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Abstract. The theory of positive integral operators is applied to convolution operators, giving a
method of producing new weighted Fourier inequalities from known ones. The new inequalities
produced depend on six parameters; two real indices, two complex-valued measures, and two
positive functions. The method may be iterated using the last inequality generated as input to the
next stage.

The Fourier transform is defined by

f̂ (x) =
∫

R

e−ixt f (t)dt

for f ∈ L1 , that is, for f satisfying
∫
R
| f |<∞ . It and its extensions are the most studied

and most applied operators in all of mathematics. One way that the Fourier transform
can be extended to functions not in L1 is to establish an inequality of the form

(∫
R

| f̂ |qu
)1/q

� C

(∫
R

| f |pv
)1/p

(1)

for all f in L1∩Lp(v) . The Fourier transform then extends by continuity to the closure
of L1 ∩ Lp(v) in Lp(v) . Since L1 contains the simple functions, this closure is the
whole of Lp(v) . Here 1 < p < ∞ , v � 0, and Lp(v) is the Banach space of functions
for which the norm

‖ f‖Lp(v) ≡
(∫

R

| f |pv
)1/p

is finite.
The purpose of this paper is to provide a framework for proving inequalities of the

form (1). The idea is to exploit the close relationship of the Fourier transform to the op-
eration of convolution and then to apply techniques from the theory of positive integral
operators. Although the convolution operators that arise are not necessarily positive,
they are trivially majorized by positive convolution operators and this will suffice for
our purpose. The main result of the paper is that from a given “input” inequality of the
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form (1) a parametrized collection of “output” inequalities, again of the form (1), can
be deduced.

A single application of the theorem will produce new weighted Fourier inequalities
from known ones. However, since the output inequalities are of the same form as the
input inequality, it becomes possible to “bootstrap” the production of new inequalities
by using the output at one stage as the input at the next. The implications of this sort of
iteration are not examined here but will be a subject for further study.

Throughout the paper we adhere to conventions that are more common in the study
of positive integral operators than in harmonic analysis generally. When integrals of
non-negative functions are involved we will not concern ourselves with convergence;
if the integral happens to take the value +∞ then its appearance in formulas is to be
interpreted according to arithmetic on [0,∞] . In particular, expressions of the form
0(∞) , ∞/∞ , 0/0, 00 are all taken to be 0, while ∞0 = 1.

The collection of non-negative, Lebesgue measurable functions on R will be de-
noted by L+ and a positive operator is a map from L+ to [0,∞] . If T and T ∗ are such
operators then T ∗ is said to be a formal adjoint of T provided∫

R

(T f )g =
∫

R

f (T ∗g)

for all f ,g ∈ L+ .
The following proposition is a special case (n = 1 and r1 = 1) of Theorem 2.1 in

[4]. Note especially that C = 1 when p = q , even if
∫
R

hpv = ∞ .

PROPOSITION 1. Let T be a positive operator on L+ having a formal adjoint
T ∗ . Suppose 1 < q � p < ∞ and u,h ∈ L+ with 0 < h < ∞ . Set

v = h1−pT ∗(u(Th)q−1) and C =
(∫

R

hpv

)1/q−1/p

.

Then, (∫
R

(T f )qu

)1/q

� C

(∫
R

f pv

)1/p

for all f ∈ L+ .

The next result may be deduced from the last by a duality argument. It is also a
special case of Theorem 3.1 of [3]. Again note that C = 1 when p = q .

PROPOSITION 2. Let T be a positive operator on L+ having a formal adjoint
T ∗ . Suppose 1 < q � p < ∞ and v,h ∈ L+ with 0 < h < ∞ . Set

u = h(T (v1−p′(T ∗h)p′−1))1−q and C =
(∫

R

hq′u1−q′
)1/q−1/p

.

Then, (∫
R

(T f )qu

)1/q

� C

(∫
R

f pv

)1/p

for all f ∈ L+ .
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Observe that if p > q , then the formulas for the constants C given in these two
propositions may take useful alternative forms. In the first,

∫
R

hpv =
∫

R

hT ∗(u(Th)q−1) =
∫

R

(Th)u(Th)q−1 =
∫

R

(Th)qu

so C = (
∫
R
(Th)qu)1/q−1/p . In the second,
∫

R

hq′u1−q′ =
∫

R

hT (v1−p′(T ∗h)p′−1) =
∫

R

(T ∗h)v1−p′(T ∗h)p′−1

so C =
(∫

R
(T ∗h)p′v1−p′

)1/q−1/p
.

Let a and b be finite, complex-valued Borel measures on R and let |a| and |b|
denote their absolute values. Then∫

R

d|a| < ∞ and
∫

R

d|b| < ∞.

It is routine to check that

â(x) =
∫

R

e−ixt da(t) and b̌(x) =
∫

R

eixt db(t)

are well-defined functions in L∞ . It is also routine to verify that

f ∗ a(x) =
∫

R

f (x− t)da(t) and f ∗ b(x) =
∫

R

f (x− t)db(t)

are well-defined functions in L1 when f ∈ L1 and in L∞ when f ∈ L∞ . A little more
work is required to verify that for f ∈ L1 ,

( f ∗ a)̂ = f̂ â and ( f b̌)̂ = f̂ ∗ b. (2)

To establish (2) observe that the bounded function b̌ has a Fourier transform in the

distributional sense and that Theorem 7.7 of [2] shows that ˆ̌b = 2πb . (Note that the
notation b̌ has a different meaning in Rudin’s book than it does here.) With this in
hand, if we view a and b as tempered distributions, then Theorem 7.19 of [2] shows
that both statements in (2) hold for all f in the space of rapidly decreasing functions.
However, the space of rapidly decreasing functions is a dense subset of L1 and it is easy
to verify that f �→ ( f ∗ a)̂ , f �→ f̂ â , f �→ ( f b̌)̂ and f �→ f̂ ∗ b are all continuous maps
from L1 to L∞ . Thus, the identities in (2) extend to be valid for all f ∈ L1 .

Define the positive convolution operators Ka and Kb by

Ka f = f ∗ |a| and Kb f = f ∗ |b|,
for all f ∈ L+ . If f ∈ L1∪L∞ then f ∗a and f ∗b are well-defined, | f ∗a|� Ka| f | , and
| f ∗ b| � Kb| f | . It is an essential feature of the argument to come that the convolution
operators are majorized by positive convolution operators.
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The two propositions above provide weighted Lebesgue norm inequalities for the
positive operators Ka and Kb that can be used to give inequalities for convolution by
a and b . To apply them we need to show that Ka and Kb have formal adjoints. In the
following calculation we write ã for the complex-valued measure defined by ã(x) =
a(−x) .

If f ,g∈L+ then interchanging the order of integration and making the substitution
y = x− t yields

∫
R

Ka f (x)g(x)dx =
∫

R

∫
R

f (x− t)d|a|(t)g(x)dx

=
∫

R

∫
R

f (x− t)g(x)dxd|a|(t)

=
∫

R

∫
R

f (y)g(y+ t)dyd|a|(t)

=
∫

R

f (y)
∫

R

g(y+ t)d|a|(t)dy

=
∫

R

f (y)
∫

R

g(y− t)d|ã|(t)dy

=
∫

R

f (y)Kãg(x)dx

This shows that K∗
a = Kã . Obviously, K∗

b = Kb̃ as well.
Before introducing any technical details we give a sketch of the argument behind

Theorem 1 below. We suppose that the Fourier inequality (1) is known to be valid for
some fixed p0 , q0 , u0 , and v0 . For each appropriate function g , define f = (g ∗ a)/b̌
and verify that ĝ = ( f̂ ∗ b)/â .

For p1 � p0 , q1 � q0 and arbitrary positive functions ha and hb we apply the
above two propositions to give formulas for u1 and v1 so that

Lp1(v1)−→ Lp0(v0)−→ Lq0(u0)−→ Lq1(u1)
g �−→ f �−→ f̂ �−→ ĝ

The arrow in the middle corresponds to the known “input” Fourier inequality and the
other two arrows correspond to convolution inequalities for the operators

g �→ (g ∗ a)/b̌ and f̂ �→ ( f̂ ∗ b)/â.

The inequality relating ĝ and g that results from this composition is just (1) with new
indices p1 and q1 and new weights u1 and v1 . This is our “output” inequality.

THEOREM 1. Suppose C0 is a positive constant, p0 and q0 are indices in (1,∞) ,
and u0 and v0 are non-negative weight functions such that the Fourier inequality

(∫
R

| f̂ |q0u0

)1/q0

� C0

(∫
R

| f |p0v0

)1/p0

(3)

holds for all f ∈ L1 . Let a and b be finite complex-valued Borel measures and ha

and hb be positive functions on R . For p1 and q1 satisfying 1 < p0 � p1 < ∞ and
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1 < q1 � q0 < ∞ set

wa = |b̌|−p0v0 and v1 = h1−p1
a K∗

a (wa(Kaha)p0−1),

wb = hb(Kb(u
1−q′0
0 (K∗

b hb)q′0−1))1−q1 and u1 = |â|q1wb.

Also set

Ca =
(∫

R

hp1
a v1

)1/p0−1/p1

and Cb =
(∫

R

h
q′1
b w

1−q′1
b

)1/q1−1/q0

.

If b̌ is bounded away from zero, then the Fourier inequality

(∫
R

|ĝ|q1u1

)1/q1

� C1

(∫
R

|g|p1v1

)1/p1

(4)

holds for all g ∈ L1 . Here C1 = CbC0Ca .

Proof. Let g ∈ L1 and set f = (g ∗ a)/b̌ . Since b̌ is bounded away from zero,
1/b̌∈ L∞ so f ∈ L1 . Taking the Fourier transform of both sides of the equation g∗a =
f b̌ and using (2) yields ĝâ = f̂ ∗ b .

Proposition 2 shows that

(∫
R

(Kb| f̂ |)q1wb

)1/q1

� Cb

(∫
R

| f̂ |q0u0

)1/q0

and the trivial estimate |ĝâ| = | f̂ ∗ b|� Kb| f̂ | gives

(∫
R

|ĝ|q1u1

)1/q1

� Cb

(∫
R

| f̂ |q0u0

)1/q0

. (5)

Proposition 1 shows that

(∫
R

(Ka|g|)p0wa

)1/p0

� Ca

(∫
R

|g|p1v1

)1/p1

and the trivial estimate | f b̌| = |g ∗ a|� Ka|g| gives

(∫
R

| f |p0v0

)1/p0

� Ca

(∫
R

|g|p1v1

)1/p1

. (6)

The three inequalities (5), (3), and (6) combine to yield (4) as required. This
completes the proof. �

When all indices are taken equal to 2 the theorem simplifies substantially.
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COROLLARY 1. Suppose C is a positive constant and u0 and v0 are non-negative
weight functions such that the Fourier inequality∫

R

| f̂ |2u0 � C
∫

R

| f |2v0 (7)

holds for all f ∈ L1 . Let a and b be finite complex-valued Borel measures and ha and
hb be positive functions on R . Set

v1 =
1
ha

K∗
a

(
v0(Kaha)

|b̌|2
)

and u1 =
|â|2hb

Kb

(
K∗

b hb
u0

) .

If b̌ is bounded away from zero, then the Fourier inequality∫
R

|ĝ|2u1 � C
∫

R

|g|2v1 (8)

holds for all g ∈ L1 .

A further simplification yields an attractive concrete collection of weighted Fourier
inequalities that may be compared with results from [1].

COROLLARY 2. If a is a finite positive Borel measure and h is a positive function
on R then ∫

R

|ĝ|2|â|2 � 2π
∫

R

|g|2 ã∗ (a ∗ h)
h

(9)

for all g ∈ L1 . Here ã is defined by ã(x) = a(−x) .

Proof. In Corollary 1, take u0 = v0 ≡ 1 and observe that (7) holds with C = 2π .
Take hb ≡ 1, ha = h and take b to be the Dirac measure at zero. Then b̌ ≡ 1 and both
Kb and K∗

b reduce to identity operators. Since a is assumed to be positive, Ka and K∗
a

are just convolution by a and ã , respectively. �
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