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Abstract. In this paper, we introduce a new class of variational inclusions involving three oper-
ator. Using the resolvent operator technique, we establish the equivalence between the general
variational inclusions and the resolvent equations. We use this alternative equivalent formulation
to suggest and analyze some iterative methods for solving the general variational inclusions. We
also consider the criteria of these iterative methods under suitable conditions. Since the general
variational inclusions include the variational inequalities and the related optimization problems
as special cases, our results continue to hold for these problems.

1. Introduction

Variational inclusions involving three operators are useful and important exten-
sions and generalizations of the general variational inequalities with a wide range of
applications in industry, mathematical finance, economics, decision sciences, ecology,
mathematical and engineering sciences, see [1–45] and the references therein. It is
well known that the projection method and its variant forms including the Wiener-
Hopf equations can not be extended and modified for solving the variational inclusions.
These facts and comments have motivated to use the technique of the resolvent opera-
tors. This technique can lead to the development of very efficient and robust methods
since one can treat each part of the original operator independently. A useful feature
of these iterative methods for solving the general variational inclusion is that the resol-
vent step involves the maximal monotone operator only, while other parts facilitates the
problem decomposition. Essentially using the resolvent technique, one can show that
the variational inclusions are equivalent to the fixed point problems. This alternative
equivalent formulation has played very crucial role in developing some very efficient
methods for solving the variational inclusions and related optimization problems, see
[15–38] and the references therein. Related to the variational inclusions, we have the
problem of solving the resolvent equations, which are mainly due to Noor [20, 21, 23].
Essentially using the resolvent operator technique, we can establish the equivalence
between the resolvent equations and the variational inclusions. This equivalence for-
mulations is more general and flexible than the resolvent operator method. Resolvent
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equations technique has been used to suggest and analyze several iterative methods for
solving variational inclusions and related problems, see [24–27, 32, 34–38] and the
references therein.

Motivated and inspired by the recent research activities in these areas, we intro-
duce some new classes of variational inclusions and resolvent equations. Essentially
using the resolvent operator methods, we establish the equivalence between the resol-
vent equations and the general variational inclusions. This alternative equivalent for-
mulation is used to suggest some iterative methods for solving the general variational
inclusions. We study the convergence criteria of the new iterative method under some
mild conditions. Since the variational inclusions include the mixed variational inequal-
ities and related optimization problems as special cases, results proved in this paper
continue to hold for these problems.

2. Basic Results

Let K be a nonempty closed and convex set in a real Hilbert space, whose inner
product and norm are denoted by 〈·, ·〉 and ‖.‖ respectively. Let T,A,g : H −→ H be
three nonlinear operators.

Consider the problem of finding u ∈ H such that

0 ∈ ρTu+u−g(u)+ρA(u), ρ > 0, a constant, (1)

which is known as the general variational inclusion . Problem (1) is also known as find-
ing the zero of the sum of two (or more) monotone operators. Variational inclusions
and related problems are being studied extensively by many authors and have impor-
tant applications in operations research, optimization, mathematical finance, decision
sciences and other several branches of pure and applied sciences, see [2–45] and the
references therein.

If A(.)≡ ∂ϕ(.), where ∂ϕ(.) is the subdifferential of a proper, convex and lower-
semicontinuous function ϕ : H −→ R∪{+∞}, then the problem (1) reduces to finding
u ∈ H such that

0 ∈ ρTu+u−g(u)+ρ∂ϕ(u),

or equivalently, finding u ∈ H such that

〈ρTu+u−g(u),g(v)−u〉+ρϕ(g(v))−ρϕ(u)� 0, ∀v ∈ H. (2)

The inequality (2) is called the general mixed variational inequality or the general vari-
ational inequality of the second kind. It has been shown that a wide class of linear
and nonlinear problems arising in various branches of pure and applied sciences can be
studied in the unified framework of mixed variational inequalities, see [2–38].

We note that if ϕ is the indicator function of a closed convex set K in H, that is,

ϕ(u) ≡ IK(u) =
{

0, if u ∈ K
+∞, otherwise,
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then the general mixed variational inequality (2) is equivalent to finding u ∈ K such
that

〈ρTu+u−g(u),g(v)−u〉� 0, ∀v ∈ H : g(v) ∈ K, (3)

which is called the general variational inequality introduced and studied by Noor [29]
in connection with nonconvex functions. See also Noor and Noor [31, 32] for more
details.

If g≡ I, the identity operator, then problem (3) is equivalent to finding u∈K such
that

〈Tu,v−u〉� 0, ∀v ∈ K, (4)

which is known as the classical variational inequality introduced and studied by Stam-
pacchia [44] in 1964. For the recent trends and developments in variational inclusions
and inequalities, see [2–45] and the references therein.

We also need the following well known concepts and results.

DEFINITION 2.1. [5] If A is a maximal monotone operator on H , then, for a
constant ρ > 0, the resolvent operator associated with A is defined by

JA(u) = (I +ρA)−1(u), for all u ∈ H ,

where I is the identity operator. It is well known that a monotone operator is maximal
if and only if its resolvent operator is defined everywhere. In addition, the resolvent
operator is a single-valued and nonexpansive, that is, for all u,v ∈ H ,

‖JA(u)− JA(v)‖ � ‖u− v‖.
REMARK 2.1. It is well known that the subdifferential ∂ϕ of a proper, convex and

lower semicontinuous function ϕ : H → R∪{+∞} is a maximal monotone operator,
we denote by

Jϕ(u) = (I +ρ∂ϕ)−1(u), for all u ∈ H ,

the resolvent operator associated with ∂ϕ , which is defined everywhere on H . In
particular, the resolvent operator Jϕ has the following interesting characterization.

LEMMA 2.1. [5] For a given z ∈ H , u ∈ H satisfies the inequality

〈u− z,v−u〉+ρϕ(v)−ρϕ(u)� 0, for all v ∈ H,

if and only if
u = Jϕz,

where Jϕ = (I +ρ∂ϕ)−1 is the resolvent operator.

This property of the resolvent operator Jϕ plays an important part in developing
the numerical methods for solving the mixed variational inequalities.

If the function ϕ(.) is the indicator function of a closed convex set K in H, then
it is well known that Jϕ = PK , the projection operator of H onto the closed convex set
K.
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Using the definition of the resolvent operator JA, one can easily prove the follow-
ing well known result. For the sake of completeness and to convey an idea, we include
its proof.

LEMMA 2.2. The function u ∈ H is a solution of the variational inclusion (1) if
and only if u ∈ H satisfies the relation

u = JA[g(u)−ρTu],

where ρ > 0 is a constant and JA = (I +ρA)−1 is the resolvent operator associated
with the maximal monotone operator.

Proof. Let u ∈ H be a solution of(1). Then

0 ∈ ρTu+u−g(u)+ρA(u)
⇐⇒ −(g(u)−ρTu)+ (I+ρA)(u)
⇐⇒ u = (I +ρA)−1[g(u)−ρTu] = JA[g(u)−ρTu],

the required result. �
It is clear from Lemma 2.2 that general variational inclusion (1) and the fixed

point problems are equivalent. This alternative equivalent formulation has played a
significant role in the studies of the variational inequalities and related optimization
problems.

We now recall some well known concepts and notions.

DEFINITION 2.2. A mapping T : H →H is called β -Lipschitz if for all x,y∈H ,
there exists a constant β > 0, such that

||Tx−Ty||� β ||x− y||.
DEFINITION 2.3. A mapping T : H →H is called α -strongly monotone if for all

x,y ∈ K , there exists a constant α > 0, such that

〈Tx−Ty,x− y〉� α||x− y||2.

3. Main Results

In this section, we use the general resolvent operator technique to suggest and
analyze some iterative methods for solving the general variational inclusion (1).

ALGORITHM 3.1. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative schemes:

un+1 = (1−an)un +anJA[g(un)−ρTun]. (5)

where an ∈ [0,1] for all n � 0. Algorithm 3.1 is also known as Mann iteration.
We now discuss some special cases of Algorithm 3.1 for solving the mixed general

variational inequalities (2).
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I. If A(.) ≡ ∂ϕ(.), the subdifferential of a proper lower-semicontinuous and convex
function ϕ , then JA = Jϕ = (I +ρ∂ϕ)−1 and consequently Algorithm 3.1 collapses to:

ALGORITHM 3.2. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative schemes

un+1 = (1−an)un +anJ∂ϕ [g(un)−ρTun],

where an ∈ [0,1] for all n � 0. Algorithm 3.2 is called one-step method for solving the
general mixed variational inequalities (2) and appears to be a new one.

II. If ϕ is the indicator function of a closed convex set K in H, then Jϕ ≡ PK , the
projection of H onto the closed convex set K. In this case Algorithm 3.2 reduces to the
following method.

ALGORITHM 3.3. For a given u0 ∈ H, compute the approximate solution un+1

by the iterative schemes

un+1 = (1−an)un +anPK [g(un)−ρTun],

where an ∈ [0,1] for all n � 0. Algorithm 3.3 is a one-step method for solving the
general variational inequalities (3). Noor [29] has studied the convergence analysis of
Algorithm 3.3 and its various special cases.

In brief, Algorithm 3.1 is quite general and includes several iterative methods for
solving general mixed variational inequalities and related optimization problems as spe-
cial cases.

We now study those conditions under which the approximate solution obtained
from Algorithm 3.1 to a solution of the variational inclusion (1).

THEOREM 3.1. Let T be α -strongly monotone with constant α > 0 and β -
Lipschitz with constant β > 0 and let g be σ -strongly monotone with constant σ > 0
and δ -Lipschitz with constant δ > 0. If

∣∣∣∣ρ− α
β 2

∣∣∣∣ <

√
α2 −β 2(2k− k2)

β 2 , (6)

α > β
√

k(2− k), k < 1, (7)

where
k =

√
1−2σ+ δ 2, (8)

and an ∈ [0,1] , ∑∞
n=0 an =∞, then the approximate solution un+1 obtained from Algo-

rithm 3.1 converges to a solution u of the general variational inclusion (1) .

Proof. Let u ∈ H be a solution of (1). Then, from Lemma 2.1, we have

u = (1−an)u+anJA{g(u)−ρTu} (9)

where an ∈ [0,1] and u ∈ H is a solution of (1). To prove the result, we need first to
evaluate ||un+1 − u|| for all n � 0. From (5) and (10), and the nonexpansivity of JA,
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we have

||un+1−u|| = ||(1−an)un +anJA{g(un)−ρTun}− (1−an)u−anJA{g(u)−ρTu}||
� (1−an)||un−u||+an||g(un)−g(u)−ρ(Tun−Tu)||
� (1−an)‖un−u‖+an‖un−u− (g(un)−g(u))‖

an‖un−u−ρ(Tun−Tu)‖. (10)

From the α -strongly monotonicity and the β -Lipschitz of the operator T, we have

||un−u−ρ(Tun−Tu)||2 = ||un−u||2−2ρ〈Tun−Tu,un−u〉+ρ2||Tun−Tu||2
� ||un−u||2−2ρ‖un−u‖2 +β 2ρ2||un−u||2

=
√

1−2ρα+ρ2β 2‖un−u‖2, (11)

In a similar way, we have

‖un−u− (g(un)−g(u))‖2 � [1−2σ+ δ 2]‖un−u‖2

= k2‖un−u‖2, (12)

where k is defined by (8).
Combining (10), (11) and (12), we have

‖un+1−u‖ � (1−an)‖un−u‖+anθ‖un−u‖
� [1−an(1−θ )]‖un−u‖,

where θ =
√

1−2ρα+ρ2β 2 + k.
Since ∑∞

n=0 an = ∞ and 1− θ > 0, we have , limn→∞ ||un+1 − u|| = 0, which
completing the proof. �
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