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Abstract. This work is devoted to review some recent results on Lp Lyapunov-type inequalities
(1 � p � ∞ ) for resonant differential equations. In the case of Ordinary Differential Equations,
we consider Neumann boundary conditions and an explicit optimal result is obtained. Moreover,
it is also treated the case in which the resonance appears at higher eigenvalues. We also study
mixed boundary conditions. From this study, and under some natural restrictions on the linear
coefficient, the relation between Neumann boundary conditions and disfocality arises in a natural
way. For Partial Differential Equations it is proved that the relation between the quantities p and
N/2 plays a crucial role in order to obtain Lp Lyapunov-type inequalities, for resonant linear
problems with Neumann boundary conditions on a bounded domain Ω⊂ R

N . This fact shows a
deep difference with respect to the ordinary case. Combining these linear results with Schauder
fixed point theorem, we can obtain some new results about the existence and uniqueness of
solutions for resonant nonlinear problems. Finally, we comment some conclusions on systems
of equations.

1. Introduction

Let us consider the linear problem

u′′(x)+a(x)u(x) = 0, x ∈ (0,L), u′(0) = u′(L) = 0 (1.1)

where a ∈ Λ0 and Λ0 is defined by

Λ0 = {a ∈ L1(0,L)\ {0} :
∫ L

0
a(x) dx � 0 and (1.1) has nontrivial solutions }. (1.2)

The well-known Lyapunov inequality states that if a ∈ Λ0, then
∫ L

0
a+(x) dx > 4/L.

Moreover, the constant 4/L is optimal (see [2], [3], [13] and [14]). An analogous result
is true for Dirichlet boundary conditions. In fact, the original results were proved for
this kind of boundary conditions ([13], [16], [18], [23]).
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In this work we review some more general recent results contained in [3], [4], [5], [6]
and [7]. We consider for each p with 1 � p � ∞, the quantity

βp ≡ inf
a∈Λ0

Ip(a) (1.3)

where

Ip(a) = ‖a+‖p =
(∫ L

0
|a+(x)|p dx

)1/p

, ∀ a ∈ Λ0, 1 � p < ∞,

I∞(a) = sup ess a+, ∀ a ∈ Λ0

(1.4)

obtaining an explicit expression for βp as a function of p and L.
In particular, if p = ∞, it may be proved (see [3]) that (1.1) has only the trivial

solution if function a satisfies
0 ≺ a ≺ π2/L2 (1.5)

where for c,d ∈ L1(0,L), we write c ≺ d if c(x) � d(x) for a.e. x ∈ [0,L] and
c(x) < d(x) on a set of positive measure. (1.5) is usually called the nonuniform non-
resonance condition with respect to the first two eigenvalues λ0 = 0 and λ1 = π2/L2

of the eigenvalue problem

u′′(x)+λu(x) = 0, x ∈ (0,L), u′(0) = u′(L) = 0, (1.6)

(see [19], [20] and [22]). From this point of view, it may be affirmed that the nonuni-
form nonresonance condition (1.5) is in fact the L∞ Lyapunov inequality at the first
eigenvalue λ0 .

On the other hand, the set of eigenvalues of (1.6) is given by λn = n2π2/L2, n ∈
N∪{0} and by using a general result due to Dolph [10], it can be proved that if for
some n � 1 function a satisfies

λn ≺ a ≺ λn+1 (1.7)

then (1.1) has only the trivial solution (see [21] for some generalizations of (1.7) to more
general boundary value problems). It is clear that if n is sufficiently large, condition
(1.7) can not be obtained from Lp Lyapunov inequalities given in [3] and [25] for the
set Λ0 .

Previous observations motivated our paper [6] where, for any given natural number
n � 1 and function a satisfying λn ≺ a , we obtain optimal L1 Lyapunov inequality.

The case where function a satisfies the condition A � a(x) � B, a.e. in (0,L)
where λn < A < λn+1 � B for some n ∈ N∪{0}, has been considered in [24]. In this
paper the authors use Optimal Control theory methods, specially Pontryagin’s maxi-
mum principle.

On the other hand, under the logical restrictions a∈ L1(0,L)\{0} and
∫ L

0
a(x) dx

� 0, the relation between Neumann boundary conditions and disfocality arises in a
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natural way: if u ∈ H1(0,L) is any nontrivial solution of (1.1) then u must have a zero
c in the interval (0,L) (see [5, Lem. 2.2]). In consequence both problems

v′′(x)+a(x)v(x) = 0, x ∈ (0,c), v′(0) = v(c) = 0 PM(0,c)

and
v′′(x)+a(x)v(x) = 0, x ∈ (c,L), v(c) = v′(L) = 0 PM(c,L)

have nontrivial solutions.
This simple observation (which has been previously employed in the case of Dirich-

let boundary conditions, [12], [17]) can be used to deduce the following conclusion: if
a ∈ L1(0,L) \ {0} with

∫ L
0 a � 0 is any function such that for any c ∈ (0,L), either

problem PM(0,c) or problem PM(c,L) has only the trivial solution, then problem (1.1)
has only the trivial solution. In [5] we exploit this idea to obtain new results on the
existence and uniqueness of solutions for resonant problems with Neumann boundary
conditions. For example, by using the L∞ norm of function a+ , we can prove (see [5,
Prop. 3.3]) that if

a ∈ L∞(0,L)\ {0},
∫ L

0
a � 0 and ∃ x0 ∈ (0,L) :

max{x2
0‖a+‖L∞(0,x0), (L− x0)2‖a+‖L∞(x0,L)} � π2/4

(H)

and, in addition, either a+ is not the constant π2/4x2
0 in the interval [0,x0] or a+ is not

the constant π2/4(L−x0)2 in the interval [x0,L], then we obtain that (1.1) has only the
trivial solution (this kind of functions a are usually named two step potentials).

Hypothesis (H) is optimal in the sense that if a+ is the constant π2/4x2
0 in the

interval [0,x0] and a+ is the constant π2/4(L− x0)2 in the interval [x0,L], then (1.1)
has nontrivial solutions (see [5, Rem. 6]).

If x0 = L/2, we have the classical result related to (1.5), but if for instance, x0 ∈
(0,L/2) function a can satisfy ‖a+‖L∞(0,x0) = π2/(4x2

0) (which is a quantity greater
than π2/L2 ) as long as ‖a+‖L∞(x0,L) < π2/4(L− x0)2.

If λn ≺ a, condition (H) has been generalized by the authors to more general
situations ([6]).

In the PDE case, we consider the linear problem

Δu(x)+a(x)u(x) = 0, x ∈Ω
∂u
∂n (x) = 0, x ∈ ∂Ω

}
(1.8)

where Ω ⊂ R
N (N � 2) is a bounded and regular domain,

∂
∂n

is the outer normal

derivative on ∂Ω and the function a :Ω→ R belongs to the set Λ defined as

Λ = {a ∈ L
N
2 (Ω)\ {0} :

∫
Ω

a(x) dx � 0 and (1.8) has nontrivial solutions} (1.9)



634 ANTONIO CAÑADA, SALVADOR VILLEGAS

if N � 3 and

Λ = {a : Ω→ R s. t. ∃q ∈ (1,∞] with a ∈ Lq(Ω)\ {0},
∫
Ω

a(x) dx � 0 and (1.8)

has nontrivial solutions} if N = 2.

Obviously, the quantity
γp ≡ inf

a∈Λ
‖a+‖p , 1 � p � ∞ (1.10)

is well defined and it is a nonnegative real number. The first novelty with respect to the
ordinary case is that γ1 = 0 for each N � 2. Moreover, if N = 2, then γp > 0, ∀ p ∈
(1,∞] and if N � 3, then γp > 0 if and only if p � N/2. Also, for each N � 2, γp

is attained if p > N/2. It seems difficult to obtain explicit expressions for γp, as a
function of p,Ω and N, at least for general domains.

Combining all the previous linear results with Schauder fixed point theorem, we
can obtain some new results about the existence and uniqueness of solutions for res-
onant nonlinear problems ([3], [4], [5], [11]). We finish this work with some recent
results on systems of equations ([7]).

2. Ordinary differential equations

We begin this section showing an explicit result which generalizes classical Lya-
punov inequality:

THEOREM 2.1. ([3]) Let βp be defined in (1.3). The following statements hold:

(1) β1 =
4
L

, β∞ =
π2

L2 . The mapping [1,∞) → R, p → βp, is continuous and

limp→∞ βp = β∞. Moreover, the mapping δ : [1,∞)→R, p→ L−1/pβp is strictly
increasing.

(2) If 1 < p < ∞,

βp =
4(p−1)1+ 1

p

L2− 1
p p(2p−1)1/p

(∫ π/2

0
(sinx)−1/p dx

)2

. (2.1)

(3) βp is attained if and only if 1 < p � ∞. In this case, βp is attained in a unique

element ap ∈ Λ0 which is not a constant function if 1 < p < ∞ and a∞(x) ≡ π2

L2 .

Main ideas of the proof for the case 1 < p < ∞ . If a ∈ Λ0 (Λ0 was defined in (1.2))

and u ∈ H1(0,L) is a nontrivial solution of

u′′(x)+a(x)u(x) = 0, x ∈ (0,L), u′(0) = u′(L) = 0, (2.2)
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then ∫ L

0
u′v′ =

∫ L

0
auv, ∀ v ∈ H1(0,L).

In particular, choosing v ≡ u and v ≡ 1, we have respectively∫ L

0
u′2 =

∫ L

0
au2,

∫ L

0
au = 0. (2.3)

Therefore, for each k ∈ R, we have∫ L

0
(u+ k)′2 =

∫ L

0
u′2 =

∫ L

0
au2 �

∫ L

0
au2 + k2

∫ L

0
a

=
∫ L

0
au2 +

∫ L

0
k2a+2k

∫ L

0
au =

∫ L

0
a(u+ k)2.

It follows from Hölder inequality∫ L

0
(u+ k)′2 � ‖a‖p‖(u+ k)2‖ p

p−1
.

Also, since u is a nonconstant solution of (2.2), u+ k is a nontrivial function. Conse-
quently

‖a‖p �

∫ L

0
(u+ k)′2

‖(u+ k)2‖ p
p−1

, ∀ a ∈ Λ0. (2.4)

Previous reasoning motivates the study of an special minimization problem given in the
following lemma.

LEMMA 2.2. ([3]). Assume 1 < p < ∞ and let

Xp =
{

u ∈ H1(0,L) :
∫ L

0
|u| 2

p−1 u = 0

}
.

If Jp : Xp \ {0}→ R is defined by

Jp(u) =

∫ L

0
u′2

(∫ L

0
|u| 2p

p−1

) p−1
p

(2.5)

and mp ≡ infXp\{0} Jp, mp is attained. Moreover, if up ∈ Xp \{0} is a minimizer, then
up satisfies the problem

u′′p(x)+Ap(up)|up(x)|
2

p−1 up(x) = 0, u′p(0) = u′p(L) = 0, (2.6)

where Ap(up) = mp

(∫ L

0
|up|

2p
p−1

)−1
p

. (2.7)

Finally, βp = mp.
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The proof of this lemma is based on some calculus with Lagrange multipliers and
the explicit value of mp is obtained from a careful analysis of (2.6) (see [3] for the
complete proof of Theorem 2.1 and [8], [9] for some similar ideas on the periodic
boundary value problem). �

Now we treat with the case where the nonresonance appears at higher eigenvalues.
Specifically, if n ∈ N is fixed, we introduce the set Λn as

Λn = {a ∈ L1(0,L) : λn ≺ a and (1.1) has nontrivial solutions }. (2.8)

THEOREM 2.3. ([6]).

β1,n ≡ inf
a∈Λn

‖a−λn‖L1(0,L) =
2πn(n+1)

L
cot

πn
2(n+1)

.

Moreover β1,n is not attained.

Proof. It is based on some lemmas. In the first one, we do a careful and optimal
analysis about the number and distribution of zeros of nontrivial solutions u of (1.1),
and its first derivative u′, when a ∈ Λn . To the best of our knowledge, this result is
new.

LEMMA 2.4. ([6]). Let a ∈Λn be given and u any nontrivial solution of (1.1). If
the zeros of u′ in [0,L] are denoted by 0 = x0 < x2 < .. . < x2m = L and the zeros of u
in (0,L) are denoted by x1 < x3 < .. . < x2m−1, then:

(1) xi+1− xi � L
2n , ∀ i : 0 � i � 2m−1. Moreover, at least one of these inequalities

is strict.

(2) m � n+1. Moreover, any value m � n+1 is possible.

(3) Let i, 0 � i � 2m−1, be given. Then, functions a and u satisfy either

‖a−λn‖L1(xi,xi+1) �
∫ xi+1
xi

u′2−λn
∫ xi+1
xi

u2

u2(xi+1)
, if u(xi) = 0 (2.9)

or

‖a−λn‖L1(xi,xi+1) �
∫ xi+1
xi

u′2−λn
∫ xi+1
xi

u2

u2(xi)
, if u(xi+1) = 0. (2.10)

Proof. Let i, 0 � i � 2m− 1, be given. Then, function u satisfies either the
problem

u′′(x)+a(x)u(x) = 0, x ∈ (xi,xi+1), u(xi) = 0, u′(xi+1) = 0, (2.11)

or the problem

u′′(x)+a(x)u(x) = 0, x ∈ (xi,xi+1), u′(xi) = 0, u(xi+1) = 0. (2.12)
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Let us assume the first case. The reasoning in the second case is similar. Note that
u may be chosen such that u(x) > 0, ∀ x ∈ (xi,xi+1). Let us denote by μ i

1 and ϕ i
1,

respectively, the principal eigenvalue and eigenfunction of the eigenvalue problem

v′′(x)+ μv(x) = 0, x ∈ (xi,xi+1), v(xi) = 0, v′(xi+1) = 0. (2.13)

It is known that

μ i
1 =

π2

4(xi+1− xi)2 , ϕ i
1(x) = sin

π(x− xi)
2(xi+1− xi)

. (2.14)

Choosing ϕ i
1 as test function in the weak formulation of (2.11) and u as test function

in the weak formulation of (2.13) for μ = μ i
1 and v = ϕ i

1, we obtain

∫ xi+1

xi

(a(x)− μ i
1)uϕ

i
1(x) dx = 0. (2.15)

Then, if xi+1− xi >
L
2n , we have

μ i
1 =

π2L2

4(xi+1− xi)2L2 <
n2π2

L2 = λn � a(x), a.e. in (xi,xi+1)

which is a contradiction with (2.15). Consequently, xi+1−xi � L
2n ,∀ i : 0 � i � 2m−1.

Also, since a ≺ λn in the interval (0,L) , we must have a ≺ λn in some subinterval
(x j,x j+1) . If x j+1 − x j = L

2n , it follows μ j
1 ≺ a in (x j,x j+1) and this is again a con-

tradiction with (2.15). These reasonings complete the first part of the lemma. For the
second one, let us observe that

L =
2m−1

∑
i=0

(xi+1− xi) < 2m
L
2n

.

In consequence, m > n. Also, note that for any given natural number q � n+1, function
a(x) ≡ λq belongs to Λn and for function u(x) = cos qπx

L , we have m = q.
Lastly, if i, with 0 � i � 2m−1 is given and u satisfies (2.11), then

∫ xi+1
xi

u′2(x) =
∫ xi+1
xi

a(x)u2(x) =

∫ xi+1
xi

(a(x)−λn)u2(x)+
∫ xi+1
xi

λnu2(x).

Therefore,
∫ xi+1

xi

u′2(x)−λn

∫ xi+1

xi

u2(x) � ‖a−λn‖L1(xi,xi+1)‖u2‖L∞(xi,xi+1).

Since u′ has no zeros in the interval (xi,xi+1) and u(xi) = 0, we have ‖u2‖L∞(xi,xi+1) =
u2(xi+1). This proves the third part of the lemma when u satisfies (2.11). The reasoning
is similar if u satisfies (2.12). �
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From the previous lemma and by using Lagrange multipliers Theorem and some
minimization problems, it is possible to obtain a lower bound for β1,n . More precisely,
we prove that

β1,n � nπ
L

2m−1

∑
i=0

cot
(nπ

L
(xi+1− xi)

)

� nπ
L

2mcot
nπ
2m

� nπ
L

2(n+1)cot
nπ

2(n+1)
.

To conclude the proof of Theorem 2.3, we show in [6, Lem. 2.7] an explicit minimizing
sequence of functions a ∈ Λn . �

As we have mentioned in the introduction, if a ∈ Λ0 the relation between Neu-
mann boundary conditions and disfocality arises in a natural way: if u ∈ H1(0,L) is
any nontrivial solution of (1.1) then u must have a zero c in the interval (0,L) (see [5,
Lem. 2.2]). In consequence both problems PM(0,c) and PM(c,L) (both defined in the
Introduction) have nontrivial solutions. Hence, it is natural to consider

Λ∗ = {a∈ L1(0,L) : u′′+a(x)u= 0;u′(0)= u(L) = 0 has nontrivial solutions } (2.16)

and
β ∗

p ≡ inf
a∈Λ∗ ⋂

Lp(0,L)
‖a+‖Lp(0,L), 1 � p � ∞. (2.17)

THEOREM 2.5. ([5]). If 1 � p � ∞, we have β ∗
p = βp/4.

From this result and if we establish Hypothesis (Hp)∗ as:

(1) ‖a+‖L1(c,d) � β ∗
1 (c,d) if p = 1.

(2) a ∈ Lp(c,d), ‖a+‖Lp(c,d) < β ∗
p(c,d), if p ∈ (1,∞] .

we obtain, as an application to Neumann problem (1.1), the next result.

THEOREM 2.6. ([5]). Let a ∈ L1(0,L)\ {0} with
∫ L

0
a(x) dx � 0, satisfying:

For each c ∈ (0,L) either hypothesis (Hp)∗ in the interval (0,c) or hypothesis
(Hq)∗ in the interval (c,L) (here, p,q ∈ [1,∞] may depend on c).

Then the problem (1.1) has only the trivial solution.

By using an slight modification of the previous Theorem for the case p = q = ∞,
we can obtain the result mentioned in the Introduction, related to hypothesis (H) ([5]).

3. Partial Differential Equations

This section will be concerned with the linear boundary value problem (1.8) where
a ∈ Λ and Λ was defined in the Introduction.
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As previously, Ω is a bounded and regular domain of R
N . As in the ordinary case,

the positive eigenvalues of the eigenvalue problem

Δu(x)+λu(x) = 0 x ∈Ω
∂u(x)
∂n = 0 x ∈ ∂Ω

}
(3.1)

belong to Λ. Therefore, the quantity

γp ≡ inf
a∈Λ

‖a‖p , 1 � p � ∞

is well defined. Our main result on linear PDE is the next theorem.

THEOREM 3.1. ([4]) The following statements hold:

(1) γ1 = 0, and γ∞ = λ1, ∀ N � 2. Here λ1 is the first positive eigenvalue of the
eigenvalue problem (3.1).

(2) If N = 2, γp > 0, ∀p ∈ (1,∞] .

If N � 3, γp > 0 ⇔ p ∈ [N
2 ,∞].

If N � 2 and N
2 < p � ∞ then γp is attained.

(3) The mapping (N
2 ,∞) → R, p �→ γp, is continuous and the mapping [N

2 ,∞] → R,

p �→ |Ω|−1/pγp, is strictly increasing.

Main ideas of the proof:

(1) If N � 3 and N
2 < p <∞, the ideas are the same as in the ordinary case since the

imbedding of the Sobolev space H1(Ω) into L2p/p−1(Ω) is compact.

(2) If N = 2, the imbedding H1(Ω) ⊂ Lq(Ω) is compact ∀ q ∈ [1,∞) and therefore,
if 1 < p < ∞, the ideas are the same as in the ordinary case.

(3) If N � 3 and 1 � p < N
2 , we prove that γp = 0 by finding appropriate minimizing

sequences. For instance, if Ω = B(0,1) we can take radial functions u(x) =
f (|x|) of the form f (r) = αr−a−β r−b , (a > 0, b > 0,0 < r < 1).
If N = 2 and p = 1, we use the fundamental solution ln |x| to find appropriate
minimizing sequences.

(4) If N � 3 and p = N
2 , then 2p

p−1 = 2N
N−2 and the imbedding H1(Ω) ⊂ L2N/N−2(Ω)

is continuous but not compact. This implies that the infimum γp > 0.

By using the Schauder fixed point theorem, we can apply the previous results (on linear
problems) to nonlinear boundary value problems. In fact, from each obtained linear
result we may deduce the corresponding nonlinear one. For instance, we can consider

−Δu(x) = f (x,u(x)) x ∈Ω
∂u
∂n (x) = 0 x ∈ ∂Ω

}
(3.2)
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where Ω⊂R
N (N � 2) is a bounded and regular domain and the function f :Ω×R→

R, (x,u) �→ f (x,u), satisfies the condition

(C) f , fu are Caratheodory functions and 0 � fu(x,u) in Ω×R.

The existence of a solution of (3.2) implies∫
Ω

f (x,s0) dx = 0 (3.3)

for some s0 ∈ R (see [22]). Trivially, conditions (C) and (3.3) are not sufficient for the
existence of solutions of (3.2). Indeed, consider the problem

−Δu(x) = λ1u(x)+ϕ1(x) x ∈Ω
∂u
∂n (x) = 0 x ∈ ∂Ω

}
(3.4)

where ϕ1 is a nontrivial eigenfunction associated to λ1. Here λ1 is the first positive
eigenvalue of the eigenvalue problem (3.1). The function f (x,u) = λ1u+ϕ1(x) satisfies
(C) and (3.3), but the Fredholm alternative theorem shows that there is no solution of
(3.4).

If, moreover of (C) and (3.3), f satisfies a non-uniform non-resonance condition
of the type

(c1) fu(x,u) � γ(x) in Ω×R with γ(x) � λ1 in Ω and γ(x) < λ1 in a subset of
Ω of positive measure,

then it has been proved in [22] that (3.2) has solution. Let us observe that supple-
mentary condition (c1) is given in terms of ‖γ‖∞. In the next result, we provide new
supplementary conditions in terms of ‖γ‖p, where N/2 < p � ∞ , obtaining a general-
ization of Theorem 2 in [22]. In the case of Dirichlet conditions, it is possible to obtain
analogous results in an easier way (see [4]). Moreover, it is possible to do a similar
analysis related to the operator q -laplacian, where 1 < q < ∞ (see [5]).

THEOREM 3.2. ([4]) Let Ω⊂R
N (N � 2 ) be a bounded and regular domain and

f :Ω×R → R , (x,u) �→ f (x,u) , satisfying:

(1) f , fu are Caratheodory functions and f (·,0) ∈ L∞(Ω) .

(2) There exists a function γ ∈ L∞(Ω), satisfying

0 � fu(x,u) � γ(x) in Ω×R (3.5)

and such that for some p, N/2 < p � ∞, we have ‖γ‖p < γp (or ‖γ‖p = γp and
γ(x) is not a minimizer of the Lp -norm in Λ), where γp is given by Theorem 3.1.

(3) There exists s0 ∈ R such that∫
Ω

f (x,s0) dx = 0, and fu(x,u(x)) �≡ 0 for all u ∈C(Ω). (3.6)
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Then problem (3.2) has a unique solution.

Proof. For the uniqueness, if u1 and u2 are two solutions of (3.2), then the func-
tion u = u1−u2 is a solution of the problem

−Δu(x) = a(x)u(x), x ∈Ω,
∂u
∂n

= 0, x ∈ ∂Ω (3.7)

where a(x) =
∫ 1

0
fu(x,u2(x)+θu(x)) dθ . From the definition of γp, we obtain u ≡ 0.

For the existence, we write (3.2) in the equivalent form

−Δu(x) = b(x,u(x))u(x)+ f (x,0), in Ω,

∂u
∂n = 0, on ∂Ω

}
(3.8)

where the function b :Ω×R→R is defined by b(x,z)=
∫ 1

0
fu(x,θ z) dθ . If X =C(Ω),

our hypotheses allow to define an operator T : X → X , by Ty = uy , being uy the unique
solution of the linear problem

−Δu(x) = b(x,y(x))u(x)+ f (x,0), in Ω,

∂u
∂n = 0, on ∂Ω.

}
(3.9)

where X = C(Ω) with the uniform norm. Now T is completely continuous and T (X)
is bounded. The Schauder’s fixed point theorem provides a fixed point for T which is
a solution of (3.2). �

As in the ordinary case, the constant γp may be obtained as a minimum of some
special minimization problems ([4]). This important fact makes possible the application
to linear or nonlinear systems of equations. To this respect, we show the next Theorem
on systems with variational structure. It is a generalization of the main result given in
[22] for the Neumann problem. Moreover, it is a generalization of some results given in
[1] and [15] where the authors take all the constants pi =∞, 1 � i � n . In the Theorem,
the relation C � D between n×n matrices means that D−C is positive semi-definite
and 〈·, ·〉 is the usual scalar product in R

n .

THEOREM 3.3. ([7]) Let Ω⊂R
N (N � 2 ) be a bounded and regular domain and

G : Ω×R
n → R, (x,u) → G(x,u) satisfying:

(1) (a) u → G(x,u) is of class C2(Rn,R) for every x ∈Ω.

(b) x → G(x,u) is continuous on Ω for every u ∈ R
n.

(2) There exist continuous matrix functions A(·), B(·), with B(x) diagonal and with
entries bii(x), and pi ∈ (N/2,∞] 1 � i � n, such that

A(x) � Guu(x,u) � B(x) in Ω×R
n,

‖b+
ii ‖pi < γpi , 1 � i � n,∫

Ω〈A(x)k,k〉dx > 0, ∀ k ∈ R
n \ {0}.

⎫⎪⎪⎬
⎪⎪⎭ (3.10)
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Then system
−Δu(x) = Gu(x,u(x)), x ∈Ω,

∂u(x)
∂n = 0, x ∈ ∂Ω,

}
(3.11)

has a unique solution.

Previous Theorem is optimal in the following sense: for any given positive num-
bers δi, 1 � i � n, such that at least one of them, say δ j, satisfies

δ j > γp j , for some p j ∈ (N/2,∞], (3.12)

there exists a function G(x,u) satisfying all the hypotheses of the previous Theorem
except (3.10), which is replaced with

‖b+
ii ‖pi < δpi , 1 � i � n,

and such that (3.11) has more than one solution. To see this, if δ j satisfies (3.12), then
from the definition of γp j , there exists some continuous function a(x), not identically
zero, with

∫
Ω a(x) dx � 0, and ‖a+‖p j < δ j, such that the scalar problem (1.8) has non-

trivial solutions. Then, to get our purpose, it is sufficient to take G(x,u) = 1
2〈M(x)u,u〉,

where M(x) is a diagonal matrix with entries mj j(x) = a(x) and mii(x) = δ ∈ R
+, if

i �= j, with δ sufficiently small.
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