

A NOTE ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE

Alina Alb Lupaş and Adriana Cătaş

(Communicated by A. Čižmešija)

Abstract. By means of the Ruscheweyh derivative we define a new class $\mathcal{BR}_n(m,\mu,\alpha)$ involving functions $f \in \mathcal{A}_n$. Parallel results, for some related classes including the class of starlike and convex functions respectively, are also obtained.

1. Introduction and definitions

Let \mathcal{A}_n denote the class of functions of the form

$$f(z) = z + \sum_{j=n+1}^{\infty} a_j z^j$$
 (1.1)

which are analytic in the open unit disc $U = \{z : |z| < 1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in $U, n \in \mathbb{N} = \{1, 2, ...\}$.

Let \mathcal{S}_n denote the subclass of functions that are univalent in U.

By $\mathscr{S}_n^*(\alpha)$ we denote a subclass of \mathscr{A}_n consisting of starlike univalent functions of order α , $0 \le \alpha < 1$ which satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \alpha, \quad z \in U. \tag{1.2}$$

Further, a function f belonging to \mathscr{S}_n is said to be convex of order α in U, if and only if

$$\operatorname{Re}\left(\frac{zf''(z)}{f'(z)} + 1\right) > \alpha, \quad z \in U$$
(1.3)

for some α , $(0 \le \alpha < 1)$. We denote by $\mathcal{K}_n(\alpha)$ the class of functions in \mathcal{S}_n which are convex of order α in U and denote by $\mathcal{R}_n(\alpha)$ the class of functions in \mathcal{A}_n which satisfy

$$\operatorname{Re} f'(z) > \alpha, \quad z \in U. \tag{1.4}$$

It is well known that $\mathscr{K}_n(\alpha) \subset \mathscr{S}_n^*(\alpha) \subset \mathscr{S}_n$.

Mathematics subject classification (2010): 30C45.

Keywords and phrases: analytic function, starlike function, convex function, Ruscheweyh derivative.

If f and g are analytic functions in U, we say that f is subordinate to g, written $f \prec g$, if there is a function w analytic in U, with w(0) = 0, |w(z)| < 1, for all $z \in U$ such that f(z) = g(w(z)) for all $z \in U$. If g is univalent, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

In [3] Ruscheweyh has defined the operator $D^m: \mathcal{A}_n \to \mathcal{A}_n, n \in \mathbb{N}, m \in \mathbb{N} \cup \{0\},$

$$D^{0} f(z) = f(z)$$

$$D^{1} f(z) = zf'(z)$$

$$(m+1)D^{m+1} f(z) = z[D^{m} f(z)]' + mD^{m} f(z), \quad z \in U.$$

We note that if $f \in \mathcal{A}_n$, then

$$D^{m} f(z) = z + \sum_{i=n+1}^{\infty} C_{m+j-1}^{m} a_{j} z^{j}, \ z \in U.$$

To prove our main theorem we shall need the following lemma.

LEMMA 1.1. [2] Let p be analytic in U with p(0) = 1 and suppose that

$$\operatorname{Re}\left(1 + \frac{zp'(z)}{p(z)}\right) > \frac{3\alpha - 1}{2\alpha}, \quad z \in U. \tag{1.5}$$

Then $\operatorname{Re} p(z) > \alpha$ for $z \in U$ and $1/2 \leq \alpha < 1$.

2. Main results

DEFINITION 2.1. We say that a function $f \in \mathcal{A}_n$ is in the class $\mathscr{BR}_n(m,\mu,\alpha)$, $n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\}, \ \mu \geqslant 0, \ \alpha \in [0,1)$ if

$$\left| \frac{D^{m+1}f(z)}{z} \left(\frac{z}{D^m f(z)} \right)^{\mu} - 1 \right| < 1 - \alpha \qquad z \in U.$$
 (2.1)

REMARK 2.2. The family $\mathscr{BR}_n(m,\mu,\alpha)$ is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, $\mathscr{BR}_n(0,1,\alpha) \equiv \mathscr{S}_n^*(\alpha)$, $\mathscr{BR}_n(1,1,\alpha) \equiv \mathscr{K}_n(\alpha)$ and $\mathscr{BR}_n(0,0,\alpha) \equiv \mathscr{R}_n(\alpha)$. Another interesting subclass is the special case $\mathscr{BR}_1(0,2,\alpha) \equiv \mathscr{B}(\alpha)$ which has been introduced by Frasin and Darus [1] and also the class $\mathscr{BR}_1(0,\mu,\alpha) \equiv \mathscr{B}(\mu,\alpha)$ which has been introduced by Frasin and Jahangiri [2].

In this note we provide a sufficient condition for functions to be in the class $\mathcal{BR}_n(m,\mu,\alpha)$. Consequently, as a special case, we show that convex functions of order 1/2 are also members of the above defined family.

Theorem 2.3. For the function $f \in \mathscr{A}_n, \ n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\}, \ \mu \geqslant 0, \ 1/2 \leqslant \alpha < 1$ if

$$(m+2)\frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m+1)\frac{D^{m+1}f(z)}{D^{m}f(z)} + \mu(m+1) - (m+2) < 1 - \beta z, \ z \in U$$
(2.2)

where

$$\beta = \frac{3\alpha - 1}{2\alpha}$$

then $f \in \mathcal{BR}_n(m,\mu,\alpha)$.

Proof. If we consider

$$p(z) = \frac{D^{m+1}f(z)}{z} \left(\frac{z}{D^m f(z)}\right)^{\mu}$$
 (2.3)

then p(z) is analytic in U with p(0) = 1. A simple differentiation yields

$$\frac{zp'(z)}{p(z)} = (m+2)\frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m+1)\frac{D^{m+1}f(z)}{D^mf(z)} + \mu(m+1) - (m+2). \tag{2.4}$$

Using (2.2) we get

$$\operatorname{Re}\left(1+\frac{zp'(z)}{p(z)}\right) > \frac{3\alpha-1}{2\alpha}.$$

Thus, from Lemma 1.1 we deduce that

Re
$$\left\{ \frac{D^{m+1}f(z)}{z} \left(\frac{z}{D^m f(z)} \right)^{\mu} \right\} > \alpha.$$

Therefore, $f \in \mathcal{BR}_n(m,\mu,\alpha)$, by Definition 2.1.

As a consequence of the above theorem we have the following interesting corollaries.

COROLLARY 2.4. If $f \in \mathcal{A}_n$ and

$$\operatorname{Re}\left\{\frac{6zf'(z) + 6z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)} - \frac{zf''(z)}{f'(z)}\right\} > \frac{3}{2}, \quad z \in U$$
 (2.5)

then

Re
$$\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \frac{3}{2}, \quad z \in U.$$
 (2.6)

That is, f is convex of order $\frac{3}{2}$.

COROLLARY 2.5. If $f \in \mathcal{A}_n$ and

$$\operatorname{Re}\left\{\frac{4zf'(z) + 5z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)}\right\} > \frac{1}{2}, \quad z \in U$$
(2.7)

then

Re
$$\left\{ f'(z) + \frac{1}{2}zf''(z) \right\} > \frac{1}{2}, \quad z \in U.$$
 (2.8)

COROLLARY 2.6. If $f \in \mathcal{A}_n$ and

Re
$$\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > \frac{1}{2}, \quad z \in U$$
 (2.9)

then

$$\operatorname{Re} f'(z) > \frac{1}{2}, \quad z \in U.$$
 (2.10)

In another words, if the function f is convex of order $\frac{1}{2}$ then $f \in \mathcal{BR}_n(0,0,\frac{1}{2}) \equiv \mathcal{R}_n(\frac{1}{2})$.

COROLLARY 2.7. If $f \in \mathcal{A}_n$ and

Re
$$\left\{ \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right\} > -\frac{3}{2}, \quad z \in U$$
 (2.11)

then f is starlike of order $\frac{1}{2}$ hence $f \in \mathcal{BR}_n(0,1,\frac{1}{2})$.

REFERENCES

- B.A. FRASIN AND M. DARUS, On certain analytic univalent functions, Internat. J. Math. and Math. Sci., 25, 5 (2001), 305–310.
- [2] B.A. FRASIN AND JAY M. JAHANGIRI, A new and comprehensive class of analytic functions, Analele Universității din Oradea, Tom XV, (2008), 61–64.
- [3] St. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc., 49 (1975), 109–115.

(Received September 2, 2008)

Alina Alb Lupaş Department of Mathematics and Computer Science University of Oradea

1 Universitatii Street 410087 Oradea Romania

e-mail: dalb@uoradea.ro

Adriana Cătaș

Department of Mathematics and Computer Science

University of Oradea 1 Universitatii Street

410087 Oradea

Romania

 $e ext{-}mail:$ acatas@uoradea.ro