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Abstract. The characterization of the norm triangle equality in pre-Hilbert C∗ -modules is given.
The result is applied for describing the case of equality in some generalizations of the Dunkl-
Williams inequality.

1. Introduction

Let V be a normed linear space. Then the triangle inequality

‖x+ y‖� ‖x‖+‖y‖ (1)

holds for all x,y ∈V. The problem when the equality in (1) holds has been studied for
different types of normed linear spaces by many authors (see, for example [1, 11, 3, 15,
2]).

In this paper we give a historical review of this investigation. More precisely, we
present some known results on the characterization of the triangle equality in the case
when V is the algebra of all bounded linear operators acting on a uniformly convex
Banach space or a Hilbert space. (Recall that a normed linear space W is uniformly
convex if and only if for every ε > 0 there exists δ > 0 such that

(x,y ∈W, ‖x‖ = ‖y‖ = 1, ‖x− y‖� ε) ⇒
∥∥∥x+ y

2

∥∥∥ � 1− δ .)

We proceed by extending these results in the context of an arbitrary C∗ -algebra
and finally in a pre-Hilbert C∗ -module setting. It enables us to characterize the equality
attainedness in a generalized Dunkl-Williams inequality and its reverse inequality for
elements of a pre-Hilbert C∗ -module.

Throughout this paper, we shall use X for denoting a uniformly convex Banach
space and H for a Hilbert space. By B(X) (resp. B(H)) we denote the algebra of all
bounded linear operators on X (resp. H ).
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2. Characterization of the norm triangle equality

We consider the following problem: When does the equality in (1) hold?
It is well known that in the case of a strictly convex normed linear space V, the

equality ‖x+ y‖ = ‖x‖+ ‖y‖ holds for nonzero vectors x,y ∈ V if and only if x
‖x‖ =

y
‖y‖ . (This characterization follows directly from Lemma 2.2 below.) In particular, the
triangle equality in every inner-product space is characterized in this way.

Several authors considered this problem in the setting of the algebra V = B(X).
The first significant result was obtained in 1991 by Abramovich et al. [1] who solved
this problem when one of the operators A,B ∈ B(X) is the identity operator on X .

In what follows σap(T ) will stand for the approximate point spectrum of T ∈B(X)
(i.e., the set of all λ ∈ C for which there is a sequence (xn) of unit vectors in X such
that limn→∞ ‖Txn−λxn‖ = 0) . By S− we denote the topological closure of a set S.

THEOREM 2.1. ([1]) If A ∈ B(X), and I ∈ B(X) is the identity operator, then
‖A+ I‖= ‖A‖+1 if and only if ‖A‖ ∈ σap(A).

Another type of result in this direction was obtained in 1999 by Lin [11] who
established the following theorem. To prove it, we need the following lemma, the proof
of which can be found in [1, Lemma 2.1].

LEMMA 2.2. ([1]) Let x and y be vectors in a normed linear space such that
‖x + y‖ = ‖x‖+ ‖y‖, and let α and β be non-negative real numbers. Then ‖αx +
βy‖ = α‖x‖+β‖y‖.

THEOREM 2.3. ([11]) Whenever A,B ∈ B(X) satisfy the triangle equality ‖A +
B‖ = ‖A‖+‖B‖, then 0 ∈ σap(‖B‖A−‖A‖B). Moreover, if X is a Hilbert space and
either A or B is isometric, then the converse holds.

Proof. Suppose that ‖A + B‖ = ‖A‖+ ‖B‖ for some nonzero operators A,B ∈
B(X). Let us denote P = A

‖A‖ and Q = B
‖B‖ . Then by Lemma 2.2 we have ‖P+Q‖= 2.

So, there exists a sequence (xn) of unit vectors in X such that limn→∞ ‖Pxn+Qxn‖= 2.
From this we get limn→∞ ‖Pxn−Qxn‖ = 0, since X is uniformly convex and ‖Pxn‖ �
1, ‖Qxn‖ � 1 for all n ∈ N. Hence, limn→∞ ‖(‖B‖A−‖A‖B)xn‖ = 0, that is, 0 ∈
σap(‖B‖A−‖A‖B).

Let us now suppose that X is a Hilbert space and A is an isometric operator. Let
0 ∈ σap(‖B‖A−B). Then limn→∞ ‖(‖B‖A−B)xn‖ = 0 for some sequence (xn) of unit
vectors in X . Since

‖(‖B‖A−B)xn‖ � ‖‖B‖Axn‖−‖Bxn‖ = ‖B‖‖Axn‖−‖Bxn‖ = ‖B‖−‖Bxn‖ � 0

we have
0 = lim

n→∞
‖(‖B‖A−B)xn‖ � ‖B‖− lim

n→∞
‖Bxn‖ � 0,
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wherefrom limn→∞ ‖Bxn‖ = ‖B‖. Furthermore,

2‖B‖� ‖(‖B‖A+B)xn‖ = ‖(‖B‖A−B)xn +2Bxn‖ � 2‖Bxn‖−‖(‖B‖A−B)xn‖,

from which it follows that

2‖B‖ � lim
n→∞

‖(‖B‖A+B)xn‖ � 2‖B‖,

that is, limn→∞ ‖(‖B‖A + B)xn)‖ = 2‖B‖. We conclude that ‖‖B‖A + B‖ = 2‖B‖,
wherefrom ‖A+B‖= 1+‖B‖ by Lemma 2.2. �

Note that the above theorem completely describes the triangle equality for Hilbert
space operators under the condition that one of the operators is isometric.

In 2002 Barraa et al. [3] extended Lin’s result to general Hilbert space operators by
characterizing the triangle equality in terms of the classical numerical range. (Recall
that the classical numerical range of T ∈ B(H) is defined as W (T ) = {(Tx,x) : x ∈
H,‖x‖ = 1}.)

THEOREM 2.4. ([3]) Let A,B ∈ B(H). Then the equality ‖A + B‖ = ‖A‖+ ‖B‖
holds if and only if ‖A‖‖B‖ ∈W (A∗B)−.

Proof. Suppose ‖A+B‖ = ‖A‖+‖B‖. There exists a sequence (xn) of unit vec-
tors in H such that limn→∞ ‖Axn +Bxn‖ = ‖A‖+‖B‖. Since

‖Axn +Bxn‖ � ‖Axn‖+‖Bxn‖ � ‖A‖+‖Bxn‖ � ‖A‖+‖B‖

we have limn→∞(‖A‖+‖Bxn‖) = ‖A‖+‖B‖, that is, limn→∞ ‖Bxn‖ = ‖B‖. Similarly,
we obtain limn→∞ ‖Axn‖ = ‖A‖. Therefore, from the identity

‖Axn +Bxn‖2 = ‖Axn‖2 +‖Bxn‖2 +2Re(A∗Bxn,xn) (2)

it follows that
lim
n→∞

Re(A∗Bxn,xn) = ‖A‖‖B‖.
Since

|(A∗Bxn,xn)| = ((Re (A∗Bxn,xn))2 +(Im(A∗Bxn,xn))2)
1
2 ,

and |(A∗Bxn,xn)| � ‖A‖‖B‖, we deduce that

lim
n→∞

|(A∗Bxn,xn)| = ‖A‖‖B‖.

Thus, limn→∞ Im(A∗Bxn,xn)= 0, wherefrom limn→∞(A∗Bxn,xn)= ‖A‖‖B‖, i.e., ‖A‖‖B‖
∈W (A∗B)−.

Conversely, let us suppose that ‖A‖‖B‖∈W (A∗B)−. Then there is a sequence (xn)
of unit vectors in H such that limn→∞(A∗Bxn,xn)= ‖A‖‖B‖. Thus, limn→∞Re(A∗Bxn,xn)
= ‖A‖‖B‖. Since |(A∗Bxn,xn)|� ‖Axn‖‖B‖� ‖A‖‖B‖, we conclude that limn→∞ ‖Axn‖
= ‖A‖. Similarly, we get limn→∞ ‖Bxn‖= ‖B‖. Now, (2) implies limn→∞ ‖Axn+Bxn‖=
‖A‖+‖B‖, wherefrom ‖A+B‖= ‖A‖+‖B‖. �
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REMARK 2.5. It is known that ‖A‖ ∈ W (A)− if and only if ‖A‖ ∈ σap(A) (see
e.g. [8]). From this, one can easily deduce that ‖A‖‖B‖ ∈ W (A∗B)− if and only if
‖A‖‖B‖ ∈ σap(A∗B).

The concept of the classical numerical range can be naturally extended for ele-
ments of an arbitrary C∗ -algebra. If A is a C∗ -algebra, we define the numerical range
of an arbitrary element a ∈ A as the set

V (a) = {ϕ(a) : ϕ is a state of A }.
This set generalizes the classical numerical range in the sense that the numerical range
V (T ) of a Hilbert space operator T (considered as an element of a C∗ -algebra B(H))
coincides with the closure of its classical numerical range W (T ) (see [18]). (For more
details about numerical ranges the reader is referred to [4, 5].)

Thus, one can ask if the C∗ -algebraic version of Theorem 2.4 holds. The answer
is affirmative and was given by Nakamoto et al. in [15]. They proved the following
theorem.

THEOREM 2.6. ([15]) Let A be a C∗ -algebra and a,b ∈ A . Then the equality
‖a+b‖= ‖a‖+‖b‖ holds if and only if ‖a‖‖b‖ ∈V (a∗b).

Arambašić et al. [2] observed that Theorem 2.6 can be further generalized in the
framework of pre-Hilbert C∗ -modules. Pre-Hilbert C∗ -modules are a straightforward
generalization of inner-product spaces where the scalar field C is replaced by a C∗ -
algebra. The basic theory of pre-Hilbert C∗ -modules can be found in [10, 19].

The formal definition is as follows.
A right pre-Hilbert C∗ -module V over a C∗ -algebra A (or a right pre-Hilbert

A -module) is a linear space which is a right A -module (with a compatible scalar
multiplication: λ (xa) = (λx)a = x(λa) for x ∈ V, a ∈ A , λ ∈ C), equipped with an
A -valued inner-product 〈· , ·〉 : V ×V → A that is sesquilinear, positive definite and
respects the module action. In other words:

(i) 〈x,αy+β z〉 = α〈x,y〉+β 〈x,z〉 for x,y,z ∈V, α,β ∈ C,
(ii) 〈x,ya〉 = 〈x,y〉a for x,y ∈V, a ∈ A ,
(iii) 〈x,y〉∗ = 〈y,x〉 for x,y ∈V,
(iv) 〈x,x〉 � 0 for x ∈V ; if 〈x,x〉 = 0 then x = 0.

For a pre-Hilbert C∗ -module V the Cauchy-Schwarz inequality holds:

‖〈x,y〉‖2 � ‖〈x,x〉‖‖〈y,y〉‖, (x,y ∈V ).

Consequently, ‖x‖ = ‖〈x,x〉‖ 1
2 defines a norm on V.

A pre-Hilbert A -module which is complete with respect to its norm is called a
Hilbert C∗ -module over A , or a Hilbert A -module.

Given a positive functional ϕ of a C∗ -algebra A , we have the following useful
version of the Cauchy-Schwarz inequality:

|ϕ(〈x,y〉)|2 � ϕ(〈x,x〉)ϕ(〈y,y〉)
for arbitrary elements x,y of a pre-Hilbert C∗ -module V.
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REMARK 2.7. (a) The ordinary inner-product spaces are left pre-Hilbert C-mo-
dules.

(b) Every C∗ -algebra A is a Hilbert A -module under the inner product defined
by 〈a,b〉 = a∗b. The corresponding norm is just the norm on A because of the C∗ -
condition.

The following result characterizes the triangle equality for elements of a pre-
Hilbert C∗ -module.

THEOREM 2.8. ([2]) Let A be a C∗ -algebra, V a pre-Hilbert A -module and
x,y ∈V. Then the equality ‖x+y‖= ‖x‖+‖y‖ holds if and only if ‖x‖‖y‖∈V (〈x,y〉).

Proof. Suppose that ‖x + y‖ = ‖x‖+ ‖y‖. There is a state ϕ on A such that
ϕ(〈x+ y,x+ y〉) = ‖〈x+ y,x+ y〉‖= ‖x+ y‖2. Then we have

‖x+ y‖2 = ϕ(〈x+ y,x+ y〉)
= ϕ(〈x,x〉)+ϕ(〈x,y〉)+ϕ(〈y,x〉)+ϕ(〈y,y〉)
� ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2 = ‖x+ y‖2,

from which it follows that ϕ(〈x,x〉) = ‖x‖2, ϕ(〈y,y〉) = ‖y‖2 and ϕ(〈x,y〉) = ‖x‖‖y‖.
Hence, ‖x‖‖y‖ ∈V (〈x,y〉).

Conversely, suppose ‖x‖‖y‖ ∈ V (〈x,y〉). Then there is a state ϕ on A such that
ϕ(〈x,y〉) = ‖x‖‖y‖. From the Cauchy-Schwarz inequality we get

‖x‖‖y‖= |ϕ(〈x,y〉)| � ϕ(〈x,x〉) 1
2ϕ(〈y,y〉) 1

2

� ‖〈x,x〉‖ 1
2 ‖〈y,y〉‖ 1

2 = ‖x‖‖y‖

and then ϕ(〈x,x〉) = ‖x‖2 and ϕ(〈y,y〉) = ‖y‖2. Now we have

ϕ(〈x+ y,x+ y〉) = ϕ(〈x,x〉)+ϕ(〈x,y〉)+ϕ(〈y,x〉)+ϕ(〈y,y〉)
= ‖x‖2 +2‖x‖‖y‖+‖y‖2 = (‖x‖+‖y‖)2.

Since ϕ(〈x+ y,x+ y〉) � ‖〈x+ y,x+ y〉‖= ‖x+ y‖2, we get ‖x+ y‖= ‖x‖+‖y‖. �

REMARK 2.9. (a) We have already noted that every inner-product space (V,(·, ·))
is a pre-Hilbert C-module. Since the only state on C is the identity operator, the
preceding theorem tells us that the equality ‖x + y‖ = ‖x‖+ ‖y‖ is valid for x,y ∈ V
precisely when (x,y) = ‖x‖‖y‖. The second equality holds if and only if x = λy or
y = λx for some constant λ � 0, which is a well-known characterization of the equality
‖x+ y‖= ‖x‖+‖y‖ in inner-product spaces.

(b) It is evident from Remark 2.7 (b) that Theorem 2.8 also generalizes Nakamoto
and Takahasi’s result (i.e., Theorem 2.6) in the context of pre-Hilbert C∗ -modules.

Characterization of the triangle equality for an arbitrary number of finitely many
elements of a pre Hilbert C∗ -module was also obtained in [2].
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THEOREM 2.10. ([2]) Let A be a C∗ -algebra, V a pre-Hilbert A -module and
x1, . . . ,xn nonzero elements of V. Then the equality ‖x1 + · · ·+ xn‖ = ‖x1‖+ · · ·+‖xn‖
holds if and only if there is a state ϕ of A such that ϕ(〈xi,xn〉) = ‖xi‖‖xn‖ for i =
1, . . . ,n−1.

Proof. Indeed, from ‖x1 + · · ·+ xn‖ = ‖x1‖+ · · ·+‖xn‖ we obtain that

‖x1‖+ · · ·+‖xn‖ = ‖x1 + · · ·+ xn‖ � ‖x1 + · · ·+ xn−1‖+‖xn‖
from which it follows that ‖x1 + · · ·+ xn−1‖ = ‖x1‖+ · · ·+‖xn−1‖ and so ‖(x1 + · · ·+
xn−1)+ xn‖ = ‖x1 + · · ·+ xn−1‖+‖xn‖. By Theorem 2.8 there is a state ϕ on A such
that

ϕ(〈x1 + · · ·+ xn−1,xn〉) = ‖x1 + · · ·+ xn−1‖‖xn‖ = (‖x1‖+ · · ·+‖xn−1‖)‖xn‖.
Then ϕ(〈x1,xn〉) + · · ·+ϕ(〈xn−1,xn〉) = ‖x1‖‖xn‖+ · · ·+ ‖xn−1‖‖xn‖ which implies
ϕ(〈xi,xn〉) = ‖xi‖‖xn‖ for i = 1, . . . ,n−1. The converse is proved in a similar way. �

3. Some applications

Maligranda [12] obtained the following refinement of the triangle inequality and
its reverse inequality.

THEOREM 3.1. ([12]) For any nonzero elements x and y in a normed linear
space V we have

‖x+ y‖� ‖x‖+‖y‖−
(

2−
∥∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥∥
)

min{‖x‖,‖y‖} (3)

and

‖x+ y‖� ‖x‖+‖y‖−
(

2−
∥∥∥∥ x
‖x‖ +

y
‖y‖

∥∥∥∥
)

max{‖x‖,‖y‖}. (4)

Proof. Without loss of generality we may assume that ‖x‖ � ‖y‖. Then, by the
triangle inequality

‖x+ y‖ =
∥∥∥ ‖x‖
‖x‖x+ ‖x‖

‖y‖y+
(
1− ‖x‖

‖y‖
)
y
∥∥∥

� ‖x‖
∥∥∥ x
‖x‖ + y

‖y‖
∥∥∥+‖y‖−‖x‖

= ‖y‖+
(∥∥∥ x

‖x‖ + y
‖y‖

∥∥∥−1
)
‖x‖

= ‖x‖+‖y‖+
(∥∥∥ x

‖x‖ + y
‖y‖

∥∥∥−2
)
‖x‖,

which establishes the estimate (3). Similarly, the computation

‖x+ y‖ =
∥∥∥ ‖y‖
‖y‖y+ ‖y‖

‖x‖x+
(
1− ‖y‖

‖x‖
)
x
∥∥∥

� ‖y‖
∥∥∥ y
‖y‖ + x

‖x‖
∥∥∥−|‖x‖−‖y‖|

= ‖y‖
∥∥∥ y
‖y‖ + x

‖x‖
∥∥∥−‖y‖+‖x‖

= ‖x‖+‖y‖−
(
2−

∥∥∥ x
‖x‖ + y

‖y‖
∥∥∥)

‖y‖
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gives the inequality (4). �
Observe that the inequalities (3) and (4) can be rewritten as the estimates for the

angular distance α[x,y] =
∥∥ x
‖x‖ − y

‖y‖
∥∥ introduced by Clarkson in [6]. Namely, it is

evident that (4) is equivalent to∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ � ‖x− y‖+ |‖x‖−‖y‖|

max{‖x‖,‖y‖} , (5)

while (3) is equivalent to∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ � ‖x− y‖− |‖x‖−‖y‖|

min{‖x‖,‖y‖} . (6)

(For another proof of (6) see also [14].)
The inequality (5) provides a refinement of the Massera-Schäffer inequality [13]

which states that ∥∥∥∥ x
‖x‖ − y

‖y‖
∥∥∥∥ � 2‖x− y‖

max{‖x‖,‖y‖} (7)

for any two nonzero elements x and y in a normed linear space V. Also, (7) sharpens
the Dunkl-Williams inequality [7]:∥∥∥∥ x

‖x‖ − y
‖y‖

∥∥∥∥ � 4‖x− y‖
‖x‖+‖y‖ (x,y ∈V \ {0}). (8)

Generalizations of (3) and (4) for n ∈ N elements of a normed linear space were
given by Kato et al. [9] who proved the following theorem.

THEOREM 3.2. ([9]) Let V be a normed linear space and x1, . . . ,xn nonzero ele-
ments of V. Then we have∥∥∥∥

n

∑
j=1

x j

∥∥∥∥ �
n

∑
j=1

‖x j‖−
(

n−
∥∥∥∥

n

∑
j=1

x j

‖x j‖
∥∥∥∥
)

min
j∈{1,...,n}

‖x j‖ (9)

and ∥∥∥∥
n

∑
j=1

x j

∥∥∥∥ �
n

∑
j=1

‖x j‖−
(

n−
∥∥∥∥

n

∑
j=1

x j

‖x j‖
∥∥∥∥
)

max
j∈{1,...,n}

‖x j‖. (10)

The above result was improved in [16]:

THEOREM 3.3. ([16]) Let V be a normed linear space and x1, . . . ,xn nonzero
elements of V. Then we have∥∥∥∥

n

∑
j=1

x j

‖x j‖
∥∥∥∥ � min

i∈{1,...,n}

{
1

‖xi‖
(∥∥∥∥

n

∑
j=1

x j

∥∥∥∥+
n

∑
j=1

|‖x j‖−‖xi‖|
)}

(11)

and ∥∥∥∥
n

∑
j=1

x j

‖x j‖
∥∥∥∥ � max

i∈{1,...,n}

{
1

‖xi‖
(∥∥∥∥

n

∑
j=1

x j

∥∥∥∥−
n

∑
j=1

|‖x j‖−‖xi‖|
)}

. (12)
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REMARK 3.4. When n = 2 the inequalities (5) and (6) immediately follow by
putting x1 := x and x2 := −y in (11) and (12), respectively.

Moreover, it can be easily verified that (11) implies (10), while (12) implies (9).

Finally, we present the characterizations of the case of equality in (11) and (12)
for elements of pre-Hilbert C∗ -modules. These characterizations were obtained in [17]
by using Theorem 2.10.

THEOREM 3.5. ([17]) Let V be a pre-Hilbert A -module and x1, . . . ,xn nonzero
elements of V such that ∑n

j=1 x j 	= 0. Then equality holds in (11) if and only if ‖x1‖ =
· · · = ‖xn‖ or there exist i ∈ {1, . . . ,n} and a state ϕ of A satisfying

sgn(‖xi‖−‖xk‖)
n

∑
j=1

ϕ(〈x j,xk〉) =
∥∥∥∥

n

∑
j=1

x j

∥∥∥∥‖xk‖

for all k ∈ {1, . . . ,n} such that ‖xk‖ 	= ‖xi‖.

THEOREM 3.6. ([17]) Let V be a pre-Hilbert A -module and x1, . . . ,xn nonzero
elements of V such that ∑n

j=1 x j = 0. Then equality holds in (11) if and only if ‖x1‖ =
· · · = ‖xn‖ or there exist i,k ∈ {1, . . . ,n} satisfying ‖xi‖ 	= ‖xk‖ and a state ϕ of A
such that

sgn(‖xi‖−‖x j‖)sgn(‖xi‖−‖xk‖)ϕ(〈x j,xk〉) = ‖x j‖‖xk‖
for all j ∈ {1, . . . ,n} \ {k} such that ‖x j‖ 	= ‖xi‖.

THEOREM 3.7. ([17]) Let V be a pre-Hilbert A -module and x1, . . . ,xn nonzero
elements of V such that ∑n

j=1
x j

‖x j‖ 	= 0. Then equality holds in (12) if and only if ‖x1‖=
· · · = ‖xn‖ or there exist i ∈ {1, . . . ,n} and a state ϕ of A satisfying

sgn(‖xk‖−‖xi‖)
n

∑
j=1

ϕ
(〈

x j

‖x j‖ ,xk

〉)
=

∥∥∥∥
n

∑
j=1

x j

‖x j‖
∥∥∥∥‖xk‖

for all k ∈ {1, . . . ,n} such that ‖xk‖ 	= ‖xi‖.

THEOREM 3.8. ([17]) Let V be a pre-Hilbert A -module and x1, . . . ,xn nonzero
elements of V such that ∑n

j=1
x j

‖x j‖ = 0. Then equality holds in (12) if and only if ‖x1‖=
· · · = ‖xn‖ or there exist i,k ∈ {1, . . . ,n} satisfying ‖xi‖ 	= ‖xk‖ and a state ϕ of A
such that

sgn(‖xi‖−‖x j‖)sgn(‖xi‖−‖xk‖)ϕ(〈x j,xk〉) = ‖x j‖‖xk‖
for all j ∈ {1, . . . ,n} \ {k} such that ‖x j‖ 	= ‖xi‖.
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