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Abstract. Using some characterizations of superquadratic functions we obtain some results on
two mappings H and F connected with Hermite-Hadamard inequality. Our results general-
ize corresponding results for convex functions. Especially, when the superquadratic function is
convex at the same time, then our results represent also the refinements of those results.

1. Introduction

Let ϕ : I → R be a convex function on interval I ⊆ R, g : [a,b] → R be a con-
tinuous function on the closed interval [a,b] ⊆ R such that g([a,b]) ⊆ I, and let p :
[a,b]→ R be a positive integrable function.

In [7] Y. J. Cho, M. Matić and J. Pečarić considered the following two mappings
H,F : [0,1] → R defined as

H (t) =
1
P

∫ b

a
p(x)ϕ (tg(x)+ (1− t)g)dx (1.1)

and

F (t) =
1
P2

∫ b

a

∫ b

a
p(x) p(y)ϕ (tg(x)+ (1− t)g(y))dxdy (1.2)

where

P =
∫ b

a
p(x)dx, g =

1
P

∫ b

a
p(x)g(x)dx. (1.3)

They established convexity and the following estimates for the values of these two
mappings:

inf
t∈[0,1]

H (t) = H (0) and sup
t∈[0,1]

H (t) = H (1) (a)

inf
t∈[0,1]

F (t) = F

(
1
2

)
and sup

t∈[0,1]
F (t) = F (0) = F (1) (b)

F (t) � max{H (t) ,H (1− t)} , ∀t ∈ [0,1] . (c)

Mathematics subject classification (2000): 26D15.
Keywords and phrases: Hermite-Hadamard inequality, convex functions, superquadratic functions.

c© � � , Zagreb
Paper JMI-03-56

577



578 S. BANIĆ

In this paper we established analogies of the above results for superquadratic func-
tions, a new class of functions recently introduced by S. Abramovich, G. Jameson
and G. Sinnamon in their papers [2] and [3]. In the special case of nonnegative su-
perquadratic function ϕ , these analogies represent the refinements of the above results.

First we quote definition of this class of functions, some characterizations and
basic properties used to obtain the results in this paper.

DEFINITION 1. [2] A function ϕ : [0,∞) → R is superquadratic provided that
for all x � 0 there exists a constant C(x) ∈ R such that

ϕ (y) � ϕ (x)+C (x) (y− x)+ϕ (|y− x|) (1.4)

for all y � 0.

Jensen’s inequality for superquadratic function was first proved in [2], and here
we use its following version:

ϕ
(

1
P

∫ b

a
p(x) f (x)dx

)
� 1

P

∫ b

a
p(x)

[
ϕ ( f (x))−ϕ

(∣∣ f (x)− f
∣∣)]dx, (1.5)

As it was shown in [6], the function ϕ is superquadratic if and only if the following
inequality

ϕ (λy1 +(1−λ )y2) �λϕ (y1)+ (1−λ )ϕ (y2)
−λϕ ((1−λ )|y1− y2|)− (1−λ )ϕ (λ |y1− y2|) (1.6)

holds for all y1,y2 � 0 and λ ∈ [0,1] .
Superquadratic function ϕ has the following properties: ϕ (0) � 0 and

(S1) if ϕ(0) = ϕ ′(0) = 0, then C(x) = ϕ ′(x) whenever ϕ is differentiable at x > 0;
(S2) if ϕ � 0, then ϕ is convex and ϕ(0) = ϕ ′(0) = 0.

In [5] authors proved the following pair of inequalities, that is called Hermite-
Hadamard inequalities for superquadratic functions:

THEOREM 1. Let ϕ : [0,∞) → R be a continuous superquadratic function, and
0 � a < b, then

ϕ
(

a+b
2

)
+

1
b−a

∫ b

a
ϕ

(∣∣∣∣t− a+b
2

∣∣∣∣
)

dt � 1
b−a

∫ b

a
ϕ (t)dt (1.7)

� ϕ (a)+ϕ (b)
2

− 1

(b−a)2

∫ b

a
[(b− t)ϕ (t−a)+ (t −a)ϕ (b− t)]dt. (1.8)

This pair of inequalities represents an analogue (and a refinement in the special
case when ϕ � 0) of the well-known Hermite-Hadamard inequalities:

ϕ
(

a+b
2

)
� 1

b−a

∫ b

a
ϕ (t)dt � ϕ (a)+ϕ (b)

2
, (1.9)
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which hold for any convex function ϕ : I → R and a,b ∈ I.

To see some examples of superquadratic functions and the construction of these
functions in one and in several variables, readers are refered to [1] and [2].

In the second section we obtain the results for superquadratic function analogous
to some results of Cho, Matić and Pečarić in [7] related to convex functions and its
refinements in the case of nonnegative superquadratic function.

In the third section we give generalizations of results by M. Akkouchi [4] and
obtain new inequalities for some special means. All our results in this section are
established for differentiable superquadratic function ϕ and represent the refinements
of Akkouchi’s results in the special case when ϕ � 0 and therefore a convex function .

2. The results on the mappings H and F

Now we consider the case when ϕ : [0,∞) → R is a continuous superquadratic
function, and g is a nonnegative continuous function on [a,b] . In this case we obtain
the following results:

THEOREM 2. Let ϕ : [0,∞) → R be a continuous superquadratic function,
g : [a,b] → [0,∞) be a continuous function and p : [a,b] → (0,∞) be an integrable
function. Then for the function H defined by (1.1) and for all t ∈ [0,1] the following
inequalities:

H (0)+
1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx � H (t) (2.1)

� H (1)− (1− t)
1
P

∫ b

a
p(x)ϕ (|g(x)−g|)dx

− t
1
P

∫ b

a
p(x)ϕ ((1− t) |g(x)−g|)dx− (1− t)

1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx.

(2.2)

hold, where P and g are defined by (1.3) .

Proof. Applying inequality (1.6) to the superquadratic function ϕ , for λ = t ∈
[0,1] , y1 = g(x) and y2 = g, then applying (1.5) for the function g instead of f we
get

H (t) � t
1
P

∫ b

a
p(x)ϕ (g(x))dx+(1− t)ϕ

(
1
P

∫ b

a
p(x)g(x)dx

)

− t
1
P

∫ b

a
p(x)ϕ ((1− t) |g(x)−g|)dx− (1− t)

1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx.

� 1
P

∫ b

a
p(x)ϕ (g(x))dx− (1− t)

1
P

∫ b

a
p(x)ϕ (|g(x)−g|)dx

− t
1
P

∫ b

a
p(x)ϕ ((1− t) |g(x)−g|)dx− (1− t)

1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx.
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Hence, inequality (2.2) holds for all t ∈ [0,1] .
On the other hand, applying (1.5) with the substitution

f (x) → tg(x)+ (1− t)g,

for each t ∈ [0,1] , we have

H (t) � ϕ
(

t
1
P

∫ b

a
p(x)g(x)dx+(1− t)g

)
+

1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx

= ϕ (g)+
1
P

∫ b

a
p(x)ϕ (t |g(x)−g|)dx.

It means that (2.1) holds for all t ∈ [0,1] .

REMARK 1. If the superquadratic function ϕ is also nonnegative, then by prop-
erty (S2) ϕ is also convex. In this case, since p is positive, all the integrals in (2.1) and
(2.2), which are subtracted from H (1) or added to H (0) , are nonnegative. Therefore
these two inequalities represent refinements of the inequalities

H (0) � H (t) � H (1) , t ∈ [0,1] ,

which hold for a convex function ϕ (see (a) above and [7]).

In the rest of the paper, we use the following notations and definitions:
The generalized logarithmic mean

Lq (a,b) =
[

bq+1−aq+1

(b−a)(q+1)

] 1
q

, a �= b, a,b > 0, q ∈ R\ {−1,0} . (2.3)

The arithmetic mean

A(a,b) =
a+b

2
, a,b � 0. (2.4)

Applying Theorem 2 and (1.8) we get the following result which refines one of
Dragomir’s results in [8].

EXAMPLE 1. The function ϕ (x) = xq (x � 0) is superquadratic for q � 2 ([2]).
Applying this function to Theorem 2 for the special case p(x) ≡ 1 and g(x) = x
(x ∈ [a,b] ⊆ [0,∞)) , then applying inequality (1.8) to the same function ϕ (x) = xq,
using (2.3) and (2.4) , we get that

Aq (a,b)+
1

q+1

[
t (b−a)

2

]q

� Lq
q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)

� Lq
q (a,b)− 1

q+1

(
b−a

2

)q

(1− t)
[
1+ t (1− t)q−1 + tq

]

� A(aq,bq)− 2(b−a)q

(q+1)(q+2)
− 1

q+1

(
b−a

2

)q

(1− t)
[
1+ t (1− t)q−1 + tq

]
(2.5)
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holds for all t ∈ (0,1] . In particular, for t = 1
2 we get

Aq (a,b)+
1

q+1

(
b−a

4

)q

� Lq
q

(
3a+b

4
,
a+3b

4

)

� Lq
q (a,b)− 1

2(q+1)

(
b−a

2

)q [
1+

1
2q−1

]

� A(aq,bq)− 2(b−a)q

(q+1)(q+2)
− 1

2(q+1)

(
b−a

2

)q [
1+

1
2q−1

]
. (2.6)

REMARK 2. Since q � 2, t ∈ (0,1] and b > a � 0, all the additional terms
in (2.5) (added to or subtracted from means) are nonnegative, so inequalities (2.5)
represent refinements of the inequalities

Aq (a,b) � Lq
q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)
� Lq

q (a,b) � A(aq,bq) ,

proved by S. S. Dragomir in [8].

Now we establish results for the function F defined by (1.2) for a superquadratic
and continuous function ϕ .

THEOREM 3. Let ϕ : [0,∞) → R be a continuous superquadratic function, g :
[a,b] → [0,∞) be a continuous function and p : [a,b] → (0,∞) be an integrable func-
tion. Then, for the function F defined by (1.2) and for all t ∈ [0,1] the following
inequalities:

F

(
1
2

)
+

1
2P2

∫ b

a

∫ b

a
p(x) p(y)ϕ

( |(2t−1)(g(x)−g(y))|
2

)
dxdy � F (t) (2.7)

� F (1)− t
1
P2

∫ b

a

∫ b

a
p(x) p(y)ϕ ((1− t)|g(x)−g(y)|)dxdy

− (1− t)
1
P2

∫ b

a

∫ b

a
p(x) p(y)ϕ (t |g(x)−g(y)|)dxdy, (2.8)

hold, where P and g are defined by (1.3) .

Proof. Analogously to the proof of the previous theorem, applying inequality (1.6)
to a superquadratic function ϕ , for λ = t, y1 = g(x) and y2 = g(y) we get inequality
(2.8).

Furthermore, applying inequality (1.6) to λ = 1/2, y1 = tg(x)+(1− t)g(y) and
y2 = tg(y)+(1− t)g(x) to a superquadratic function ϕ and to a nonnegative function
g which is continuous on [a,b] ⊆ [0,∞) , we get

ϕ
(

g(x)+g(y)
2

)
� 1

2
[ϕ (tg(x)+ (1− t)g(y))+ϕ (g(y)+ (1− t)g(x))]

−ϕ
( |(2t−1)(g(x)−g(y))|

2

)
.
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Multiplying the above inequality by p(x) > 0 and p(y) > 0, then integrating it over
[a,b]× [a,b] and dividing it by P2, we obtain (2.7).

It is important to remark that in (2.8) we can replace F (0) with F (1) , because
F (0) = F (1) .

REMARK 3. In particular in the case of nonnegative superquadratic function ϕ ,
all the integrals in (2.7) and (2.8) are nonnegative. Since in this case the function
ϕ is convex, then for all t ∈ [0,1] obtained inequalities represent refinements of the
inequalities

F

(
1
2

)
� F (t) � F (1) = F (0)

from [7], which hold for convex function ϕ (see (b) in Introduction).

In the special case that p(x) = 1 and g(x) = x (for all x ∈ [a,b] ⊆ [0,∞)) we get
from (2.7)

1

(b−a)2

∫ b

a

∫ b

a
ϕ

(
x+ y

2

)
dxdy � 1

(b−a)2

∫ b

a

∫ b

a
ϕ (tx+(1− t)y)dxdy

− 1

2(b−a)2

∫ b

a

∫ b

a
ϕ

( |(2t−1)(x− y)|
2

)
dxdy.

If the function ϕ is nonnegative superquadratic, then the previous inequality refines the
inequality

1

(b−a)2

∫ b

a

∫ b

a
ϕ

(
x+ y

2

)
dxdy � 1

(b−a)2

∫ b

a

∫ b

a
ϕ (tx+(1− t)y)dxdy,

for a convex function ϕ as obtained by Dragomir [8, Theorem 2].

Relations between the functions F and H when ϕ is a continuous superquadratic
function are given in the following theorem:

THEOREM 4. Under the same assumptions as in the previous two theorems, the
following inequality

F (t) �max

{
H (t)+

1
P

∫ b

a
p(x)ϕ ((1− t)|(g(x)−g)|)dx,

H (1− t)+
1
P

∫ b

a
p(x)ϕ (t |(g(x)−g)|)dx

}
(2.9)

holds for all t ∈ [0,1] .

Proof. Applying (1.5) to the function g̃(y)= tg(x)+(1− t)g(y) (instead of f (x))
for an arbitrarily chosen and fixed x ∈ [a,b] and t ∈ [0,1] , where ϕ is a superquadratic
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function, we get

F (t) =
1
P

∫ b

a
p(x)

[
1
P

∫ b

a
p(y)ϕ (tg(x)+ (1− t)g(y))dy

]
dx

� 1
P

∫ b

a
p(x)ϕ

(
1
P

∫ b

a
p(y) [tg(x)+ (1− t)g(y)]dy

)
dx

+
1
P

∫ b

a
p(x)

[
1
P

∫ b

a
p(y)ϕ (|(1− t)(g(y)−g)|)dy

]
dx

=
1
P

∫ b

a
p(x)ϕ (tg(x)+ (1− t)g)dx

+
1
P2

∫ b

a

∫ b

a
p(x) p(y)ϕ ((1− t)|(g(y)−g)|)dydx

= H (t)+
1
P

∫ b

a
p(y)ϕ ((1− t) |(g(y)−g)|)dy

for all t ∈ [0,1] . Arguing quite analogously as in the previous part of the proof, but
applying (1.5) to the function ĝ(x) = tg(x)+ (1− t)g(y) (instead of f (x)) for an ar-
bitrarily chosen and fixed y ∈ [a,b] and t ∈ [0,1] , and for a superquadratic function ϕ ,
we obtain that

F (t) � H (1− t)+
1
P

∫ b

a
p(x)ϕ (t |(g(x)−g)|)dx (2.10)

holds for all t ∈ [0,1] . Finally, from the first part of the proof and (2.10) we get (2.9) .

REMARK 4. If the function ϕ in the previous theorem is nonnegative (and there-
fore also convex), both integrals on the right hand side of inequality (2.9) are nonneg-
ative, so the above inequality represents refinement of inequality

F (t) � max{H (t) ,H (1− t)} , t ∈ [0,1] ,

obtained in [7] for a convex function ϕ (see (c) in Introduction).

3. Further results related to the mapping H

In the special case when p(x) = 1 and g(x) = x for all x ∈ [a,b] , the mapping H
is

H (t) =
1

b−a

∫ b

a
ϕ

(
tx+(1− t)

a+b
2

)
dx (3.1)

From this H(t) and from the properties quoted in the previous section, a connection
between the mapping H and Hermite-Hadamard inequalities (1.9) can be easily seen .
Namely, those inequalities can be written as

H (0) � H (1) � ϕ (a)+ϕ (b)
2

.
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The mapping H defined by (3.1) was introduced by S.S. Dragomir in [8] where
he used it to get some refinements of Hermite-Hadamard inequalities.

In [4], M. Akkouchi proved some inequalities for the mapping H, defined by
(3.1) , where ϕ is a convex and differentiable function. He proved the following theo-
rem:

THEOREM 5. [4, Theorem 2.1] Let ϕ : [a,b] → R be a convex and differentiable
function. Then for all t ∈ [0,1] , we have the following inequalities

0 � (1− t)[H (1)−H (0)] � H (1)−H (t)

� (1− t)[H (1)−H (0)]+ t (1− t)
[
ϕ (a)+ϕ (b)

2
−H (1)

]
(3.2)

where the mapping H is defined by (3.1) .

To Akkouchi’s result we add the following upper bound:

PROPOSITION 1. Under the same conditions as in Theorem 5, inequality

(1− t)[H (1)−H (0)]+ t (1− t)
[
ϕ (a)+ϕ (b)

2
−H (1)

]

� max
t∈[0,1]

{
(1− t)[H (1)−H (0)]+ t (1− t)

[
ϕ (a)+ϕ (b)

2
−H (1)

]}

=

(
ϕ(a)+ϕ(b)

2 −H (0)
)2

4
(
ϕ(a)+ϕ(b)

2 −H (1)
) , (3.3)

holds for all t ∈ [0,1] .

Proof. Using the notations A = H (1)−H (0) and B = ϕ(a)+ϕ(b)
2 −H (1) , we

are looking for a maximum of the function h : [0,1] → R,

h(t) = (1− t)A+ t (1− t)B = −Bt2 +(B−A)t +A.

As we have B � A � 0, by a simple calculation, we get that maxt∈[0,1] h(t)= h
(

B−A
2B

)
=

(A+B)2

4B , which is (3.3).

EXAMPLE 2. Let 0 < a < b and consider the function ϕ : [a,b]→R, ϕ (x) = xq,
q > 1. For this function we have

H (1) =
1

b−a

∫ b

a
xqdx =

bq+1−aq+1

(b−a)(q+1)
= Lq

q (a,b) (3.4)

and

H (0) =
(

a+b
2

)q

= Aq (a,b) . (3.5)
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Applying Proposition 1, we get

(1− t)
[
Lq

q (a,b)−Aq (a,b)
]
+ t (1− t)

[
A(aq,bq)−Lq

q (a,b)
]

� (A(aq,bq)−Aq (a,b))2

4
(
A(aq,bq)−Lq

q (a,b)
) .

So, the above inequality gives an upper bound for Akkouchi’s inequalities [4]:

0 � (1− t)
[
Lq

q (a,b)−Aq (a,b)
]

� Lq
q (a,b)−Lq

q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)
� (1− t)

[
Lq

q (a,b)−Aq (a,b)
]
+ t (1− t)

[
A(aq,bq)−Lq

q (a,b)
]
. (3.6)

In the case of weighted version of the function H (defined by (1.1)) we are able
to prove only the first two inequalities of Theorem 5.

When the function ϕ is superquadratic, and H is as defined in (3.1) , we obtain
in the following Theorem 6, Corollary 1, Remark 5 and Example 3, analogous results
to Theorem 5, and when the function ϕ is also positive we get refinements of Theorem
5 and its consequence ([4, Corollary 2.1]):

THEOREM 6. Let ϕ : [0,∞) → R be a superquadratic and differentiable function
with ϕ (0) = ϕ ′ (0) = 0 and let [a,b] ⊆ [0,∞) , a < b. Then for all t ∈ [0,1] , we have
the following inequalities

(1− t)[H (1)−H (0)]+Δ� H (1)−H (t)

� (1− t)[H (1)−H (0)]+ t (1− t)
[
ϕ (a)+ϕ (b)

2
−H (1)

]
−Δ , (3.7)

where

Δ=
1

b−a

∫ b

a

[
tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣)]dx. (3.8)

Proof. Since ϕ is superquadratic, using (1.6) we get

ϕ
(
tx+(1− t) a+b

2

)
� tϕ (x)+ (1− t)ϕ

(
a+b
2

)
− tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)− (1− t)ϕ
(
t
∣∣x− a+b

2

∣∣) .

Integrating both sides of this inequality over the segment [a,b] , and multiplying it by
1/(b−a) we obtain

H (t) � tH (1)+ (1− t)H (0)

− 1
b−a

∫ b

a

[
tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣)]dx.
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Hence we have

H (t)−H (1) � (1− t)[H (0)−H (1)]

− 1
b−a

∫ b

a

[
tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣)]dx,

from which we get the first inequality in (3.7).
Since the function ϕ is superquadratic and differentiable with ϕ (0) = ϕ ′ (0) = 0,

then by Definition 1 and property (S1) of superquadratic function, for all x � 0 and
t ∈ [0,1] we have

ϕ
(
tx+(1− t) a+b

2

)−ϕ (x) � (1− t)
(

a+b
2 − x

)
ϕ ′ (x)+ϕ

(
(1− t)

∣∣x− a+b
2

∣∣) (3.9)

and

ϕ
(
tx+(1− t) a+b

2

)−ϕ
(

a+b
2

)
� t

(
x− a+b

2

)
ϕ ′ ( a+b

2

)
+ϕ

(
t
∣∣x− a+b

2

∣∣) . (3.10)

Multiplying (3.9) by t and (3.10) by (1− t) and summing, we get

ϕ
(
tx+(1− t) a+b

2

)− tϕ (x)− (1− t)ϕ
(

a+b
2

)
� t (1− t)

[(
a+b
2 − x

)
ϕ ′ (x)+

(
x− a+b

2

)
ϕ ′ ( a+b

2

)]
+ tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣) .

Integrating both sides of this inequality over the segment [a,b] , and multiplying it by
1/(b−a) we obtain

H (t)− tH (1)− (1− t)H (0)

� t (1− t)
b−a

[∫ b

a

(
a+b
2 − x

)
ϕ ′ (x)dx+ϕ ′ ( a+b

2

)∫ b

a

(
x− a+b

2

)
dx

]

+
1

b−a

[∫ b

a

[
tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣)]dx

]
.

Integrating by parts, we have

∫ b

a

(
a+b
2 − x

)
ϕ ′ (x)dx =

∫ b

a
ϕ (x)dx− (b−a)(ϕ (a)+ϕ (b))

2
,

and since
∫ b
a

(
x− a+b

2

)
dx = 0, we get

H (t)−H (1)+ (1− t)[H (1)−H (0)]

� t (1− t)
b−a

[∫ b

a
ϕ (x)dx− (b−a)(ϕ (a)+ϕ (b))

2

]

+
1

b−a

∫ b

a

[
tϕ

(
(1− t)

∣∣x− a+b
2

∣∣)+(1− t)ϕ
(
t
∣∣x− a+b

2

∣∣)]dx.

The last inequality implies the second inequality in (3.7).
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The left hand side of Hermite-Hadamard inequality for superquadratic functions
(1.7) multiplied by (1− t), 0 � t � 1 is

(1− t)[H (1)−H (0)] � 1
b−a

∫ b

a
(1− t)ϕ

(∣∣∣∣x− a+b
2

∣∣∣∣
)

dx, (3.11)

which is analogous to the first inequality in Theorem 5.
As seen before, for a nonnegative superquadratic function ϕ , the above inequality

represents a refinement of the first inequality in (3.2) .

In the case of weighted version of the function H (defined by (1.1)) we are able
to prove only the first inequality of Theorem 6.

By setting t = 1/2 in Theorem 6 we get the following corollary:

COROLLARY 1. Let ϕ : [0,∞) → R be a superquadratic and differentiable func-
tion with ϕ (0) = ϕ ′ (0) = 0 and let [a,b] ⊆ [0,∞) , a < b. Then we have

1
2

[
1

b−a

∫ b

a
ϕ (x)dx−ϕ

(
a+b

2

)]
+ΔC

� 1
b−a

∫ b

a
ϕ (x)dx− 2

b−a

∫ a+3b
4

3a+b
4

ϕ (x)dx

� 1
2

[
1

b−a

∫ b

a
ϕ (x)dx−ϕ

(
a+b
2

)]
+

1
4

[
ϕ (a)+ϕ (b)

2
− 1

b−a

∫ b

a
ϕ (x)dx

]
−ΔC.

(3.12)

where

ΔC =
1

b−a

∫ b

a
ϕ

(
1
2

∣∣x− a+b
2

∣∣)dx (3.13)

REMARK 5. Consider inequalities (3.7), proved in Theorem 6. When ϕ , the
superquadratic and differentiable function is also nonnegative, the term Δ defined by
(3.8) is nonnegative. As by property (S2) ϕ is also convex and ϕ (0) = ϕ ′ (0) = 0,we
get that inequalities (3.2) also hold, so the first inequality in (3.7) refines the second
inequality in (3.2) . Similarly, in this case the second inequality in (3.7) refines the
third inequality in (3.2) .

In the same way, we consider (3.12). Because for nonnegative ϕ we have ΔC � 0,
the results of Corollary 1 refine the results of the corresponding Akkouchi’s corollary
in [4, Corollary 2.1] (inequalities (3.12) without terms ΔC ).

EXAMPLE 3. Consider again inequalities (3.7) in Theorem 6, this time for the
superquadratic function ϕ : [0,∞) → R, ϕ (x) = xq with q � 2. For this function and
0 � a < b we calculated the additional term Δ (now denoted by ΔE) and obtain:

ΔE =
1

q+1

[
b−a

2

]q

[t (1− t)q +(1− t)tq] . (3.14)
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Using (3.4) , (3.5) and

H (t) = Lq
q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)
,

and applying Theorem 6 we get the following inequalities

(1− t)
[
Lq

q (a,b)−Aq (a,b)
]
+ΔE

� Lq
q (a,b)−Lq

q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)
� (1− t)

[
Lq

q (a,b)−Aq (a,b)
]
+ t (1− t)

[
A(aq,bq)−Lq

q (a,b)
]−ΔE . (3.15)

Since in this case we have ΔE � 0, the inequalities in (3.15) are refinements of the
second and third inequality in (3.6) .

EXAMPLE 4. Consider inequality (3.11) for superquadratic function ϕ (x) = xq,
q � 2. Using the notations (2.3) and (2.4) we obtain:

(1− t)
[
Lq

q (a,b)−Aq (a,b)
]
� 1− t

q+1

[
b−a

2

]q

. (3.16)

Now, from the first inequality in (3.15) using (3.16) we get:

Lq
q

(
a+b

2
− t

b−a
2

,
a+b

2
+ t

b−a
2

)
� Lq

q (a,b)− (1− t)
[
Lq

q (a,b)−Aq (a,b)
]

(3.17)

− 1
q+1

(
b−a

2

)q

t (1− t)
[
(1− t)q−1 + tq−1

]

� Lq
q (a,b)− 1

q+1

(
b−a

2

)q

(1− t)
[
1+ t (1− t)q−1 + tq

]
, (3.18)

Comparing the above inequalities with the inequalities in (2.5) we conclude that the
first inequality in (3.15) (which is equivalent to inequality (3.17)) represents a refine-
ment of the second inequality in (2.5) .

REMARK 6. For t = 1/2 we obtain from this example that:

Lq
q

(
3a+b

4
,
a+3b

4

)
� 1

2

[
Lq

q (a,b)+Aq (a,b)
]− 1

q+1

(
b−a

4

)q

� Lq
q (a,b)− 1

2(q+1)

(
b−a

2

)q [
1+

1
2q−1

]
,

which is a refinement of the second inequality in (2.6) .
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