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Abstract. In this paper, we establish two integral inequalities for geometrically convex functions.
As consequences, we get the estimation for remainder terms of Taylor series for e−x , sinx and
cosx .

1. Introduction

Let I ⊆ (0,+∞) be an interval and f : I → (0,+∞) be a continuous function.
f is said to be geometrically convex (or concave, resp.) on I if

f
(
xαy1−α)� (or �, resp.) f α (x) f 1−α (y)

for any x,y ∈ I and any α ∈ [0,1] .
The notion of geometrical convexity was introduced by P. Montel ([1]), in a beau-

tiful paper where analogues of the notion of a convex function in n variables are dis-
cussed. Recently, C. P. Niculescu ([2]) discussed an attractive class of inequalities,
which arise from the notion of geometrically convex functions.

The main purpose of this paper is to establish two integral inequalities for geomet-
rically convex functions. As applications, we get the estimation for remainder terms of
Taylor series for e−x , sinx and cosx .

The following well-known results will be used in next sections.

LEMMA 1. ([2]) If f : I ⊆ (0,+∞)→ (0,+∞) is a twice differentiable function,
then f is a geometrically convex (or concave, resp.) if and only if

x
[
f ′′ (x) f (x)− ( f ′ (x))2]+ f (x) f ′ (x) � (or �, resp.)0

for all x ∈ I .

LEMMA 2. ([2]) If f : [a,b] ⊆ (0,+∞) → (0,+∞) is geometrically convex (or
concave, resp.), and g(x)= log f (ex) , then g is convex (or concave, resp.) on [loga, logb] .

LEMMA 3. ([4]) Suppose that f : (a,b)⊆ (0,+∞)→ (0,+∞) is a geometrically
concave function. If g(x) =

∫ b
x f (t)dt and h(x) =

∫ x
a f (t)dt , then both g and h are

geometrically concave on (a,b) .
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2. Integral inequalities for geometrically convex functions

THEOREM 1. Suppose that f : [a,b]⊆ (0,+∞)→ (0,+∞) is a geometrically con-
vex function. Then

∫ b

a
f (x)dx � ( f (a))2

(
f (a)+a f ′+ (a)

)
a

a f ′+(a)
f (a)

·
(

b
1+

a f ′+(a)
f (a) −a

1+
a f ′+(a)

f (a)

)
(1)

if f (a)+a f ′+ (a) �= 0 , and

∫ b

a
f (x)dx � ( f (b))2

(
f (b)+b f ′− (b)

)
b

b f ′−(b)
f (b)

·
(

b
1+

b f ′−(b)
f (b) −a

1+
b f ′−(b)

f (b)

)
(2)

if f (b)+ b f ′− (b) �= 0 . Inequalities (1) and (2) become equality if and only if f is a
power function or constant function, while inequalities (1) and (2) are reversed if f is
a geometrically concave function.

Proof. If f is a geometrically convex function, then simple computation yields
that

lim
c→a+0

log f (c)− log f (a)
logc− loga

= lim
c→a+0

log f
(
elogc

)− log f
(
eloga

)
logc− loga

=
(
log f

(
et))′

+

∣∣∣
t=loga

=
et f ′+ (et)

f (et)

∣∣∣∣
t=loga

=
a · f ′+ (a)

f (a)
�= −1.

Let c∈ (a,b) be such that (log f (c)− log f (a))/(logc− loga) �=−1. For x∈ [c,b] , let
t = (logx− logc)/(logx− loga) . Then 0 � t < 1, (x/a)t = x/c , c = atx1−t , f (c) =
f
(
atx1−t

)
, and

f (c) � ( f (a))t ( f (x))1−t . (3)

Therefore

( f (c))
1

1−t ( f (a))−
t

1−t � f (x) ,

( f (c))
logx−loga
logc−loga ( f (a))−

logx−logc
logc−loga � f (x)

and∫ b

c
f (x)dx �

∫ b

c
( f (c))

logx−loga
logc−loga ( f (a))−

logx−logc
logc−loga dx

= ( f (c))−
loga

logc−loga ( f (a))
logc

logc−loga

∫ b

c
( f (c))

logx
logc−loga ( f (a))−

logx
logc−loga dx.
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Now, by taking x = eu , we get

∫ b

c
f (x)dx � ( f (c))−

loga
logc−loga ( f (a))

logc
logc−loga

·
∫ logb

logc
( f (c))

u
logc−loga ( f (a))−

u
logc−loga d (eu)

= ( f (c))−
loga

logc−loga ( f (a))
logc

logc−loga

·
∫ logb

logc

[
e( f (c))

1
logc−loga · ( f (a))−

1
logc−loga

]u
du

= ( f (c))−
loga

logc−loga · ( f (a))
logc

logc−loga

· b( f (c))
logb

logc−loga ( f (a))−
logb

logc−loga − c( f (c))
logc

logc−loga ( f (a))−
logc

logc−loga

1+ log f (c)
logc−loga − log f (a)

logc−loga

=
b( f (c))

logb−loga
logc−loga ( f (a))

logc−logb
logc−loga − c · f (c)

1+ log f (c)−log f (a)
logc−loga

= f (c) ·
b
(

f (c)
f (a)

) logb−logc
logc−loga − c

1+ log f (c)−log f (a)
logc−loga

= f (c) ·
b · exp

(
logb−logc
logc−loga · (log f (c)− log f (a))

)
− c

1+ log f (c)−log f (a)
logc−loga

. (4)

Let c → a+0 in inequality (4). Then

∫ b

a
f (x)dx � f (a)

b · exp
(
a(logb− loga) f ′+(a)

f (a)

)
−a

1+ a f ′+(a)
f (a)

= ( f (a))2 b · (b
a

) a f ′+(a)
f (a) −a

f (a)+a · f ′+(a)

=
( f (a))2

(
f (a)+a f ′+ (a)

)
a

a f ′+(a)
f (a)

·
(

b
1+

a f ′+(a)
f (a) −a

1+
a f ′+(a)

f (a)

)
.

Equality (1) occurs only when equality (3) occurs, hence f is a power function or
constant function obviously.

Similarly we can prove inequality (2).
The proof of Theorem 1 is completed. �
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THEOREM 2. Let 0 < a < b and f : [a,b] → (0,+∞) be a geometrically convex
function. Then

∫ b

a
f (x)dx �

{
b f (b)−a f (a)

log(b f (b))−log(a f (a)) · log b
a , a f (a) �= b f (b) ,

a f (a) · log b
a , a f (a) = b f (b) .

(5)

The equality occurs only when f is a power function or constant function. Inequality
(5) is reversed if f is geometrically concave.

Proof. If f is a geometrically convex function and α = (logx− loga)/(logb− loga) ,
then

∫ b

a
f (x)dx =

∫ 1

0
f
(
a1−αbα

) ·a1−αbα · log
b
a
dα.

If a f (a) �= b f (b) , then

∫ b

a
f (x)dx �

∫ 1

0
f 1−α (a) · f α (b) ·a1−αbα · log

b
a
dα

= a f (a) · log
b
a
·
∫ 1

0

(
b f (b)
a f (a)

)α
dα

=
a f (a)

log
(

b f (b)
a f (a)

) · log
b
a
·
(

b f (b)
a f (a)

)α ∣∣∣∣
1

0

=
a f (a)

log(b f (b)−a f (a))
· log

b
a
·
[
b f (b)
a f (a)

−1

]

=
b f (b)−a f (a)

log(b f (b))− log(a f (a))
· log

b
a
.

If a f (a) = b f (b) , then we clearly see that

∫ b

a
f (x)dx � a f (a) log

b
a
. �

3. Estimation of Remainder Term of Taylor Series for e−x

THEOREM 3. For x > 0 , n∈N , and Tn (x) = e−x−1+x−x2/2!+ · · ·+(−1)n−1 xn/n! ,
we have the following results.

i) If 0 < x < (n+2)/(n+1), then

2(n+1)

n+ x+
√

(n+2+ x)2−4x
· xn+1

(n+1)!
� |Tn (x)| � n+2

n+2+ x
· xn+1

(n+1)!
.
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ii) If x � (n+2)/(n+1), then

2(n+1)

n+ x+
√

(n+2+ x)2 −4x
· xn+1

(n+1)!
� |Tn (x)|

� 2(n+1)

n+1+ x+
√

(x+n+1)2 −4x
· xn+1

(n+1)!
.

Proof. Let n = 2m−1 if n is an odd number, and n = 2m if n is an even number.
According to the Taylor series expansion of e−x , we have

T2m−1 (x) = e−x−1+ x− x2

2!
+ · · ·+ x2m−1

(2m−1)!
� 0,

T2m (x) = e−x−1+ x− x2

2!
+ · · ·− x2m

(2m)!
� 0,

−T2m (x) = −e−x +1− x+
x2

2!
−·· ·+ x2m

(2m)!
� 0.

If f (x) = e−x,x ∈ (0,+∞) , then f is a geometrically concave function by Lemma 1
and a simple computation. On the other hand,∫ x

0
e−tdt = 1− e−x,

∫ x

0

(
1− e−t)dt = e−x−1+ x,

∫ x

0

(
e−t −1+ x

)
dt = −e−x +1− x+

x2

2
, · · · .

Hence both T2m−1 and −T2m are geometrically concave functions by Lemma 3.
For 0 < a < x , according to Theorem 1, we get∫ x

a
T2m−1 (x)dx � T2m−1 (x)

(1+η)xη
· (x1+η −a1+η) , (6)

where

η =
xT ′

2m−1 (x)
T2m−1 (x)

=
x
(
−e−x +1− x+ · · ·+ x2m−2

(2m−2)!

)
T2m−1 (x)

> 0.

By taking a → 0+ in (6), we get

−e−x +1− x+
x2

2!
+ · · · + x2m

(2m)!
� xT2m−1 (x)

1+
xT ′

2m−1(x)
T2m−1(x)

.

It follows that

−T2m−1 (x)+
x2m

(2m)!
�

xT 2
2m−1 (x)

T2m−1 (x)+ x
(
−e−x +1− x+ · · ·+ x2m−2

(2m−2)!

) ,

−T2m−1 (x)+
x2m

(2m)!
�

xT 2
2m−1 (x)

T2m−1 (x)+ x
(
−T2m−1 (x)+ x2m−1

(2m−1)!

) ,
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(x−1)T 2
2m−1 (x)+

(
− x2m

(2m−1)!
+

x2m

(2m)!
− x2m+1

(2m)!

)
T2m−1 (x)

+
x4m

(2m)!(2m−1)!
� xT 2

2m−1 (x) ,

and

T 2
2m−1 (x)+

(2m−1+ x)x2m

(2m)!
T2m−1 (x)− x4m

(2m)!(2m−1)!
� 0.

Therefore

T2m−1 (x) �
− (2m−1+x)x2m

(2m)! +
√

(2m−1+x)2x4m

((2m)!)2
+ 4x4m

(2m)!(2m−1)!

2

=
−(2m−1+ x)+

√
(2m−1+ x)2 +8m

2
· x2m

(2m)!

=
4m√

(2m−1+ x)2 +8m+2m−1+ x
· x2m

(2m)!

=
4m

2m−1+ x+
√

(2m+1+ x)2−4x
· x2m

(2m)!
. (7)

Since −T2m is a geometrically concave function, by making use of the same method as
in Theorem 1, we get

−T2m (x) � 4m+2

2m+ x+
√

(2m+2+ x)2−4x
· x2m+1

(2m+1)!
. (8)

For 0 < a < x , according to Theorem 2, we get

∫ x

a
T2m−1 (t)dt � xT2m−1 (x)−aT2m−1 (a)

log(xT2m−1 (x))− log(aT2m−1 (a))
· log

x
a

and

∫ x

a
T2m−1 (t)dt � (xT2m−1 (x)−aT2m−1 (a)) · logx− loga

log(xT2m−1 (x))− log(aT2m−1 (a))
.



GEOMETRICALLY CONVEX FUNCTIONS AND ESTIMATION OF REMAINDER TERMS. . . 21

Let a → 0+ . Using the L’Hospital rule, we get

∫ x

0
T2m−1 (t)dt � xT2m−1 (x) · lim

a→0+

−1/a

− T2m−1(a)+aT ′
2m−1(a)

T2m−1(a)

,

− e−x +1− x+
x2

2!
+ · · ·+ x2m

(2m)!
� xT2m−1 (x)

1+ lim
a→0+

aT ′
2m−1(a)

T2m−1(a)

,

−T2m−1 (x)+
x2m

(2m)!
� xT2m−1 (x)

2+ lim
a→0+

aT ′′
2m−1(a)

T ′
2m−1(a)

,

−T2m−1 (x)+
x2m

(2m)!
� xT2m−1 (x)

2m+ lim
a→0+

ae−a

1−e−a

and

−T2m−1 (x)+
x2m

(2m)!
� xT2m−1 (x)

2m+1
.

Therefore

(2m+1)x2m

(2m)!
� (2m+1+ x)T2m−1 (x)

and

T2m−1 (x) � (2m+1)
(2m+1+ x)

· x2m

(2m)!
. (9)

Using the same method as above, we can get

−T2m (x) � (2m+2)
(2m+2+ x)

· x2m+1

(2m+1)!
. (10)

Since T2m−1 is a geometrically concave function, according to Lemma 1 we have

x
(
T2m−1 (x) ·T ′′

2m−1 (x)− (T ′
2m−1 (x)

)2)+T2m−1 (x) ·T ′
2m−1 (x) � 0.

A simple computation yields that

T ′
2m−1 (x) = −T2m−1 (x)+

x2m−1

(2m−1)!
,

and

T ′′
2m−1 (x) = T2m−1 (x)+

x2m−2

(2m−2)!
− x2m−1

(2m−1)!
.
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Therefore

−T 2
2m−1 (x)+

2mx2m−1 + x2m

(2m−1)!
T2m−1 (x)− x4m−1

((2m−1)!)2 � 0,

T 2
2m−1 (x)− 2mx2m−1 + x2n

(2m−1)!
T2m−1 (x)+

x4m−1

((2m−1)!)2 � 0

and

T2m−1 �
2m+ x−

√
(x+2m)2 −4x

2
· x2m−1

(2m−1)!

=
2x

2m+ x+
√

(2m+ x)2 −4x
· x2m−1

(2m−1)!

=
4m

2m+ x+
√

(2m+ x)2 −4x
· x2m

(2m)!
.

(11)

Similarly, we can get

−T2m (x) � 4m+2

2m+1+ x+
√

(2m+1+ x)2 −4x
· x2m+1

(2m+1)!
. (12)

If 0 < x � (2n+1)/2n , then we can find

(2m+1)
(2m+1+ x)

· x2m

(2m)!
� 4m

2m+ x+
√

(2m+ x)2−4x
· x2m

(2m)!
, (13)

while inequality (13) is reversed if x � (2n+1)/2n . If 0 < x � (2n+2)/(2n+1), we
can find

(2m+2)
(2m+2+ x)

· x2m+1

(2m+1)!
� 4m+2

2m+1+ x+
√

(2m+1+ x)2−4x
· x2m+1

(2m+1)!
, (14)

while inequality (14) is reversed if x � (2n+2)/(2n+1).
According to inequalities (7), (8), (9), (10), (11), (12), (13) and (14) we know that

Theorem 3 is true. �

4. Estimation of Remainder Term of Taylor Series for sinx and cosx

THEOREM 4. If n ∈ N , x ∈ (0,π/2) , Sn (x) = sinx − x + x3/3! − ·· · +
(−1)n x2n−1/(2n−1)! and Pn (x) = cosx−1+ x2/2!−·· ·+(−1)n+1 x2n/(2n)! , then

x2n+1

(2n+1)!
· 2n(2n+1)
2n(2n+1)+ x2 � |Sn (x)| � x2n+1

(2n+1)!
· (2n+2) (2n+3)
(2n+2)(2n+3)+ x2
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and

x2n+2

(2n+2)!
· (2n+1) (2n+2)
(2n+1) (2n+2)+ x2 � |Pn (x)| � x2n+2

(2n+2)!
· (2n+3)(2n+4)
(2n+3) (2n+4)+ x2 .

Proof. Let x ∈ (0,π/2) , and

f1 (x) = −sinx+ x− x3

3!
+ · · ·+ x4n−3

(4n−3)!
, f2 (x) = cosx−1+

x2

2!
−·· ·+ x4n−2

(4n−2)!
,

f3 (x) = sinx− x+
x3

3!
−·· ·+ x4n−1

(4n−1)!
, f4 (x) = −cosx+1− x2

2!
+ · · ·+ x4n

(4n)!
,

f5 (x) = −sinx+ x− x3

3!
−·· ·+ x4n+1

(4n+1)!
, f6 (x) = cosx−1+

x2

2!
−·· ·+ x4n+2

(4n+2)!
,

f7 (x) = sinx− x+
x3

3!
−·· ·+ x4n+3

(4n+3)!
, f8 (x) = −cosx+1− x2

2!
+ · · ·+ x4n+4

(4n+4)!
.

We can show that sin : x∈ (0,π/2) �→ sinx and cos : x∈ (0,π/2) �→ cosx are geometri-
cally concave functions according to Lemma 1 and simple computations. From Lemma
3, we clearly see that the following functions are geometrically concave on (0,π/2) :∫ x

0
sin tdt = 1− cosx,

∫ x

0
(1− cost)dt = x− sinx,

∫ x

0
(t− sint)dt = cosx−1+

x2

2
, · · · .

Hence functions fi (i = 1,2, · · · ,8) are geometrically concave on
(
0, π2

)
. For 0 < a < x

and i = 1, · · · ,7,8, Theorem 2 leads to

∫ x

a
fi (t)dt � x fi (x)−a fi (a)

log(x fi (x))− log(a fi (a))
· (logx− loga) .

Let a → 0+ . Then we have ∫ x

0
fi (t)dt � x fi (x)

1+ lim
a→0+

a· f ′i (a)
fi(a)

and

fi+1 (x) � x fi (x)

1+ lim
a→0+

a· f ′i (a)
fi(a)

. (15)

By making use of L’Hospital rule in inequality (15), we get

fi+1 (x) � x fi (x)
4n+ i+1

.
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Therefore

f3 (x) � x f1 (x)
4n+1

, f2 (x) � x f1 (x)
4n

,

f4 (x) � x f3 (x)
4n+2

, f5 (x) � x f4 (x)
4n+3

,

f3 (x) � x f2 (x)
4n+1

� x2 f1 (x)
4n(4n+1)

=
x2

4n(4n+1)

(
− f3 (x)+

x4n−1

(4n−1)!

)
,

4n(4n+1) f3 (x) � −x2 f3 (x)+
x4n+1

(4n−1)!
,

and

f3 (x) � x4n+1

(4n+1)!
· 4n(4n+1)
4n(4n+1)+ x2 . (16)

Furthermore, we get

x f3 (x)
4n+2

� f4 (x) � 4n+3
x

f5 (x) =
4n+3

x

(
− f3 (x)+

x4n+1

(4n+1)!

)
,

x2 f3 (x) � −(4n+2)(4n+3) f3 (x)+ (4n+2)(4n+3)
x4n+1

(4n+1)!

and

f3 (x) � x4n+1

(4n+1)!
· (4n+2)(4n+3)
(4n+2) (4n+3)+ x2 . (17)

According to (16) and (17), we have

x4n+1

(4n+1)!
· 4n(4n+1)
4n(4n+1)+ x2 � f3 (x) � x4n+1

(4n+1)!
· (4n+2)(4n+3)
(4n+2) (4n+3)+ x2 .

Similarly, we can get

x4n+2

(4n+2)!
· (4n+1)(4n+2)
(4n+1)(4n+2)+ x2 � f4 (x) � x4n+2

(4n+2)!
· (4n+3)(4n+4)
(4n+3)(4n+4)+ x2 ,

x4n+3

(4n+3)!
· (4n+2)(4n+3)
(4n+2)(4n+3)+ x2 � f5 (x) � x4n+3

(4n+3)!
· (4n+4)(4n+5)
(4n+4)(4n+5)+ x2 ,

x4n+4

(4n+4)!
· (4n+3)(4n+4)
(4n+3)(4n+4)+ x2 � f6 (x) � x4n+4

(4n+4)!
· (4n+5)(4n+6)
(4n+5)(4n+6)+ x2 ,

so the proof of Theorem 4 is completed. �
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