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A SURVEY OF SOME BOUNDS FOR GAUSS’ HYPERGEOMETRIC

FUNCTION AND RELATED BIVARIATE MEANS

ROGER W. BARNARD, KENDALL C. RICHARDS AND HILARI C. TIEDEMAN

(Communicated by E. Neuman)

Abstract. We give an expository summary of a collection of inequalities involving Gauss’ hyper-
geometric function 2F1 and the closely-related power mean (and certain other bivariate means).
Two conjectures involving simultaneous sharp bounds for the hypergeometric function are in-
cluded. Sharpness for the corresponding zero-balanced case is observed.

1. Introduction

This investigation begins with the fundamental concept of a homogeneous bivari-
ate mean which is defined here as a continuous function M : R+×R+ → R satisfying
min(x,y) � M (x,y) � max(x,y) and M (λx,λy) = λM (x,y) for all x,y,λ > 0. The
arithmetic mean A (x,y) ≡ x+y

2 and the geometric mean G (x,y) ≡ √
xy are special

cases of the family of power means (or Hölder means) given by

Aλ (x,y) ≡
(

xλ + yλ

2

)1/λ

(λ �= 0),

with A0(x,y) ≡√
xy . A standard argument can be used to show that the function λ �→

Aλ is increasing. From this follows one of many proofs (see [9]) of the well-known
arithmetic mean - geometric mean inequality: G = A0 � A1 = A where each is eval-
uated at (x,y) . Other interesting (but perhaps less familiar) means include the logarith-

mic mean L (x,y)≡ (x−y)/(lnx− lny) and the identric mean I (x,y)≡ 1
e

(
xx

yy

)1/(x−y)

for x �= y (with L (x,x) ≡ x ≡ I (x,x) preserving continuity). The previous inequality
has been refined (e.g., see [9]) by these two means to yield

G � L � I � A . (1)

(It is worth noting here that (1) has an elegant generalization given by Páles’ Compari-
son Theorem [14] below.) The elliptical arc length function

E(x,y) ≡
∫ π/2

0

√
x2 cos2 t + y2 sin2 t dt
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gives rise to the mean Ê(x,y) ≡ 2
π E(x,y) . The important complete elliptic integral of

the second kind E (r) ≡ E(1,
√

1− r2) is a much-studied function arising in mathemat-
ical physics (e.g., see [16]) and can be expressed in terms of the Gaussian hypergeo-
metric function 2F1 defined by

2F1(α,β ;γ;z) ≡
∞

∑
n=0

(α)n(β )n

(γ)nn!
zn, |z| < 1,

(α)n ≡ Γ(α+n)/Γ(α) = α(α+1) · · · (α+n−1) for n∈ N , (α)0 ≡ 1. The represen-
tation of E in terms of 2F1 is

E (r) ≡
∫ π/2

0
(1− r2 sin2 θ )1/2dθ =

π
2 2F1(−1/2,1/2;1;r2)

and can be established by way of Euler’s integral representation for 2F1 :

2F1(α,β ;γ;z) =
Γ(γ)

Γ(γ−β )Γ(β )

∫ 1

0
tβ−1(1− t)γ−β−1(1− tz)−α dt

for γ > β > 0 and z ∈ C\[1,∞) (see [16]). By the earlier discussion involving Ê , it
follows that 2F1(−1/2,1/2;1;1− r2) = Ê(1,r). Given this representation, it is natural
to seek relationships between 2F1 and other means.

2. Bounds for the Bivariate Hypergeometric Mean

A unifying cornerstone for much of the work in this pursuit is due to B.C. Carl-
son. In a series of seminal papers in the 1960’s (see [10] and the references therein),
Carlson et al. investigated the general hypergeometric mean value which is defined as
an extension of Euler’s integral representation. A specific case of the hypergeometric
mean of interest here is given by

Ha(x,y) ≡ x · [2F1(−a,1/2;1;1− y/x)]
1
a .

Thus, Ha(xp,yp)1/p = x · [2F1(−a,1/2;1;1−yp/xp)]
1
ap with a = 1/2 and p = 2 again

reveals the mean H1/2(1,r2)1/2 = 2F1(−1/2,1/2;1;1− r2) . Carlson’s work in this
area is widely cited and his insights in relating 2F1 to the power mean motivated several
conjectures and subsequent discoveries, some of which are highlighted below.

M. Vuorinen [19] conjectured that H1/2(1,r)= 2F1(−1/2,1/2;1;1−r)2 is sharply
bounded below by the power mean of order 3/4. This was proven by the authors in [5].
Later, H. Alzer et al. [3] found a sharp upper bound. Together, these results become

THEOREM A. [3, 5] For all r ∈ (0,1) ,

Aλ (1,r) � 2F1(−1/2,1/2;1;1− r)2 � Aμ(1,r),

if λ � 3/4 (sharp1) and μ � ln(
√

2)/ ln(π/2) (sharp).

(Remark: Precursors of the inequalities in Theorem A date back to astronomers
like Kepler who sought estimates of elliptical arc length. Ramanujan’s interest in E

1(i.e., best possible)
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led him to construct his own estimates (see [1]). Theorem A provides the best lower
and upper power mean approximations to E . Other computable bounds for the com-
plete elliptic integrals have been discovered by H. Kazi and E. Neuman in [12].) The
arithmetic-geometric mean due to Gauss (see [6, 16]) is given by

A G (1,r) =
1

2F1(1/2,1/2;1;1− r2)
.

It is known that

A0(x,y) � A G (x,y) � A1/2(x,y) for all x,y > 0 . (2)

Vamanamurthy and Vuorinen [18] showed that the order 1/2 is sharp in (2). It should
also be noted that the complete elliptical integral of the first kind corresponds to this
case of the hypergeometric function:

K (r) ≡
∫ π/2

0
(1− r2 sin2 θ )−1/2dθ =

π
2 2F1(1/2,1/2;1;r2),

Sharp bounds for K follow directly from (2) which can be restated as

Aλ (1,r) � 1

2F1(1/2,1/2;1;1− r2)
� Aμ(1,r), (3)

where λ � 0 (sharp), μ � 1/2 (sharp) and r ∈ (0,1) . Related known inequalities
involving the logarithmic mean include

L (1,r) � 1

2F1(1/2,1/2;1;1− r2)
� L3/2(1,r), (4)

where Lp(x,y)≡ L (xp,yp)1/p . The first inequality in (4) is due to Carlson and Vuori-
nen [11] and the second is due to Borwein and Borwein [7]. Kazi and Neuman (see
Theorem 4.1 in [12]) provided the following improvement of (4) with

L (A (1,r),G (1,r)) � 1

2F1(1/2,1/2;1;1− r2)
� L3/2(A (1,r),G (1,r)).

Results of the type in (3) and in Theorem A motivate a search for generalizations ap-
plicable when (±a,b;c; ·) replaces (±1/2,1/2;1; ·) . Guidance in this direction is
provided by numerical evidence and by Carlson’s [10] work on the hypergeometric
mean and weighted power means given by

Aλ (ω ;x,y) ≡
(
ω xλ +(1−ω)yλ

)1/λ
(λ �= 0)

A0(ω ;x,y) ≡ xωy1−ω , with weights ω ,1−ω > 0. (Note: Throughout the remaining
discussion, the equally-weightedmean is implied if the weights are omitted: Aλ (x,y) =
Aλ (1/2;x,y) .) Carlson [10] verified results that imply

Aa(1−b/c;1,1− r)� 2F1(−a,b;c;r)1/a, ∀r ∈ (0,1) (5)
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if 1 � a and c > b > 0. Carlson [10] also showed that the inequality in (5) reverses if
a > 1. Notice that, when a = 1/2 = b = c/2, the sharp power mean order is 3/4 rather
than a . This naturally inspires a quest to replace the order of the power mean a in (5)
by the best possible value. Efforts to find sharp power mean orders and an intrinsic
generalization of Theorem A resulted in the following:

THEOREM B. [15] Suppose 1 � a, b > 0 and c > max(−a,b) . If c � max(1−
2a,2b) , then

Aλ (1−b/c;1,1− r) � 2F1(−a,b;c;r)1/a, ∀r ∈ (0,1)

if and only if λ � a+c
1+c . If c � min(1−2a,2b) , then

Aμ(1−b/c;1,1− r)� 2F1(−a,b;c;r)1/a, ∀r ∈ (0,1)

if and only if μ � a+c
1+c .

Borwein et al. [8] studied hypergeometric analogues of A G that take the form
1/2F1(1/2− s,1/2+ s;1;1− rp)q. Simultaneous sharp bounds extending (3) for these
analogues of A G are given by (see [4, 10])

Aλ (α;1,r) � 1

2F1(α,1−α;1;1− rp)
1
α p

� Aμ(α;1,r), ∀r ∈ (0,1)

if λ � 0 (sharp) and μ � p(1−α)/2 (sharp) where 0 < α � 1/2, p > 0.
The next corollary highlights the corresponding simultaneous sharp bounds for the

zero-balanced hypergeometric function of the form 2F1(a,b;a+ b; ·) (also studied in
[2, 4, 7, 8]). The first inequality in (6) follows from Theorem B. The second inequality
in (6) follows directly from the work of Carlson on the R-hypergeometric functions (see
(2.15) and (3.4) in [10]). Here, we verify the sharpness of the second inequality and
note that the upper bound can also be obtained using elementary series techniques (we

prove the stronger result that r �→ A0

(
b

a+b ;1, 1
(1−r)a

)
− 2F1(a,b;a+b;r) is absolutely

monotonic under the stated conditions).

COROLLARY 1. (see also [4, 10]) Suppose 1 + a � b � a > 0 . Then for all
r ∈ (0,1)

Aρ

(
a

a+b
;1,

1
(1− r)a

)
� 2F1(a,b;a+b;r) � Aσ

(
a

a+b
;1,

1
(1− r)a

)
(6)

if ρ � −b
a(1+a+b) (sharp) and σ � 0 (sharp).

Proof. The first inequality in (6) follows directly from Theorem B by replacing a
by −a and c by a+b . Hence

Aμ(α;1,1− r)−a � 2F1(a,b;a+b;r), for all r ∈ (0,1)

if and only if μ � b/(a+ b+ 1) . Since Aμ(ω ;1,1− r)−a = A−μ/a(ω ;1,(1− r)−a) ,
we obtain the first inequality in (6) for ρ = −μ/a . An elementary proof of the second
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inequality in (6) is as follows. By the monotonicity of σ �→Aσ , it suffices to prove it for
the simple case that σ = 0. It follows by induction that

(
ab

a+b

)
n
> (a)n(b)n

(a+b)n
for all n−1∈

N . Thus A0

(
b

a+b ;1, 1
(1−r)a

)
= (1− r)−ab/(a+b) =∑∞

n=0

(
ab

a+b

)
n

rn
n! > ∑∞

n=0
(a)n(b)n
n!(a+b)n

rn =

2F1(a,b;a+b;r), for all r∈ (0,1). Sharpness follows from the observation that for σ̂ <
0, Aσ̂ (ω ;1,(1−r)−a) has a positive finite limit as r→ 1− while 2F1(a,b;a+b;r)→∞
as r → 1− (see [16], p. 111). Thus, for σ̂ < 0 and r sufficiently close to and less than
1, it follows that

2F1(a,b;a+b;r) > Aσ̂

(
b

a+b
;1,

1
(1− r)a

)
.

That is, σ � 0 is sharp for (6). �

3. Conjectures and Related Results

Note that either lower or upper bounds are guaranteed by Theorem B under essen-
tially complementary conditions on the parameters. It is also desirable to find simulta-
neous upper and lower bounds of the form

Aλ (1−b/c;1,1− r)� 2F1(−a,b;c;r)1/a � Aμ(1−b/c;1,1− r), (7)

Using Alzer’s [3] approach to the upper bound in Theorem A and numerical evidence,
we conjecture the following companion to Theorem B:

CONJECTURE I. Let 1 � a, c > b > 0 and c > b−a.
Suppose c � max(1−2a,2b) . Then

2F1(−a,b;c;r)1/a � Aμ(1−b/c;1,1− r), for all r ∈ (0,1) (8)

if μ � a ln(1−b/c)

ln
(
Γ(c+a−b)Γ(c)
Γ(c−b)Γ(c+a)

) (sharp). Suppose c � min(1−2a,2b) . Then the inequality in (8)

reverses if μ � a ln(1−b/c)

ln
(
Γ(c+a−b)Γ(c)
Γ(c−b)Γ(c+a)

) (sharp).

By the work of Alzer [3] in verifying the second inequality in Theorem A, the
conjecture holds when a = b = c/2 = 1/2. It is also interesting to note that, with a

replaced by −a , the sharp value of μc ≡ −a ln(1−b/c)

ln
(
Γ(c−a−b)Γ(c)
Γ(c−b)Γ(c−a)

) in Conjecture I has the property

that μc → 0 as c approaches a+b from above. Thus Corollary 1 provides an example
of (7) and a verification of Conjecture I in the zero-balanced case.

CONJECTURE II. If a > 1 and b > 0 , then

Aλ (1/2;1,1− r) � 2F1(−a,b;2b;r)1/a, for all r ∈ (0,1)

if λ � a ln(2)

ln
(
Γ(b)Γ(2b+a)
Γ(2b)Γ(b+a)

) (sharp).

As evidence for these conjectures leading to simultaneous bounds of the type in
(7), we have the following two propositions (discussed in [17] and presented here for
the reader’s convenience) which address the above conjectures in the case that b = 1.
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PROPOSITION 1. Suppose a ∈ (−1,1) . If a > −1/2 , then for all r ∈ (0,1)

Aλ (1/2;1,1− r) � 2F1(−a,1;2;r)1/a � Aμ(1/2;1,1− r) (9)

if λ � a+2
3 (sharp) and μ � a ln(2)

ln(1+a) (sharp). If a < −1/2 , then (9) holds for all

r ∈ (0,1) if λ � a ln(2)
ln (1+a) (sharp) and μ � a+2

3 (sharp).

PROPOSITION 2. If a > 1 , then

Aλ (1/2;1,1− r) � 2F1(−a,1;2;r)1/a � Aμ(1/2;1,1− r) ∀r ∈ (0,1)

if λ � a ln(2)
ln (1+a) (sharp) and μ � a+2

3 (sharp).

Proofs for both of these propositions can be obtained by applying Páles’ Compar-
ison Theorem [14] discussed below. This theorem involves the Stolarsky mean which
is defined for distinct x,y > 0 and ab(a−b) �= 0 as

Da,b(x,y) ≡
(

b(xa− ya)
a(xb− yb)

)1/(a−b)

and continuously extended when ab(a−b) = 0 or x = y . (Interestingly, the Stolarsky
mean has sharp bounds in terms of the identric mean as shown in [13].)

PÁLES’ COMPARISON THEOREM. [14] The inequality D(a,b)(x,y)� D(c,d)(x,y)
holds true for all x,y > 0 if and only if a+b � c+d and

L (a,b) � L (c,d) if 0 � min(a, b, c, d)
|a|− |b|
a−b

� |c|− |d|
c−d

if min(a, b, c, d) < 0 < max(a, b, c, d)

−L (−a,−b) � −L (−c,−d) if max(a, b, c, d) � 0.

The connection between the work by Páles and the hypergeometric function be-
comes clear by noting that

2F1(−a,1;2;r)1/a =

(
∞

∑
n=0

(1−σ)n(1)n

(2)nn!
rn

)1/(σ−1)

(substituting σ −1 for a)

=
(

1− (1− r)σ

σr

)1/(σ−1)

= D1+a,1(1,1− r)

We will also use the following basic lemma:

LEMMA. Suppose f (σ) ≡ σ+1
3 − ln (2)(σ−1)

ln (σ) when σ �= 1 and f (1) ≡ 2
3 − ln(2) .

Then f (σ) > 0 ∀σ ∈ (0,1/2)∪ (2,∞) and f (σ) < 0 ∀σ ∈ (1/2,2) .

Proof. Let f (σ) = σ−1
3 ln(σ)g(σ) where g(σ) =

[(σ+1
σ−1

)
ln(σ)−3ln2

]
. It can be

shown that g′(σ) = 1
σ(σ−1)2 h(σ) where h(σ) =σ2−1−2σ ln(σ) , which is increasing
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on (0,∞) with h(1) = 0. Thus, g′(σ) < 0 on (0,1) and g′(σ) > 0 on (1,∞) . Thus, g
is decreasing on (0,1) and increasing on (1,∞) with g(1/2) = 0 = g(2) and g(1) < 0.

Therefore, f (σ) = σ+1
3 − ln (2)(σ−1)

ln (σ) > 0 on (0,1/2)∪(2,∞) and f (σ) < 0 on (1/2,2) ,
which proves the lemma. �

Proof of Proposition 1. First suppose 1 > a > −1/2. The left-hand side of (9) is
a special case of Theorem B. Páles’ Comparison Theorem implies

2F1(−a,1;2;r)1/a = Da+1,1(1,1− r) � D2μ,μ(1,1− r) = Aμ(1,1− r)

if and only if (i) a+ 2 � 3μ and (ii) L (a+ 1,1) � L (2μ ,μ) . Let σ = a+ 1. Sim-

plifying we find that (i) and (ii) hold if and only if μ � max
(
σ+1

3 , (σ−1) ln(2)
ln (σ)

)
. Since

1 > a >−1/2, we have 2 > σ > 1/2 and hence (σ−1) ln(2)
ln (σ) > σ+1

3 by the above lemma.

Therefore, the right-hand side inequality in (9) holds when μ � a ln(2)
ln (a+1) .

Now suppose−1 < a < −1/2. Then 0 < σ < 1/2 and hence the left-hand side in

(9) holds if and only if λ � a ln(2)
ln (a+1) = min

(
σ+1

3 ,
(σ−1) ln(2)

ln(σ)

)
, by the preceding lemma.

The right-hand side of (9) in this case is again a special case of Theorem B. �

The proof of Proposition 2 follows in a similar manner.
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