defined by $e(x)=x$ and by c the constant function with value c.

THEOREM 9. If A and B are isotonic linear functionals, $f \in S_{m, \alpha}^{*}[a, b]$ and $g \in$ $S_{n, \beta}^{*}[a, b]$ then the following inequality holds:

$$
\begin{aligned}
& A\left((e-m a)^{\alpha}(e-n a)^{\beta}\right) B((f-m f(a))(g-n g(a))) \\
&+B\left((e-m a)^{\alpha}(e-n a)^{\beta}\right) A((f-m f(a))(g-n g(a))) \\
& \geqslant A\left((e-m a)^{\alpha}(g-n g(a))\right) B\left((e-n a)^{\beta}(f-m f(a))\right) \\
&+B\left((e-m a)^{\alpha}(g-n g(a))\right) A\left((e-n a)^{\beta}(f-m f(a))\right) .
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
& {\left[\frac{f(x)-m f(a)}{(x-m a)^{\alpha}}-\frac{f(z)-m f(a)}{(z-m a)^{\alpha}}\right](x-m a)^{\alpha}(z-m a)^{\alpha}} \\
& {\left[\frac{g(x)-n g(a)}{(x-n a)^{\beta}}-\frac{g(z)-n g(a)}{(z-n a)^{\beta}}\right](x-n a)^{\beta}(z-n a)^{\beta} \geqslant 0}
\end{aligned}
$$

or

$$
\begin{aligned}
&(z-m a)^{\alpha}(z-n a)^{\beta}[f(x)-m f(a)][g(x)-n g(a)] \\
& \quad-(z-m a)^{\alpha}[g(z)-n g(a)](x-n a)^{\beta}[f(x)-m f(a)] \\
& \quad-(z-n a)^{\beta}[f(z)-m f(a)](x-m a)^{\alpha}[g(x)-n g(a)] \\
&+(x-m a)^{\alpha}(x-n a)^{\beta}[f(z)-m f(a)][g(z)-n g(a)] \geqslant 0 .
\end{aligned}
$$

If we now take the value of A for the functions of x and then the value of B for the functions of z, we obtain the announced inequality.

REMARK 10. Taking $A=B$ and/or $m=n, \alpha=\beta$, we deduce some consequences of the Chebyshev-Andersson type inequalities.

REFERENCES

[1] A. M. Bruckner, E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math., 12 (1962), 1203-1215.
[2] S. S. Dragomir, G. Toader, Some inequalities for m-convex functions, Studia Univ. Babeş-Bolyai, 38, 1 (1993), 21-28.
[3] L. Fejér, On Fourier like sequences (Hungarian), Matem. Term. Ertesitö, 204 (1906), 369-390.
[4] M. KlaričIć Bakula, J. PečARIĆ, M. RibičIĆ, Companion inequalities to Jensen's inequalities for m-convex and (α, m)-convex functions, J. Inequ. Pure Appl. Math., 7, 5 (2006), Article 194.
[5] V. Miheşan, A generalization of the convexity, Itinerant Sem. Funct. Equat. Approx. Conv., ClujNapoca, Romania, 1993.
[6] D. S. Mitrinović, Analytic Inequalities, Springer Verlag, Berlin, 1970.
[7] P. T. Mocanu, I. Şerb, G. Toader, Real star-convex functions, Studia Univ. Babeş-Bolyai, 42, 3 (1997), 65-80.
[8] G. Toader, On the hierarchy of convexity of functions, Anal. Numér. Théor. Approx., 15, 2 (1986), 167-172.
[9] G. ToADER, On a generalization of the convexity, Mathematica, 30, 53 (1988), 1 83-87.
[10] G. Toader, On Chebyshev's inequality for functionals, Acta Techn. Napoc., Appl. Math. Mech., 35 (1992), 77-80.
[11] G. Toader, Superadditivity and Hermite-Hadamard's inequality, Studia Univ. Babeş-Bolyai, 39, 2 (1994), 27-32.
[12] G. Toader, S. Toader, Chebyshev-Andersson's inequality, Ineq. Th. Appl., Y. J. Cho, J. K. Kim, S. S. Dragomir, eds., Vol. 3 (2003), 181-188.

[^1]
[^0]: Mathematics subject classification (2000): 26A51, 26D15.
 Keywords and phrases: Hermite-Hadamard inequality, Chebyshev-Andersson inequality, hierarchy of m-convexity.

[^1]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

