

THE GOLDEN-THOMPSON-SEGAL TYPE INEQUALITIES RELATED TO THE WEIGHTED GEOMETRIC MEAN DUE TO LAWSON-LIM

Jun Ichi Fujii, Masatoshi Fujii and Yuki Seo

Dedicated to Professor Josip Pečarić on the occasion of his 60th birthday

Abstract. In this paper, by using the weighted geometric mean G[n,t] and the weighted arithmetic one A[n,t] due to Lawson-Lim for each $t \in [0,1]$, we investigate n-variable versions of a complement of the Golden-Thompson-Segal type inequality due to Ando-Hiai: Let H_1, H_2, \cdots, H_n be selfadjoint operators such that $m \le H_i \le M$ for $i = 1, 2, \dots, n$ and some scalars $m \le M$. Then

$$S(e^{p(M-m)})^{-\frac{2}{p}} \parallel G[n,t](e^{pH_1},\cdots,e^{pH_n})^{\frac{1}{p}} \parallel$$

$$\leq \parallel e^{A[n,t](H_1,\cdots,H_n)} \parallel \leq S(e^{p(M-m)})^{\frac{2}{p}} \parallel G[n,t](e^{pH_1},\cdots,e^{pH_n})^{\frac{1}{p}} \parallel$$

for all p>0 and the both-hand sides of the inequality above converge to the middle-hand side as $p\downarrow 0$, where $S(\cdot)$ is the Specht ratio and $\|\cdot\|$ stands for the operator norm.

1. Introduction

A (bounded linear) operator A on a Hilbert space H is said to be positive (in symbol: $A \geqslant 0$) if $(Ax,x) \geqslant 0$ for all $x \in H$. In particular, A > 0 means that A is positive and invertible. For some scalars m and M, we write $m \leqslant A \leqslant M$ if $m(x,x) \leqslant (Ax,x) \leqslant M(x,x)$ for all $x \in H$. The order $A \geqslant B$ means that A - B is positive. The symbol $\|\cdot\|$ stands for the operator norm. Let A and B be two positive operators on a Hilbert space H. For each $t \in [0,1]$, the weighted geometric mean $A \not\downarrow_t B$ of A and B in the sense of Kubo-Ando [10] is defined by

$$A \sharp_t B = A^{\frac{1}{2}} \left(A^{-\frac{1}{2}} B A^{-\frac{1}{2}} \right)^t A^{\frac{1}{2}}$$

if A is invertible.

In the commutative case, if H and K are Hermitian matrices, then $e^{H+K}=e^He^K$. However, in the noncommutative case, it is entirely no relation between e^{H+K} and e^H, e^K under the usual order. For the construction of nonlinear relativistic quantum fields, Segal [13] proved that

$$\parallel e^{H+K} \parallel \leq \parallel e^H e^K \parallel$$
.

Keywords and phrases: Positive operator, Specht ratio, Golden-Thompson-Segal inequality, geometric mean, Lie-Trotter formula.

Mathematics subject classification (2000): 47A30, 47A63 and 47A64.

Also, motivated by quantum statistical mechanics, Golden [8], Symanzik [16] and Thompson [17] independently proved that

Tr
$$e^{H+K} \leq \text{Tr } e^H e^K$$
.

This inequality is called Golden-Thompson trace inequality.

Throughout this paper, in the setting of Hilbert space operators, we discuss the Golden-Thompson-Segal type inequalities for the operator norm. Ando and Hiai [2] gave a lower bound on $\|e^{H+K}\|$ in terms of the geometric mean: For two selfadjoint operators H and K and $t \in [0,1]$,

$$\| (e^{pH} \sharp_t e^{pK})^{\frac{1}{p}} \| \le \| e^{(1-t)H+tK} \|$$
 (1.1)

for all p > 0 and the left-hand side of (1.1) converges to the right-hand side as $p \downarrow 0$.

In [6], we considered a complement of the Golden-Thompson type inequality under the usual order: Let H and K be selfadjoint operators such that $m \le H, K \le M$ for some scalars $m \le M$, and let $t \in [0,1]$. Then

$$S(e^{M-m})^{-1}S(e^{p(M-m)})^{-\frac{1}{p}}\left(e^{pH} \sharp_{t} e^{pK}\right)^{\frac{1}{p}} \leqslant e^{(1-t)H+tK}$$

$$\leqslant S(e^{M-m})S(e^{p(M-m)})^{\frac{1}{p}}\left(e^{pH} \sharp_{t} e^{pK}\right)^{\frac{1}{p}}$$

for all p > 0, where $S(\cdot)$ is the Specht ratio. Moreover, in [14], we obtained a reverse of (1.1):

$$\parallel e^{(1-t)H+tK} \parallel \leqslant S(e^{p(M-m)})^{\frac{1}{p}} \parallel \left(e^{pH} \sharp_t e^{pK}\right)^{\frac{1}{p}} \parallel$$

for all p > 0.

In this paper, by using the weighted geometric mean G[n,t] and the weighted arithmetic one A[n,t] due to Lawson-Lim for each $t \in [0,1]$, we investigate n-variable versions of a complement of the Golden-Thompson-Segal type inequality due to Ando-Hiai: Let H_1, H_2, \cdots, H_n be selfadjoint operators such that $m \le H_i \le M$ for $i = 1, 2, \cdots, n$ and some scalars $m \le M$. Then

$$S(e^{p(M-m)})^{-\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel$$

$$\leq \parallel e^{A[n,t](H_1,\dots,H_n)} \parallel \leq S(e^{p(M-m)})^{\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel (1.2)$$

for all p > 0 and the both-hand sides of (1.2) converge to the middle-hand side as $p \downarrow 0$.

2. Preliminary

In [3], Ando, Li and Mathias proposed a definition of the geometric mean for an n-tuple of positive operators and showed that it has many required properties on the geometric mean. Afterward, by virtue of geometry, Lawson and Lim [11, 12] established a definition of the weighted geometric mean for an n-tuple of positive operators. In

[4], we considered it in the framework of operator theory. Following [11, 4], we recall the definition of the weighted geometric mean G[n,t] with $t \in [0,1]$ for an n-tuple of positive invertible operators A_1,A_2,\cdots,A_n . Let $G[2,t](A_1,A_2)=A_1 \sharp_t A_2$. For $n \geqslant 3$, G[n,t] is defined inductively as follows: Put $A_i^{(1)}=A_i$ for all $i=1,2,\cdots,n$ and

$$A_i^{(r)} = G[n-1,t]((A_i^{(r-1)})_{j\neq i}) = G[n-1,t](A_1^{(r-1)},\cdots,A_{i-1}^{(r-1)},A_{i+1}^{(r-1)},\cdots,A_n^{(r-1)})$$

inductively for r. Then sequences $\{A_i^{(r)}\}$ have the same limit for all $i=1,2,\cdots,n$ in the Thompson metric. So we can define

$$G[n,t](A_1,A_2,\cdots,A_n)=\lim_{r\to\infty}A_i^{(r)}.$$

Similarly, we can define the weighted arithmetic mean as follows: Let $A[2,t](A_1,A_2) = (1-t)A_1 + tA_2$. For $n \ge 3$, A[n,t] is defined inductively as follows: Put $A_i^{(1)} = A_i$ for all $i = 1, 2, \dots, n$ and

$$\widetilde{A_i^{(r)}} = A[n-1,t](\widetilde{(A_j^{(r-1)})_{j \neq i}}) = A[n-1,t](\widetilde{A_1^{(r-1)}},\cdots,\widetilde{A_{i-1}^{(r-1)}},\widetilde{A_{i+1}^{(r-1)}},\cdots,\widetilde{A_n^{(r-1)}})$$

inductively for r. Then we see that sequences $\{A_i^{(r)}\}$ have the same limit for all $i = 1, 2, \dots, n$ because it is just the problems on weights. If we put

$$A[n,t](A_1,\cdots,A_n) = \lim_{r\to\infty} \widetilde{A_i^{(r)}},$$

then it is expressed by

$$A[n,t](A_1,\cdots,A_n)=t[n]_1A_1+\cdots+t[n]_nA_n$$

where $t[n]_i \ge 0$ for $i = 1, 2, \dots, n$ and $\sum_{i=1}^n t[n]_i = 1$. Also, the weighted harmonic mean $H[n,t](A_1, \dots, A_n)$ is defined as

$$H[n,t](A_1,\dots,A_n) = (t[n]_1A_1^{-1} + \dots + t[n]_nA_n^{-1})^{-1}.$$

We remark that the coefficient $\{t[n]_i\}$ depends on n only. For example, in the case of n = 2, 3, it follows from [11] that

$$\begin{split} A[2,t](A_1,A_2) &= t[2]_1A_1 + t[2]_2A_2 = (1-t)A_1 + tA_2, \\ A[3,t](A_1,A_2,A_3) &= t[3]_1A_1 + t[3]_2A_2 + t[3]_3A_3 = \frac{1-t}{2-t}A_1 + \frac{1-t+t^2}{2+t-t^2}A_2 + \frac{t}{1+t}A_3. \end{split}$$

For the sake of convenience, we show the general term of the coefficient $\{t[n]_i\}$ in [4]: For any positive integer $n \ge 2$

$$t[n]_{n-m} = \frac{m(m+1) + 2m(n-2m-2)t + (n^2 - (4m+1)n + 4m(m+1))t^2}{(n-1)(m+(n-2m)t)(m+1 + (n-2(m+1))t)}$$

for $m = 0, 1, \dots, n - 1$.

Moreover, the arithmetic-geometric-harmonic mean inequality holds:

$$H[n,t](A_1,\dots,A_n) \leqslant G[n,t](A_1,\dots,A_n) \leqslant A[n,t](A_1,\dots,A_n). \tag{AGH}$$

As a converse of the arithmetic-geometric mean inequality, Specht [15] estimated the upper bound of the arithmetic mean by the geometric one for positive numbers: For $x_1, \dots, x_n \in [m, M]$ with $0 < m \le M$,

$$\frac{x_1 + \dots + x_n}{n} \leqslant S(h) \sqrt[n]{x_1 \dots + x_n},\tag{2.1}$$

where $h = \frac{M}{m} (\ge 1)$ is a generalized condition number in the sense of Turing [19] and the Specht ratio is defined for h > 0 as

$$S(h) = \frac{(h-1)h^{\frac{1}{h-1}}}{e\log h} \ (h \neq 1) \quad \text{and} \quad S(1) = 1.$$
 (2.2)

Alić, Bullen, Pečarić and Volenec in [1] showed noncommutative version of Specht inequality (2.1) in the case of n = 2 as follows:

$$(1-t)A_1 + tA_2 \leq S(h)A_1 \sharp_t A_2$$

also see [18].

Moreover, we showed n-variable noncommutative operator version of (2.1) in [4]: For any positive integer $n \geqslant 3$, let A_1, A_2, \cdots, A_n be positive invertible operators such that $m \leqslant A_i \leqslant M$ for $i = 1, 2, \cdots, n$ and some scalars $0 < m \leqslant M$. Put $h = \frac{M}{m}$. Then for each $t \in [0,1]$

$$A[n,t](A_1,\dots,A_n) \leqslant S(h)^2 G[n,t](A_1,\dots,A_n).$$
 (2.3)

We collect basic properties of the Specht ratio ([7, Lemma 2.47], [20]):

LEMMA 2.1. Let h > 0 be given. Then the Specht ratio has the following properties:

- (1) $S(h^{-1}) = S(h)$.
- (2) A function S(h) is strictly decreasing for 0 < h < 1 and strictly increasing for h > 1.
- (3) $\lim_{p\to 0} S(h^p)^{\frac{1}{p}} = 1.$

3. Results

In [9], Hiai and Petz showed the following geometric mean version of the Lie-Trotter formula: If A and B are positive invertible and $t \in [0,1]$, then

$$\lim_{p \to 0} (A^p \sharp_t B^p)^{\frac{1}{p}} = e^{(1-t)\log A + t\log B}.$$

One of the authors and Nakamoto [5] defined the chaotically t-geometric mean $A \diamondsuit_t B$ which is different from the usual t-geometric mean $A \sharp_t B$:

$$A \diamondsuit_t B = e^{(1-t)\log A + t\log B}.$$

We firstly show an n-variable version of the Lie-Trotter formula for the weighted geometric mean due to Lawson-Lim:

LEMMA 3.1. Let A_1,A_2,\dots,A_n be positive invertible operators such that $m \le A_i \le M$ for $i=1,2,\dots,n$ and some scalars $0 < m \le M$, and let p>0. Then $G[n,t](A_1^p,\dots,A_n^p)^{\frac{1}{p}}$ uniformly converges to the chaotically geometric mean $e^{A[n,t](\log A_1,\dots,\log A_n)}$ as $p \downarrow 0$.

Proof. It follows from [6, Lemma 3.5] that for all $\lambda_i \in [0,1]$, $i = 1, 2, \dots, n$ such that $\sum_{i=1}^{n} \lambda_i = 1$,

$$0 \leqslant \log \sum_{i=1}^{n} \lambda_i A_i - \sum_{i=1}^{n} \lambda_i \log A_i \leqslant \log S(h).$$

In particular, we have

$$0 \leqslant \log A[n,t](A_1,\dots,A_n) - A[n,t](\log A_1,\dots,\log A_n) \leqslant \log S(h).$$

Replacing A_i by A_i^p for p > 0,

$$0 \leqslant \log A[n,t](A_1^p, \dots, A_n^p) - A[n,t](\log A_1^p, \dots, \log A_n^p) \leqslant \log S(h^p)$$

and hence

$$0 \leqslant \log A[n,t](A_1^p, \dots, A_n^p)^{\frac{1}{p}} - A[n,t](\log A_1, \dots, \log A_n) \leqslant \log S(h^p)^{\frac{1}{p}}.$$

Since $S(h^p)^{\frac{1}{p}} \to 1$ as $p \downarrow 0$, it follows that $A[n,t](A_1^p,\cdots,A_n^p)^{\frac{1}{p}}$ uniformly converges to the chaotically geometric mean $e^{A[n,t](\log A_1,\cdots,\log A_n)}$ as $p \downarrow 0$.

On the other hand, since

$$0\leqslant \log A[n,t](A_1^{-1},\cdots,A_n^{-1})-A[n,t](\log A_1^{-1},\cdots,\log A_n^{-1})\leqslant \log S(h^{-1}),$$

it follows from $S(h^{-1}) = S(h)$ by Lemma 2.1 that

$$0 \geqslant \log H[n,t](A_1,\cdots,A_n) - A[n,t](\log A_1,\cdots,\log A_n) \geqslant -\log S(h)$$

and this implies

$$0 \geqslant \log H[n,t](A_1^p, \dots, A_n^p)^{\frac{1}{p}} - A[n,t](\log A_1, \dots, \log A_n) \geqslant -\log S(h^p)^{\frac{1}{p}}$$

for all p > 0.

Hence $H[n,t](A_1^p,\cdots,A_n^p)^{\frac{1}{p}}$ uniformly converges to the chaotically geometric mean $e^{A[n,t](\log A_1,\cdots,\log A_n)}$ as $p \mid 0$.

By (AGH), we have

$$\log H[n,t](A_1^p, \dots, A_n^p)^{\frac{1}{p}} \leqslant \log G[n,t](A_1^p, \dots, A_n^p)^{\frac{1}{p}} \leqslant \log A[n,t](A_1^p, \dots, A_n^p)^{\frac{1}{p}}$$

for all p > 0 and hence we have this lemma. \square

For the case of n = 2, Ando-Hiai showed that the norm $\|(A_1^p \sharp_t A_2^p)^{\frac{1}{p}}\|$ is monotone increasing for p > 0. For $n \ge 3$, we have the following result:

LEMMA 3.2. Let A_1, A_2, \dots, A_n be positive invertible operators such that $m \le A_i \le M$ for $i = 1, 2, \dots, n$ and some scalars $0 < m \le M$. Put $h = \frac{M}{m}$. Then for each 0 < q < p

$$S(h^{p})^{-\frac{2}{p}} \parallel G[n,t](A_{1}^{p},\cdots,A_{n}^{p})^{\frac{1}{p}} \parallel$$

$$\leq \parallel G[n,t](A_{1}^{q},\cdots,A_{n}^{q})^{\frac{1}{q}} \parallel \leq S(h^{p})^{\frac{2}{p}} \parallel G[n,t](A_{1}^{p},\cdots,A_{n}^{p})^{\frac{1}{p}} \parallel,$$

where S(h) is defined as (2.2).

Proof. By the arithmetic-geometric mean inequality, it follows that for each 0 < q < p

$$\begin{split} G[n,t](A_1^{\frac{q}{p}},\cdots,A_n^{\frac{q}{p}}) &\leqslant A[n,t](A_1^{\frac{q}{p}},\cdots,A_n^{\frac{q}{p}}) \\ &\leqslant A[n,t](A_1,\cdots,A_n)^{\frac{q}{p}} \quad \text{by the concavity of } t^{\frac{q}{p}} \text{ and } 0 < \frac{q}{p} < 1 \\ &\leqslant S(h)^{\frac{2q}{p}}G[n,t](A_1,\cdots,A_n)^{\frac{q}{p}} \quad \text{by (2.3) and L\"owner-Heinz Theorem.} \end{split}$$

Replacing A_i by A_i^p , we have

$$G[n,t](A_1^q,\dots,A_n^q) \leqslant S(h^p)^{\frac{2q}{p}}G[n,t](A_1^p,\dots,A_n^p)^{\frac{q}{p}}.$$

Also.

$$G[n,t](A_1^{-q},\dots,A_n^{-q}) \leqslant S(h^{-p})^{\frac{2q}{p}}G[n,t](A_1^{-p},\dots,A_n^{-p})^{\frac{q}{p}}$$

and hence

$$G[n,t](A_1^q,\dots,A_n^q) \geqslant S(h^p)^{-\frac{2q}{p}}G[n,t](A_1^p,\dots,A_n^p)^{\frac{q}{p}}.$$

Therefore we have for all q > 0

$$S(h^{p})^{-\frac{2}{p}} \parallel G[n,t](A_{1}^{p},\cdots,A_{n}^{p})^{\frac{1}{p}} \parallel$$

$$\leq \parallel G[n,t](A_{1}^{q},\cdots,A_{n}^{q})^{\frac{1}{q}} \parallel \leq S(h^{p})^{\frac{2}{p}} \parallel G[n,t](A_{1}^{p},\cdots,A_{n}^{p})^{\frac{1}{p}} \parallel.$$

By Lemma 3.2, we show n-variable versions of a complement of the Golden-Thompson-Segal type inequality due to Ando-Hiai:

THEOREM 3.3. Let H_1, H_2, \dots, H_n be selfadjoint operators such that $m \le H_i \le M$ for $i = 1, 2, \dots, n$ and some scalars $m \le M$. Then

$$S(e^{p(M-m)})^{-\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel$$

$$\leq \parallel e^{A[n,t](H_1,\dots,H_n)} \parallel \leq S(e^{p(M-m)})^{\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel (3.1)$$

for all p > 0 and the both-hand sides of (3.1) converge to the middle-hand side as $p \downarrow 0$, where the Specht ratio S(h) is defined as (2.2).

Proof. If we replace A_i by e^{H_i} in Lemma 3.2, then it follows that

$$S(e^{p(M-m)})^{-\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel$$

$$\leq \parallel G[n,t](e^{qH_1},\dots,e^{qH_n})^{\frac{1}{q}} \parallel \leq S(e^{p(M-m)})^{\frac{2}{p}} \parallel G[n,t](e^{pH_1},\dots,e^{pH_n})^{\frac{1}{p}} \parallel$$

for all 0 < q < p. Hence we have (3.1) as $q \downarrow 0$ by Lemma 3.1.

The latter part of Theorem follows from $S(e^{p(M-m)})^{\frac{2}{p}} \to 1$ as $p \downarrow 0$ by Lemma 2.1.

Acknowledgement. The authors would like to express their hearty thanks to the referees for their valuable comments.

REFERENCES

- [1] M. ALIĆ, P. S. BULLEN, J. E. PEČARIĆ AND V. VOLENEC, On the geometric-arithmetic mean inequality for matrices, Math. Communications, 2 (1997), 125–128.
- [2] T. Ando and F. Hiai, Log-majorization and complementary Golden-Thompson type inequalities, Linear Alg. Appl., 197/198 (1994), 113–131.
- [3] T. ANDO, C.-K. LI AND R. MATHIAS, Geometric means, Linear Alg. Appl., 385 (2004), 305-334.
- [4] J. I. FUJII, M. FUJII, M. NAKAMURA, J. E. PEČARIĆ AND Y. SEO, A reverse of the weighted geometric mean due to Lawson-Lim, Linear Alg. Appl., 427 (2007), 272–284.
- [5] M. FUJII AND R. NAKAMOTO, A geometric mean in the Furuta inequality, Sci. Math. Japon., 55 (2002), 615–621.
- [6] M. FUJII, Y. SEO AND M. TOMINAGA, Golden-Thompson type inequalities related to a geometric mean via Specht's ratio, Math. Inequal. Appl., 5 (2002), 573–582.
- [7] T. FURUTA, J. MIĆIĆ, J. E. PEČARIĆ AND Y. SEO, Mond-Pečarić Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb, 2005.
- [8] S. GOLDEN, Lower bounds for Helmholtz function, Phys. Rev., 137 (1965), B1127–B1128.
- [9] F. HIAI AND D. PETZ, The Golden-Thompson trace inequality is complemented, Linear Algebra Appl., 181 (1993), 153–185.
- [10] F. KUBO AND T. ANDO, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
- [11] J. LAWSON AND Y. LIM, A general framework for extending means to higher orders, preprint. (http://arxiv.org/PS_cache/math/pdf/0612/0612293v1.pdf).
- [12] J. LAWSON AND Y. LIM, Higher order weighted matrix means and related matrix inequalities, preprint.
- [13] I. SEGAL, Notes toward the construction of nonlinear relativistic quantum fields, III, Bull. Amer. Math. Soc., 75 (1969), 1390–1395.
- [14] Y. Seo, Reverses of the Golden-Thompson type inequalities due to Ando-Hiai-Petz, Banach J. Math. Anal., 2 (2008), 140–149.
- [15] W. SPECHT, Zur Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.

- [16] K. SYMANZIK, Proof and refinements of an inequality of Feynman, J.Math. Phys., 6 (1965), 1155– 1156.
- [17] C. J. THOMPSON, Inequality with applications in statistical mechanics, J. Math. Phys., 6 (1965), 469–480.
- [18] M. TOMINAGA, Specht's ratio in the Young inequality, Sci. Math. Japon., 55 (2002), 585–588.
- [19] A. M. TURING, Rounding off-errors in matrix processes, Quart. J. Mech. Appl. Math., 1 (1948), 287–308.
- [20] T. YAMAZAKI AND M. YANAGIDA, Characterizations of chaotic order associated with Kantorovich inequality, Sci. Math., 2 (1999), 37–50.

(Received September 22, 2008)

Jun Ichi Fujii Department of arts and Siences (Information Science) Osakak Kyoiku University

> Kashiwara, Osaka 582-8582 Japan

e-mail: fujii@cc.osaka-kyoiku.ac.jp

Masatoshi Fujii Department of mathematics Osaka Kyoiku University Kashiwara, Osaka 582-8582

Japan

e-mail: mfujii@cc.osaka-kyoiku.ac.jp

Yuki Seo Faculty of Engineering Shibaura institute of Technology 307 Fukasaku, Minuma-ku Saitama-city, Saitama 337-8570

Japan

e-mail: yukis@sic.shibaura-it.ac.jp