THE HIERARCHY OF CONVEXITY AND SOME CLASSIC INEQUALITIES

Gheorghe Toader

Dedicated to Professor Josip Pečarić
on the occasion of his 60th birthday

Abstract. In what follows, a hierarchy of \(m \)-convexity is considered: we define \(m \)-starshaped functions, \(m \)-superadditive functions, Jensen \(m \)-convex functions, weak Jensen \(m \)-convex functions, Jensen \(m \)-superadditive functions, and weak \(m \)-superadditive functions. Some inclusions between such classes of functions are established. We also analyze the validity of the Hermite-Hadamard inequality, and of the Chebyshev-Andersson inequality for \(m \)-convex functions.

1. Introduction

Let us consider the sets of continuous, convex, starshaped, and superadditive functions on \([a, b]\) given by:

\[
C[a, b] = \{ f : [a, b] \rightarrow \mathbb{R}, f \text{ continuous} \},
\]

\[
K[a, b] = \{ f \in C[a, b]; f(tx + (1 - t)y) \leq tf(x) + (1 - t)f(y), \forall x, y \in [a, b], t \in [0, 1] \},
\]

\[
S^{*}[a, b] = \left\{ f \in C[a, b]; \frac{f(x) - f(a)}{x - a} \leq \frac{f(y) - f(a)}{y - a}, a < x < y \leq b \right\},
\]

and

\[
S[a, b] = \{ f \in C[a, b]; f(x) + f(y) \leq f(x + y - a) + f(a), \forall x, y, x + y - a \in [a, b] \},
\]

respectively. For \(a = 0 \) we denote by \(C(b), K(b), S^{*}(b), \) and \(S(b) \) respectively, the corresponding set of functions, restricted also under the condition \(f(0) = 0 \). A. M. Bruckner and E. Ostrow have proven in [1] the strict inclusions:

\[
K(b) \subset S^{*}(b) \subset S(b).
\]

These inclusions, extended with some results of preservation of the above properties by the arithmetic integral mean, are collectively referred to in [6] as the hierarchy of convexity. Simple proofs and generalizations of the results of [1] may be found in [8].

Keywords and phrases: Hermite-Hadamard inequality, Chebyshev-Andersson inequality, hierarchy of \(m \)-convexity.
Let us remark that we can also define a superadditive function by

\[f(x) + f(y) \leq f(x + y) + f(a), \forall x, y \in [a, b], \]

thus assuming \(f \in C[a, 2b - a] \). This is the preferred layout for superadditive functions in what follows.

In [9], one of the many generalizations on the convexity of functions – called \(\alpha \)-convexity – was introduced. The set of \(\alpha \)-convex functions is defined by:

\[
K_m[a, b] = \{ f \in C[a, b]; f(tx + m(1 - t)y) \leq tf(x) + m(1 - t)f(y), \forall x, y \in [a, b], t \in [0, 1] \}, m \in [0, 1].
\]

If \(a = 0 \) and \(f(0) \leq 0 \), we also obtain a hierarchy of convexity:

\[
K[a, b] \subset K_m[a, b] \subset K_n[a, b] \subset S^*[a, b], \text{ for } 1 > m > n > 0.
\]

A much larger generalization of convexity was given in [12]: the function \(f : [a, b] \to \mathbb{R} \) is called \((g, h, \lambda, \mu)\)-convex if

\[
g(f(tx + (1 - t)y)) \leq h(t)g(f(x)) + [1 - h(t)]\mu(f(y)), \forall x, y \in [a, b], \forall t \in [0, 1].
\]

It is shown that more interesting results can be obtained for \(h(t) = t^\alpha \), with \(\alpha \in [0, 1] \). This case was combined with the \(m \)-convexity in [5] giving the \((\alpha, m)\)-convexity. In the next paragraph we define a hierarchy of \((\alpha, m)\)-convexity. Taking \(\alpha = 1 \), we obtain a more fruitful hierarchy of \(m \)-convexity. Finally we study the Fejér inequality (generalization of the Hermite-Hadamard inequality) and the Chebyshev-Andersson inequality for \(m \)-convex functions.

\[2. \text{ A hierarchy of } (\alpha, m)\text{-convexity}\]

The set of \((\alpha, m)\)-convex functions is defined by

\[
K_{m, \alpha}[a, b] = \{ f \in C[ma, 2b - ma]; f(tx + m(1 - t)y) \leq t^\alpha f(x) + m(1 - t^\alpha)f(y), \forall x, y \in [a, b], t \in [0, 1] \}, m, \alpha \in [0, 1].
\]

Note that for \(t = 0 \) and \(y = a \) we have the condition \(f(ma) \leq mf(a) \) meaning that the function must be defined on \(ma \leq a \). In fact, to assure that all the definitions and results that follow are valid we will assume that the functions are defined on \([ma, 2b - ma]\). Assuming \(\alpha \neq 0, m \neq 0 \), we define the following sets of functions:

\[
S^*_{m, \alpha}[a, b] = \left\{ f \in C[ma, 2b - ma]; \frac{f(x) - mf(a)}{(x - ma)^\alpha} \geq \frac{f(z) - mf(a)}{(z - ma)^\alpha}, a < z < x \leq b \right\},
\]

called \((\alpha, m)\)-starshaped functions;

\[
S_{m, \alpha}[a, b] = \{ f \in C[ma, 2b - ma]; [f(x) - mf(a)](x - ma)^{1 - \alpha} + [f(y) - mf(a)](y - ma)^{1 - \alpha}
\]
called (α,m)-superadditive functions;

$$J_{m,\alpha}[a,b] = \{ f \in C[ma,2b-ma]; f(2x-ma)-mf(a) \geq 2^\alpha [f(x)-mf(a)], \forall x \in [a,b] \},$$
called Jensen (α,m)-starshaped functions;

$$J_{m,\alpha}[a,b] = \left\{ f \in C[ma,2b-ma]; f \left(\frac{m \frac{1}{\alpha} x + my}{1 + m \frac{1}{\alpha}} \right) \right\}, \forall x, y \in [a,b]$$
called (α,m)-Jensen convex functions;

$$H_{m,\alpha}[a,b] = \{ f \in C[ma,2b-ma]; f(tx) \leq [m + (t-m)^\alpha(1-m)^{1-\alpha}] f(x),$$
$$a \leq x \leq b, m \leq t \leq 1 \},$$
called (α,m)-subhomogenous functions;

$$H_{m,\alpha}^*[a,b] = \left\{ f \in C[ma,2b-ma]; f \left(\frac{m + m \frac{1}{\alpha}}{1 + m \frac{1}{\alpha}} x \right) \right\}$$
$$\leq m \left[1 + \frac{1-m}{(1+m \frac{1}{\alpha})} \right] f(x), a \leq x \leq b \},$$
called Jensen (α,m)-subhomogenous functions;

$$wS_{m,\alpha}[a,b] = \{ f \in C[ma,2b-ma]; f(a+t) - mf(a) \] (a+t - ma)^{1-\alpha}$$
$$+ [f(b-t) - mf(a)] \] (b-t - ma)^{1-\alpha} \leq [f(b + (1-m)a) - mf(a)] \] (a+b-2ma)^{1-\alpha},$$
$$\forall t \in [0,(b-a)/2] \},$$
called weak (α,m)-superadditive; and

$$wJ_{m,\alpha}[a,b] = \left\{ f \in C[ma,2b-ma]; \frac{m}{(1+m \frac{1}{\alpha})^\alpha} \left\{ f(a+t)+\left[(1+m \frac{1}{\alpha})^\alpha -m \right] f(b-t) \right\} \right\}$$
$$\geq f \left(\frac{m \frac{1}{\alpha} (a+t)+m(b-t)}{1 + m \frac{1}{\alpha}} \right), \forall t \in [0,(b-a)/2] \},$$
called weak (α,m)-Jensen convex.

For these sets, we have the following main results.
Theorem 1. The following inclusions

\[K_{m,\alpha}[a, b] \subseteq S^*_m[a, b] \subseteq S_m[a, b] \subseteq J^*_m[a, b], S_m[a, b] \subseteq wS_m[a, b], \]

\[H^*_m[a, b] \supseteq H_m[a, b] \supseteq K_m[a, b] \subseteq J_m[a, b] \subseteq H_m[a, b] \]

and

\[J_m[a, b] \subseteq wJ_m[a, b] \]

hold.

Proof. a) Taking \(f \in K_m[a, b] \) and \(y = a \) we obtain

\[f(xt + m(1 - t)a) - mf(a) \leq t^\alpha [f(x) - mf(a)]. \]

Denoting \(xt + m(1 - t)y = z \) we prove that \(f \in S^*_m[a, b] \).

b) Assuming that \(f \in S^*_m[a, b] \) we have

\[[f(x + y - ma) - mf(a)](x + y - 2ma)^{1 - \alpha} \]
\[= \frac{f(x + y - ma) - mf(a)}{(x + y - 2ma)^\alpha} \cdot (x + y - 2ma) \]
\[= \frac{f(x + y - ma) - mf(a)}{(x + y - 2ma)^\alpha} (x - ma) + \frac{f(x + y - ma) - mf(a)}{(x + y - 2ma)^\alpha} (y - ma) \]
\[\geq \frac{f(x) - mf(a)}{(x - ma)^\alpha} (x - ma) + \frac{f(y) - mf(a)}{(y - ma)^\alpha} (y - ma), \]

thus \(f \in S_m[a, b] \).

c) For \(f \in S_m[a, b] \) if we take \(x = y \) we obtain

\[2 [f(x) - mf(a)](x - ma)^{1 - \alpha} \leq [f(2x - ma) - mf(a)](2x - 2ma)^{1 - \alpha}, \]

implying that \(f \in J^*_m[a, b] \).

d) For \(f \in S_m[a, b] \) if we take \(x = a - t, y = b - t \) we obtain \(f \in wS_m[a, b] \).

e) If \(f \in K_m[a, b] \) for \(t = m^{1/\alpha} / (1 + m^{1/\alpha}) \) we deduce that \(f \in J_m[a, b] \).

f) For \(f \in J_m[a, b] \) if we take \(x = y \) we obtain that \(f \in H^*_m[a, b] \).

g) If \(f \in K_m[a, b] \) for \(x = y \) we obtain

\[f(x(m + t(1 - m)) \leq [t^\alpha + m(1 - t^\alpha)] f(x) \]

and denoting \(m + t(1 - m) = s \) we deduce that \(f \in H_m[a, b] \).

h) If \(f \in H_m[a, b] \), for \(t = (m + m^{1/\alpha}) / (1 + m^{1/\alpha}) \) it follows that \(f \in H^*_m[a, b] \).

k) For \(f \in J_m[a, b] \) if we take \(x = a + t, y = b - t \) we obtain that \(f \in wJ_m[a, b] \).
3. A hierarchy of m-convexity

For $\alpha = 1$ we obtain the following sets of functions:

$$S_m[a, b] = \left\{ f \in C[ma, 2b - ma]; \frac{f(x) - mf(a)}{x - ma} \geq \frac{f(z) - mf(a)}{z - ma}, a \leq z < x \leq b \right\},$$
called m-starshaped functions;

$$S_m[a, b] = \left\{ f \in C[ma, 2b - ma]; f(x) + f(y) \leq f(x + y - ma) + mf(a), \forall x, y \in [a, b] \right\},$$
called m-superadditive functions;

$$J_m[a, b] = \left\{ f \in C[ma, 2b - ma]; f(2x - ma) - mf(a) \geq 2[f(x) - mf(a)], a \leq x \leq b \right\},$$
called Jensen m-starshaped functions;

$$J_m[a, b] = \left\{ f \in C[ma, 2b - ma]; f \left(\frac{m(x + y)}{1 + m} \right) \leq \frac{m[f(x) + f(y)]}{1 + m}, \forall x, y \in [a, b] \right\},$$
called m-Jensen convex functions;

$$H_m[a, b] = \left\{ f \in C[ma, 2b - ma]; f(tx) \leq tf(x), a \leq x \leq b, m \leq t \leq 1 \right\},$$
called m-subhomogenous functions;

$$H_m'[a, b] = \left\{ f \in C[ma, 2b - ma]; f \left(\frac{2mx}{1 + m} \right) \leq \frac{2m}{1 + m}f(x), a \leq x \leq b \right\},$$
called Jensen m-subhomogenous functions;

$$wS_m[a, b] = \left\{ f \in C[ma, 2b - ma]; f(a + t) + f(b - t) \leq f(b + (1 - m)a) + mf(a), \forall t \in [0, (b - a)/2] \right\},$$
called weak m-superadditive; and

$$wJ_m[a, b] = \left\{ f \in C[ma, 2b - ma]; \frac{m[f(a + t) + f(b - t)]}{1 + m} \geq f \left(\frac{m(a + b)}{1 + m} \right), \forall t \in [0, (b - a)/2] \right\},$$
called weak m-Jensen convex.

From the hierarchy of m-convexity we underline only some results.

Theorem 2. The following inclusions

$$K_m[a, b] \subseteq S_m[a, b] \subseteq S_m[a, b] \subseteq wS_m[a, b]$$

and

$$H_m'[a, b] \supseteq H_m[a, b] \supseteq K_m[a, b] \subseteq J_m[a, b] \subseteq wJ_m[a, b]$$

hold.
Moreover, in this simple case $\alpha = 1$ we can characterize the functions of $wS_m[a, b]$ and those of $wJ_m[a, b]$. For this we begin with the following:

Lemma 3. For every function $f \in C[a,b]$ we can determine two functions $f_1 : [a(1-m), (b + (1 - 2m)a)/2] \to \mathbb{R}$ and $f_2 : [0, (b + (1 - 2m)a)/2] \to \mathbb{R}$ such that:

$$f(x) = \begin{cases} f_1(x - ma) & \text{for } x \in [a, \frac{a+b}{2}] \\ f_1 \left(\frac{b+(1-2m)a}{2} \right) + f_2 \left(\frac{b+(1-2m)a}{2} \right) & \text{for } x \in \left[\frac{a+b}{2}, b\right] \\ -f_2(b + (1-m)a - x) & \text{for } x \in [a(1-m), a(1-m) + b/2]. \end{cases}$$

Proof. We can take:

$$f_1(t) = f(ma + t), \forall t \in [a(1-m), (b + (1 - 2m)a)/2]$$

and

$$f_2(t) = f((b + a)/2) + c - f(b + a(1-m) - t), \forall t \in [0, (b + (1 - 2m)a)/2],$$

where c is an arbitrary real number.

Using this lemma we can obtain the characterization and a method of construction of functions from $wS_m[a, b]$ and $wJ_m[a, b]$.

Theorem 4. The function f belongs to:

a) $wS_m[a, b]$ if and only if

$$f_1(t + a(1-m)) - mf_1(a(1-m)) \leq f_2(t + a(1-m)) - f_2(0);$$

b) $wJ_m[a, b]$ if and only if

$$f_1(t + a(1-m)) + f_1 \left(\frac{b+(1-2m)a}{2} \right) - \frac{1+m}{m} f_1 \left(\frac{m(b-am)}{1+m} \right) \geq f_2(t + a(1-m)) - f_2 \left(\frac{b+(1-2m)a}{2} \right).$$

Corollary 1. The function f belongs to $wJ_m[a, b]$ if

$$f_1(t) = f_2(t), \forall t \in [a(1-m), (b + (1 - 2m)a)/2]$$

and

$$f_1 \left(\frac{b+(1-2m)a}{2} \right) \geq \frac{1+m}{2m} f_1 \left(\frac{m(b-am)}{1+m} \right).$$
COROLLARY 2. The function f belongs to $wS_m[a,b]$ if
\[
f_1(t) = f_2(t), \forall t \in [a(1-m), (b+(1-2m)a)/2] \]
and
\[
f_2(0) \leq mf_1(a(1-m)).
\]

COROLLARY 3. The function f belongs to $wS_m[a,b] \cap wJ_m[a,b]$ if
\[
f_1(t) = f_2(t), \forall t \in [a(1-m), (b+(1-2m)a)/2] \]
and
\[
f_2(0) \leq mf_1(a(1-m)), \quad f_1\left(\frac{b+(1-2m)a}{2}\right) \geq \frac{1+m}{2m} f_1\left(\frac{m(b-am)}{1+m}\right).
\]

REMARK 5. For $m = 1$ these results were proven in [11].

4. Fejér’s inequality

Let $L(\cdot,a,b) : C[a,b] \rightarrow \mathbb{R}$ be an isotonic linear functional, that is, for $t,s \in \mathbb{R}, f,g \in C[a,b]$:
\[
L(f; a,b) \geq 0 \quad \text{if} \quad f \geq 0
\]
\[
L(tf + sg; a,b) = tL(f; a,b) + sL(g; a,b).
\]

If $f \in C[a,b]$ we denote by f_- the function defined by:
\[
f_-(x) = f(a + b - x) \quad \text{for} \quad x \in [a,b].
\]

DEFINITION 6. The functional $L(\cdot,a,b)$ is symmetric if:
\[
L(f_-; a,b) = L(f; a,b), \forall f \in C[a,b].
\]

THEOREM 7. If $L(\cdot,a,b)$ is a symmetric isotonic linear functional, such that $L(1; a,b) = 1$, then:
\[
L(f; a,b) \leq [f(b + (1-m)a) + mf(a)] / 2, \forall f \in wS_m[a,b]
\]
and
\[
L(f; a,b) \geq \frac{m+1}{2m} f\left(\frac{m(a+b)}{1+m}\right), \forall f \in wJ_m[a,b].
\]
Proof. Indeed in the first case we have
\[f(a+t) + f(b-t) = f(x) + f_{-}(x) \leq f(b + (1-m)a) + mf(a), \forall x \in [a,b] \]
while in the second:
\[f(x) + f_{-}(x) \geq \frac{m+1}{m} f \left(\frac{m(a+b)}{1+m} \right), \forall x \in [a,b]. \]
We need only to apply the functional \(L(\cdot; a, b) \).

COROLLARY 4. If \(L(\cdot; a, b) \) is a symmetric isotonic linear functional, such that \(L(1; a, b) = 1 \), then:
\[\frac{m+1}{2m} f \left(\frac{m(a+b)}{1+m} \right) \leq L(f; a, b) \leq \frac{[f(b + (1-m)a) + mf(a)]}{2}, \]
\[\forall f \in wS_m[a, b] \cap wJ_m[a, b]. \]

REMARK 8. If \(g \in C[a, b] \) is symmetric with respect to \(\frac{a+b}{2} \), the functional defined by:
\[L(f; a, b) = \int_a^b f(x)g(x)dx / \int_a^b g(x)dx \]
is a symmetric isotonic linear functional. As \(K_m[a, b] \subset wS_m[a, b] \cap wJ_m[a, b] \) we obtained a generalization of the result of L. Fejér from [3], thus also of the Hermite-Hadamard inequality. The generalization is effective even for \(m = 1 \) as was pointed out in [11]. Other generalizations of the Hermite-Hadamard inequality for \(m \)-convex functions were given in [2], [7], and [4].

5. Chebyshev-Andersson’s inequality

In [10] we have shown that Chebyshev-Andersson’s inequality is not only valid for convex functions but also for starshaped functions. A general result of this type was also proven in [12]. Let us now consider the case of \((\alpha, m)\)-starshaped functions. Denote by \(e \) the function defined by \(e(x) = x \) and by \(c \) the constant function with value \(c \).

THEOREM 9. If \(A \) and \(B \) are isotonic linear functionals, \(f \in S^*_{m, \alpha}[a, b] \) and \(g \in S^*_{n, \beta}[a, b] \) then the following inequality holds:
\[A \left((e - ma)^{\alpha} (e - na)^{\beta} \right) B \left((f - mf(a)) (g - ng(a)) \right) \]
\[+ B \left((e - ma)^{\alpha} (e - na)^{\beta} \right) A \left((f - mf(a)) (g - ng(a)) \right) \]
\[\geq A \left((e - ma)^{\alpha} (g - ng(a)) \right) B \left(e - na \right)^{\beta} (f - mf(a)) \]
\[+ B \left((e - ma)^{\alpha} (g - ng(a)) \right) A \left(e - na \right)^{\beta} (f - mf(a)) \].
Proof. We have

\[
\left[\frac{f(x) - mf(a)}{(x - ma)^{\alpha}} - \frac{f(z) - mf(a)}{(z - ma)^{\alpha}} \right] (x - ma)^{\alpha} (z - ma)^{\alpha}
\]

\[
\cdot \left[\frac{g(x) - ng(a)}{(x - na)^{\beta}} - \frac{g(z) - ng(a)}{(z - na)^{\beta}} \right] (x - na)^{\beta} (z - na)^{\beta} \geq 0,
\]

or

\[
(z - ma)^{\alpha} (z - na)^{\beta} [f(x) - mf(a)] [g(x) - ng(a)]
\]

\[
- (z - ma)^{\alpha} [g(z) - ng(a)] (x - na)^{\beta} [f(x) - mf(a)]
\]

\[
- (z - na)^{\beta} [f(z) - mf(a)] (x - ma)^{\alpha} [g(x) - ng(a)]
\]

\[
+ (x - ma)^{\alpha} (x - na)^{\beta} [f(z) - mf(a)] [g(z) - ng(a)] \geq 0.
\]

If we now take the value of \(A \) for the functions of \(x \) and then the value of \(B \) for the functions of \(z \), we obtain the announced inequality.

Remark 10. Taking \(A = B \) and/or \(m = n, \alpha = \beta \), we deduce some consequences of the Chebyshev-Andersson type inequalities.

References

(Received October 18, 2008)