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Abstract. A sequence (xn)n�0 of positive real numbers is log-convex if the inequality x2
n �

xn−1xn+1 is valid for all n � 1 . We show here how the problem of establishing the log-convexity
of a given combinatorial sequence can be reduced to examining the ordinary convexity of related
sequences. The new method is then used to prove that the sequence of Motzkin numbers is
log-convex.

1. Introduction

The problem of determining the logarithmic convexity/concavity of combinatorial
sequences has attracted a considerable attention over the course of last decade. This
resulted in extension of the classical repertoire [4, 5, 6, 7, 14, 15, 16] by several new
methods based on matrix techniques [1], calculus [10, 11], interlacing [9], finite differ-
ences [8, 12] and sequence transformations [3, 18]. Those methods have been success-
fully applied to a wide range of combinatorial sequences given by two- or more-term
recurrences with polynomial coefficients. The main reason of their effectiveness lies
in their conceptual simplicity and (almost) automaticity. In a typical case, one starts
from the recurrence defining a combinatorial sequence, passes to the recurrence for the
sequence of quotients of successive elements and then shows that this sequence is in-
creasing by checking some simple conditions. The procedure can be performed almost
mechanically and does not rely on ingenuity and imagination necessary for construct-
ing intricate injections characteristic for combinatorial proofs [5, 7, 14]. However, the
conceptual simplicity does not always translate to simplicity of technical implementa-
tion. Our experience with calculus, interlacing, and finite difference methods points to
the nonlinearity of the quotient recurrences as the main source of technical difficulties.
In this paper we present a method that does not rely on nonlinear recurrences. This is
achieved by adapting a classical result from the theory of functions that characterizes
the log-convexity in terms of ordinary convexity. However, there is a price to be paid:
instead of dealing with one (nonlinear) recurrence, we will have to examine an uncount-
able family of linear recurrences. Fortunately, it turns out that the whole family can be
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treated in a uniform way. The final result is a method that has all the applicability and
robustness of the calculus/finite difference methods, while being free of most of their
technical difficulties. The application of the method is illustrated by proving that the
sequence of Motzkin numbers is log-convex.

2. Preliminaries

We start by recalling the definitions of convexity and log-convexity of sequences
and functions.

A real sequence (xn)n�0 is convex if xn � 1
2(xn−1 + xn+1) for n � 0. A sequence

(xn)n�0 of positive real numbers is log-convex if x2
n � xn−1xn+1 is valid for n � 1.

Obviously, the log-convexity of a sequence is equivalent to the ordinary convexity of
the sequence of its logarithms. This suggests a way of reducing the log-convexity to
the convexity. However, this approach is not suitable for combinatorial sequences given
by two- or more-term recurrences, since those recurrences do not translate nicely into
recurrences for their logarithms.

An alternative way of defining log-convexity of a sequence of positive real num-
bers is via its quotient sequence. For a given positive sequence (xn)n�0 its quotient
sequence (qn)n�1 is defined by qn = xn

xn−1
. A sequence (xn) is log-convex if and only

if its quotient sequence qn is (weakly) increasing. It is easy to see that if a combina-
torial sequence (xn) is given by a recurrence xn = R(n)xn−1 +S(n)xn−2 for n � 2 and
some initial conditions x0 and x1 , its quotient sequence (qn) satisfies the recurrence

qn = R(n)+ S(n)
qn−1

for n � 1 with the initial condition q1 = x1
x0

. The last recurrence is
nonlinear, and this nonlinearity leads to to the complications mentioned in introduction.

Let us get back to reducing the log-convexity to the convexity. It turns out that
there is a way of achieving this goal while preserving linearity of the recurrences defin-
ing (an) .

A function f : I → R is convex if f ((1− t)a+ tb) � (1− t) f (a)+ t f (b) for all
t ∈ [0,1] and all [a,b] ⊆ I . A positive function f : I → R is log-convex if its loga-
rithm log f (x) is a convex function. Formally this can be written as f ((1− t)a+ tb) �
f (a)(1−t) f (b)t for all t ∈ [0,1] and all [a,b] ⊆ I .

The log-convexity has a geometrical interpretation that parallels the familiar “be-
low the secant” geometrical interpretation of ordinary convexity: The portion of the
graph of a log-convex function f over a segment [a,b] lies below the graph of the
exponential function αeβ x whose values at a and b coincide with the corresponding
values of f [2].

A sum of convex functions is a convex function. This is reflected in the fact that a
product of log-convex functions is a log-convex function. A bit less obvious is the fact
that also a sum of log-convex functions is itself log-convex. This has been known for
long time - there are proofs from the first half of the last century. A new and elegant
proof appeared recently in Russian literature [2], based on the following characteriza-
tion of log-convex functions.

THEOREM A. A function f (x) is log-convex if and only if the function eαx f (x) is
convex for all α ∈ R .
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The result is attributed to P. Montel, who gave a proof in his 1928 paper on sub-
harmonic functions [13].

By translating Theorem A into context of sequences, by considering restrictions of
functions to the positive integers, we obtain a characterization of log-convex sequences
in terms of convexity.

COROLLARY 1. A sequence (xn)n�0 of positive real numbers is log-convex if and
only if the sequence (anxn)n�0 is convex for all a > 0 .

3. Combinatorial sequences

The above characterization can be further simplified if we restrict our attention to
the class of combinatorial sequences. We call a sequence (xn)n�0 combinatorial if it is
increasing without bounds and all its elements are positive integers.

COROLLARY 2. A combinatorial sequence (xn)n�0 is log-convex if and only if
the sequence (anxn)n�0 is convex for all 0 < a � 1 .

Proof. For all a > 1 the sequence (an) is strictly increasing and convex. If a
combinatorial sequence is convex, then the sequence (anxn) for a > 1 will be convex,
as a product of two increasing convex sequences. Hence, it suffices to check that (anxn)
is convex for all 0 < a � 1.

Now take an a ∈ (0,1] and form the sequence (anxn) . This sequence is convex if
and only if an+1xn+1 +an−1xn−1 � 2anxn , or, equivalently, axn+1 + 1

a xn−1 � 2xn . The
AGM inequality now implies that the left-hand side is at least 2

√
xn+1xn−1 , and this, in

turn, leads to xn+1xn−1 � x2
n . �

Corollary 2 is the main result of the present paper. Its strength is most evident
on those combinatorial sequences that are defined by linear recurrences, and it follows
from the fact that the sequences (anxn)n�0 satisfy linear recurrences closely related
to the one that defines (xn) . In the next section we show how Corollary 2 is used to
establish the log-convexity of a combinatorial sequence defined by a two-term linear
recurrence with polynomial coefficients.

4. A case study: Motzkin numbers

The sequence (Mn) of Motzkin numbers has many combinatorial interpretations;
we refer the reader to [17] for a non-exhaustive list. It satisfies a linear two-term recur-
rence:

Mn =
2n+1
n+2

Mn−1 +3
n−1
n+2

Mn−2, n � 2, M0 = M1 = 1.

Now, take a 0 < a � 1 and form a sequence (bn) by setting bn = anMn . By
expressing Mn via bn and substituting into the defining recurrence, we obtain the re-
currence for bn :

bn = a
2n+1
n+2

bn−1 +3a2n−1
n+2

bn−2.
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By substituting this expression into the condition bn + bn−2 � 2bn−1 we obtain the
inequality for the quotient bn−1

bn−2
:

bn−1

bn−2
� (3a2 +1)n+2−3a2

2(1−a)n+4−a
.

Hence, the sequence (bn) is convex if and only if the quotient bn
bn−1

is bounded from

above by an upper bound of the form g(n,a) = (3a2+1)(n+1)+2−3a2

2(1−a)(n+1)+4−a . This upper bound
can be established by induction on n from the defining recurrence.

An upper bound on bn
bn−1

can be obtained from the recurrence

bn

bn−1
= a

2n+1
n+2

+3a2 n−1
n+2

bn−2

bn−1

by replacing bn−2
bn−1

by some greater quantity, i.e., by an upper bound on bn−2
bn−1

. But such

an upper bound is then a lower bound for bn−1
bn−2

. Hence, we will need a lower bound,

d(n,a) , that will drive the recurrence in the inductive proof of bn
bn−1

� g(n,a) . The
easiest way to find such lower bound is to solve the inequality

a
2n+1
n+2

+3a2 n−1
n+2

1
d(n−1,a)

� g(n,a)

for the unknown quantity d(n− 1,a) . By doing so, we obtain d(n− 1,a) , and from
there d(n,a) in the form

d(n,a) =
3a2n[2(1−a)n+8−5a]

(7a2−4a+1)n2 +(28a2−22a+7)n+24a2−24a+12
.

Now we verify the conjectured bounds by induction on n .

LEMMA 3. For all n ∈ N and a ∈ (0,1] we have

d(n,a) � bn

bn−1
� g(n,a).

Proof. The base of induction follows from the inequalities

d(1,a) = 3a2 10−7a
59a2−50a+20

� b1

b0
= a � g(1,a) =

3a2 +4
8−5a

.

Now assume that d(k,a) � bk
bk−1

� g(k,a) is valid for all 1 � k � n−1. The inequality

bn

bn−1
� a

2n+1
n+2

+3a2 n−1
n+2

1
d(n−1,a)

� g(n,a)

is trivially valid, since d(n− 1,a) was chosen so as to satisfy it. The only remaining
problem is to verify the other inequality.
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By plugging the expression for g(n,a) into the recurrence, we obtain

bn

bn−1
� a

2n+1
n+2

+3a2 n−1
n+2

1
g(n−1,a)

=
a[(6a+2)n+1−6a]
(3a2 +1)n+2−3a2 = r(n,a).

The claim will follow if r(n,a) � d(n,a) , i.e., if r(n,a)−d(n,a)� 0. It easy to see that
both denominators in r(n,a) and d(n,a) are positive for a ∈ (0,1] and n ∈ N . Hence,
the common denominator of the difference r(n,a)−d(n,a) is positive. The numerator
of r(n,a)−d(n,a) is given by

a[12(1− 8a+14a2−12a3)+ (31−88a+94a2+48a3−45a4)n

+3(a+1)(3a−1)(3a2+6a−5)n2+2(a+1)2(3a−1)2n3].

Let us denote the term in square brackets by s(n,a) . We would like to show that

s(n,a) � 0 for all n ∈ N and a ∈ (0,1] . By computing the partial derivative ∂ s(n,a)
∂n

and equating it to zero, we obtain a quadratic equation for n :

6(a+1)2(3a−1)2n2 +6(a+1)(3a−1)(3a2+6a−5)n

+(31−88a+94a2+48a3−45a4) = 0.

Its discriminant D(a) = 117a4 + 12a3 − 170a2 − 4a+ 13 has four real zeros; one of

them, α = 1
78

(
−2−20

√
3+39

√
3232
1521 + 80

507
√

3

)
≈ 0.274558, falls into (0,1] . From

D(0) > 0 it follows that the equation ∂ s(n,a)
∂n = 0 has no real roots for a > α , and it

is easy to see that both real roots of this equation for 0 < a � α are negative. Hence,
∂ s(n,a)
∂n does not change its sign for n ∈ N and a ∈ (0,1] . Now the nonnegativity of

s(n,a) follows by checking that both s(1,a) = 60(2a− 1)2 and ∂ s(n,a)
∂n |n=1 = 67−

208a+46a2+264a3+63a4 are nonnegativeon (0,1] , and that, indeed, is the case. �
Hence, the quotient bn

bn−1
is bounded from below and from above by d(n,a) and

g(n,a) , respectively, and then the sequence (bn) is convex. By invoking Corollary 2,
we arrive to our final result.

THEOREM 4. The sequence (Mn) of Motzkin numbers is log-convex.
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[9] T. DOŠLIĆ, D. SVRTAN AND D. VELJAN, Enumerative aspects of secondary structures, Discrete

Math., 285 (2004), 67–82.
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