A NOTE ON A SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY RUSCHEWEYH DERIVATIVE

ALINA ALB LUPAŞ AND ADRIANA CĂTAŞ

(Communicated by A. Ćižmešija)

Abstract. By means of the Ruscheweyh derivative we define a new class $\mathcal{BR}_{n}(m, \mu, \alpha)$ involving functions $f \in \mathcal{A}_n$. Parallel results, for some related classes including the class of starlike and convex functions respectively, are also obtained.

1. Introduction and definitions

Let \mathcal{A}_n denote the class of functions of the form

$$f(z) = z + \sum_{j=n+1}^{\infty} a_j z^j$$

which are analytic in the open unit disc $U = \{z : |z| < 1\}$ and $\mathcal{H}(U)$ the space of holomorphic functions in U, $n \in \mathbb{N} = \{1, 2, \ldots\}$.

Let \mathcal{S}_n denote the subclass of functions that are univalent in U.

By $\mathcal{S}_n^*(\alpha)$ we denote a subclass of \mathcal{A}_n consisting of starlike univalent functions of order α, $0 \leq \alpha < 1$ which satisfies

$$\text{Re} \left(\frac{zf'(z)}{f(z)} \right) > \alpha, \quad z \in U. \quad (1.2)$$

Further, a function f belonging to \mathcal{S}_n is said to be convex of order α in U, if and only if

$$\text{Re} \left(\frac{zf''(z)}{f'(z)} + 1 \right) > \alpha, \quad z \in U \quad (1.3)$$

for some α, $0 \leq \alpha < 1$. We denote by $\mathcal{K}_n(\alpha)$ the class of functions in \mathcal{S}_n which are convex of order α in U and denote by $\mathcal{R}_n(\alpha)$ the class of functions in \mathcal{A}_n which satisfy

$$\text{Re} f'(z) > \alpha, \quad z \in U. \quad (1.4)$$

It is well known that $\mathcal{K}_n(\alpha) \subset \mathcal{S}_n^*(\alpha) \subset \mathcal{S}_n$.

Keywords and phrases: analytic function, starlike function, convex function, Ruscheweyh derivative.
If \(f \) and \(g \) are analytic functions in \(U \), we say that \(f \) is subordinate to \(g \), written \(f \prec g \), if there is a function \(w \) analytic in \(U \), with \(w(0) = 0 \), \(|w(z)| < 1 \), for all \(z \in U \) such that \(f(z) = g(w(z)) \) for all \(z \in U \). If \(g \) is univalent, then \(f \prec g \) if and only if \(f(0) = g(0) \) and \(f(U) \subseteq g(U) \).

In [3] Ruscheweyh has defined the operator \(D^m : \mathcal{A}_n \to \mathcal{A}_n, \ n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\}, \)

\[
D^0 f(z) = f(z) \\
D^1 f(z) = zf'(z) \\
(m + 1)D^{m+1} f(z) = z[D^m f(z)]' + mD^m f(z), \quad z \in U.
\]

We note that if \(f \in \mathcal{A}_n \), then

\[
D^m f(z) = z + \sum_{j=n+1}^{\infty} C^m_{m+j-1} a_j z^j, \quad z \in U.
\]

To prove our main theorem we shall need the following lemma.

Lemma 1.1. [2] Let \(p \) be analytic in \(U \) with \(p(0) = 1 \) and suppose that

\[
\Re \left(1 + \frac{zp'(z)}{p(z)} \right) > \frac{3\alpha - 1}{2\alpha}, \quad z \in U. \tag{1.5}
\]

Then \(\Re p(z) > \alpha \) for \(z \in U \) and \(1/2 \leq \alpha < 1 \).

2. Main results

Definition 2.1. We say that a function \(f \in \mathcal{A}_n \) is in the class \(\mathcal{BR}_n(m, \mu, \alpha) \), \(n \in \mathbb{N}, \ m \in \mathbb{N} \cup \{0\}, \ \mu \geq 0, \ \alpha \in [0, 1) \) if

\[
\left| \frac{D^{m+1} f(z)}{z} \left(\frac{z}{D^m f(z)} \right)^\mu - 1 \right| < 1 - \alpha, \quad z \in U. \tag{2.1}
\]

Remark 2.2. The family \(\mathcal{BR}_n(m, \mu, \alpha) \) is a new comprehensive class of analytic functions which includes various new classes of analytic univalent functions as well as some very well-known ones. For example, \(\mathcal{BR}_n(0,1,\alpha) \equiv \mathcal{I}_n^*(\alpha) \), \(\mathcal{BR}_n(1,1,\alpha) \equiv \mathcal{K}_n(\alpha) \) and \(\mathcal{BR}_n(0,0,\alpha) \equiv \mathcal{R}_n(\alpha) \). Another interesting subclass is the special case \(\mathcal{BR}_1(0,2,\alpha) \equiv \mathcal{B}(\alpha) \) which has been introduced by Frasin and Darus [1] and also the class \(\mathcal{BR}_1(0,\mu,\alpha) \equiv \mathcal{B}(\mu,\alpha) \) which has been introduced by Frasin and Jahangiri [2].

In this note we provide a sufficient condition for functions to be in the class \(\mathcal{BR}_n(m, \mu, \alpha) \). Consequently, as a special case, we show that convex functions of order \(1/2 \) are also members of the above defined family.
Theorem 2.3. For the function $f \in \mathcal{A}_n$, $n \in \mathbb{N}$, $m \in \mathbb{N} \cup \{0\}$, $\mu \geq 0$, $1/2 \leq \alpha < 1$ if

$$(m + 2) \frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m + 1) \frac{D^{m+1}f(z)}{D^mf(z)} + \mu(m + 1) - (m + 2) < 1 - \beta z, \quad z \in U$$

where

$$\beta = \frac{3\alpha - 1}{2\alpha}$$

then $f \in \mathcal{BR}_n(m, \mu, \alpha)$.

Proof. If we consider

$$p(z) = \frac{D^{m+1}f(z)}{z} \left(\frac{z}{D^mf(z)} \right)^\mu$$

then $p(z)$ is analytic in U with $p(0) = 1$. A simple differentiation yields

$$\frac{zp'(z)}{p(z)} = (m + 2) \frac{D^{m+2}f(z)}{D^{m+1}f(z)} - \mu(m + 1) \frac{D^{m+1}f(z)}{D^mf(z)} + \mu(m + 1) - (m + 2).$$

Using (2.2) we get

$$\Re \left(1 + \frac{zp'(z)}{p(z)} \right) > \frac{3\alpha - 1}{2\alpha}.$$

Thus, from Lemma 1.1 we deduce that

$$\Re \left\{ \frac{D^{m+1}f(z)}{z} \left(\frac{z}{D^mf(z)} \right)^\mu \right\} > \alpha.$$

Therefore, $f \in \mathcal{BR}_n(m, \mu, \alpha)$, by Definition 2.1.

As a consequence of the above theorem we have the following interesting corollaries.

Corollary 2.4. If $f \in \mathcal{A}_n$ and

$$\Re \left\{ \frac{6zf'(z) + 6z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)} - \frac{zf'''(z)}{f'(z)} \right\} > \frac{3}{2}, \quad z \in U$$

then

$$\Re \left\{ 1 + \frac{zf'''(z)}{f'(z)} \right\} > \frac{3}{2}, \quad z \in U.$$

That is, f is convex of order $\frac{3}{2}$.
COROLLARY 2.5. If \(f \in \mathcal{A}_n \) and

\[
\operatorname{Re} \left\{ \frac{4zf'(z) + 5z^2f''(z) + z^3f'''(z)}{2zf'(z) + z^2f''(z)} \right\} > \frac{1}{2}, \quad z \in U
\]

then

\[
\operatorname{Re} \left\{ f'(z) + \frac{1}{2}z^2f''(z) \right\} > \frac{1}{2}, \quad z \in U. \tag{2.7}
\]

COROLLARY 2.6. If \(f \in \mathcal{A}_n \) and

\[
\operatorname{Re} \left\{ 1 + \frac{zf''(z)}{f'(z)} \right\} > \frac{1}{2}, \quad z \in U
\]

then

\[
\operatorname{Re} f'(z) > \frac{1}{2}, \quad z \in U. \tag{2.9}
\]

In another words, if the function \(f \) is convex of order \(\frac{1}{2} \) then \(f \in \mathcal{BR}_n(0,0,\frac{1}{2}) \equiv \mathcal{R}_n\left(\frac{1}{2}\right) \).

COROLLARY 2.7. If \(f \in \mathcal{A}_n \) and

\[
\operatorname{Re} \left\{ \frac{zf''(z) - zf'(z)}{f'(z)} \right\} > -\frac{3}{2}, \quad z \in U
\]

then \(f \) is starlike of order \(\frac{1}{2} \) hence \(f \in \mathcal{BR}_n(0,1,\frac{1}{2}) \).

REFERENCES

(Received September 2, 2008)