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Abstract. We derive a corrected version of the weighted two-point quadrature formula, which
provides a better approximation accuracy than the ordinary two-point quadrature formulae. In the
corrected two-point formula the integral is approximated both with the values of the integrand in
nodes —x and x, and the values of its first derivative at the endpoints of the interval [—1,1]. The
error estimates under various regularity conditions for such formulae are established. As special
cases, the corrected two-point formulae of Gauss type are obtained. Also, corrected version of
weighted trapezoid, midpoint, two-point Maclaurin and two-point Newton-Cotes formulae are
considered.

1. Introduction

The ordinary two-point quadrature formula states that

[ o s anlr (-0 + 700 i

Here, x € [0,1], f is an integrable function defined on [—1,1], w: [—1,1] — R, isan
even integrable function called weight and

1
Aw:/O w(t)dr. (1.2)

Recently, A. Guessab and G. Schmeisser ([1]) studied a class of two-point formulae for
w = 1. Some of the most famous quadrature rules belong to this group: trapezoid for-
mula (x = 1), Newton-Cotes two-point formula (x = % ), Maclaurin two-point formula
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(x= % ) and midpoint formula (x = 0). These formulae are exact for all polynomials of
order < 1. Guessab and Schmeisser established the sharp estimates for the remainder

fx) = /f dt—— [ () + fa+b—x) (1.3)

under various regularity conditions. They proved the following theorem

THEOREM 1. Let f be a function defined on |a,b] and having there a piecewise
continuous n—th derivative. Let Q, be any monic polynomial of degree n such that

On(t) = (—1)"Qu(a+b—1). Define
(t—a)", fora<t<x
K,(t)=< 0,(), forx<t<a+b—x (1.4)
(t=Db)", fora+b—x<t<b.

Then, for the remainder in (1.3), we have

o (a0 V) M atb—a) + (1) @)
E(fix) = z::l{ v+1)! n! ] b—a
T G ( /K (1.5)

A number of error estimates for the identity (1.5) are obtained, and various exam-
ples of the general two-point quadrature formula are given in [2].

The goal of this paper is to establish two-point quadrature formulae with a higher
degree of exactness. Such formulae will contain the first derivative at the endpoints of
the interval, that is

[ et = A9 450+ B O - D] )

Here,

By (x) = % /0 2 - ()t (1.7)

Quadrature formulae of this form are usually called corrected.
The main tool used are the w— harmonic sequences of functions and related weighted
integral identity obtained in [3].

DEFINITION 1. Let w : [a,b] — R be an integrable weight function and wy :
[a,b] — R are differentiable functions for k € N. We say that {wy }ren is w— harmonic
sequence of functions if for k > 2, wi(t) = wi_1(¢t) and w)(t) = w(z), for 7 € [a,b].
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Given a subdivision 0 = {a = xp < x] < ... < x, = b} of the interval [a,b], let
us consider different w—harmonic sequences of functions {w i }rcn on each interval
[)ijl,xj'}, j€ {1,2,...,1’)1}. Define

win(t), t € [a,x1]

won(t), 1 € (x1,x2]
Wow(t,0) =9 . (1.8)

Wmn(t)a (S (xmfhb}a

Then for every function f : [a,b] — R such that f") is piecewise continuous on [a, b]
it is proved in [3] that

/ w0 = B [k (0)7 1) (1.9)
a k=1
m—1
+ 2 i) = wirnal)] S0 () —wi(@) 4D (@)

i=1
+ (_l)n/an,w(I,G)f(n)(t)dt.

Throughout the paper we use the convention 0° = 1.

2. General weighted corrected two-point formula

Let w: [—1,1] — R be an even weight function and x € [0,1]. Consider a subdi-
vision
oc={xp=—-1,x=—x,x=xx3=1} 2.1)
of the interval [—1,1]. Define

Cr(x) == — /O (v $)w(s)ds — Bulx)

1
Ca(x) = —é /O (x3—s3)w(s)ds—%BW(x)
Conl) 1=~ g [ 0F =S wlsds — 3. BuCr).
For k € N define
‘ k-2
wi(t) = (k_ll),/l(l—S)k_lw(S)dS B, (x) (t(l—:—IZ)' {k>2}
1 t 1 tk72
wa(t) = (k—l)'/o(t_s) W(S)dS+Clw(x)(k 2)! {k>2}
k—4 k=6
+C27W(x)(k )1 {k>4}+C37w(X)(k 6)1 10}
_ k-2
walt) = o [ 0= s B0 1y
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LEMMA 1. The sequences {wj;}ren are w—harmonic sequences of functions on
(=1,1), i.e. for j=1,2,3 we have

/

Wilt) = Wi (), Vre (~L,1), Vk>2
wi(t) =w(t), Vte(—1,1).

Proof. The proof follows by direct differentiation of functions w j; .
LEMMA 2. We have

wig(t) = (= 1)fwa(—1), Vi e[-1,-4],
w(t) = (= 1) war(—1), V1 € [—x,x].

Further, wix(—1) =0, Yk #2 and wip(—1) = —B,,(x).

Proof. Lett € [—1,—x]. Then —t € [x, 1] hence we obtain

_ 1 4+ 1\k—2
wak(—0) = gy [ (=9 o) = B G ey
— 4+ 1\k2
=(y:=—-s)= ﬁ/{ 1(_;+y)k‘1w(—y)dy—Bw(x)%l{,@z}

t k=2
N (k—l)![l(t_y)k w()dy = (=1)Bu(x )%1{k22}:(_1)kwlk(t)~

Now let ¢ € [—x,x]. We have

—t )
wa(—0) = gy [ = s+ o) sy
k-4 k6
+ Co(x )(k Y ey T Gulx )(k_6)!1{k>6}
_ t _4\k—2
=(y:=—s)= (k—ill)'/o (—t—i—y)kIW(—y)dy-i-Cl,w(x)%l{@z}
k—4 k=6
+ Co(x )Ekt Y Ligzay + C30(x )ﬁl{@ﬁ}: (— 1) war ().

For k # 2 we obviously have wy;(—1) = 0. On the other hand, for k£ = 2 we have

wia(=1) = /71@ — s)w(s)ds — By (x) = —By (x).

-1

Put Hy,,(x) == (= 1! wig(—x) — wor(—x)], for k € N.

LEMMA 3. The coefficients Hy,,(x) satisfy the following identities:

a) Hiyw(x) = wo(x) — wag(x)
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b) Hiw(x)=Ay
¢) Hipw(x) =0, for k=2,3,4
d) For k> 5 we have

Hi\(x) = 1 /l (x— ) Iw(s)ds+ Cuuw(@¥ 2 + Bu(x)(x — 1)
" (k—1)!Jo (k—2)!
Co (x)xk—4 C37W(x)xk_6 1
(k—4)! (k—6)l =6

Proof. In view of the definition of Hy,,(x) the identities follow directly from
Lemma 2.

Let f:[—1,1] — R be such that f"~1) exists on [—1,1] for some n > 1. We introduce
the following notation:

Tow(x) =0, for ne{l,2,3,4}

Ton() = 3 ) [0 (0 4 (D 0] or s
k=5

and
win(t) forre[—1,—x],
W (t,X) = { wan(t) fort € (—x,x],

w3, (f) fort € (x,1].

In the next theorem we establish the identity which plays the key role in this paper.
We call it the corrected weighted two-point quadrature formula.

THEOREM 2. Let f:[—1,1] — R be such that f") is piecewise continuous on
[—1,1], for some n € N. Then

[ w050 = Ay )+ 7]+ B [71(0) /(1)
F Ty () 4 (< 1) [ 11 Wy (1,2) ) ()it 2.2)

Proof. We apply the general (m+ 1)-point formula (1.9) to the special case m =3
with the subdivision (2.1). It follows

[ wrsa = 3 14 w0

1 k=1

+

Wi(—x) = wai(=x)] fE (=) + [war (x) — wae(x)] 471 (x)

DA+ 1 [ W0 0
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According to Lemma 2, the terms in front of f*~1(1) and f*~1(—1) vanish for
k # 2. On the other hand, the term in front of f’(1) and —f’(—1) equals B, (x). By
Lemmas 2 and 3 the terms in front of f*~1)(—x) and (—1)¥!1f*=1(x) equal Hy,, (x).
Now the assertion follows directly.

THEOREM 3. Assume (p,q) is a pair of conjugate exponents, that is 1 < p,q < oo,
1 +¢11 =1. Let f:[~1,1] — R be such that f") € L,[—1,1] for some n € N. Then we
ave
1
| [ 1w = Ayl (=0 + 7]~ But) [£1(1) = ()] = T 0]
< Co(n,x,9) - 1 F ", 2.3)
where
1
2[5 Pwaa (01 + [, Jwan ) 9] * 1 < g < oo
Cy(n,x,q) =
max{supte[—l,—x] |Wln(t)‘7suPte[O,x] (wan(2)[}, g = ee.

The inequality is the best possible for p =1 and sharp for 1 < p < co. The equality is
attained for every function f such that

f(t) =M-fu(t) + pp(2), (2.4)

where M € R, p,_ is an arbitrary polynomial of degree at most n— 1, and f, is the
function on |a,b] defined by

t _ n—1 1
0= [ s WG TE @
for 1 < p <oo, and
t _ n—1
£ilt) = /_ 1 % s2n Wi (&, 3)dE, (2.6)

for p=oo.

Proof. Applying Holder inequality to the integral (—1)" ! W (2,) ) (1) ar
we get

1
U7 [ Waeo0 0] < W) £ = o) £

so the inequality (2.3) follows. In order to prove the sharpness, we need to find function
f such that

1
[ ol 0 O 0] = Cutnr)- 177,

for 1 < p <o and 1 < g < oo such that 1%4—5 = 1. The function f, defined by (2.5)
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and (2.6) is n times differentiable, and its n—th derivative is a piecewise continuous
function. Further, we have

sgn Wi, (2, x), p=co

£ = 1
[Wow (£,%)| 7T sgn Wy, 00 (£,x), 1 < p < oo,

The function f : [a,b] — R defined by (2.4) is also n times differentiable and satisfies

£ € Lyfa,b] and (1) = Mf" (0).
Obviously, for p = and g =1 there is || f]|.. = [M|, so we have

‘/ Waw(t,X) f ) (1)dt| =

‘M/ Waw(t x)f( )(t)dt

_ ‘M / Wy (1,) 580 Wi (,%)dlt
—1

1
- |M| /;1 ‘W’Z:W(t?x”dt = CW(nvx7 l)||f(n)||°°'

On the other hand if 1 < p < e and 1 < g < eo we get

1

1 ’ 1
P P
1= 1| [ Wl an]” =t [ Wontenar]
. -1

which implies

’/ Wow(t,X)f (dt

’M/ Wit x)f( )(t)dt

_ 'M / W (1,6) [ Wi (1,00 | 71 5800 Wy (1,)lt

= M| [ W0 7T = 0] [ W 0,001 = G5 @)

so we proved the equality in (2.3). For p =1 and g = e we shall prove that

’/ W (1,) 1) (1)t < ?up Wy (1,)| - \f (1)|dt .7

is the best possible inequality. Suppose that W, (¢,x)| attains its supremum at the
point 7o € [—1,1] and let sup;c(_y 1) [Waw(f,x)| = [win(t0)|, for some k= 1,2,3. First,
let us assume that wy,(f9) > 0. For € small enough define fg("fl)(t) by

0, t<tp—¢

FIV ) = 4t e g — g,10)
17 t2107



244 SANJA KOvAC

if 1o € (xx_1,xt]. Then, for € small enough,

1 (n) ) 1 1 )
’ / Wi (1) £ dt’: / wkn(t)—dt’:— / Wwen (). 2.8)
-1 to—€ 3 € Jiy—¢
Now, relation (2.7) implies
1 o US|
[ ) < wialio) [ —dr=walo). 2.9)
€ Jig—e in—¢ €

Since
.1 fo
lim — Win (£)dt = wyy (10),
e—0 € Jip—¢

the statement follows.
If 19 = x;_1, then we define, for € > 0 small enough, the function fg("_l)(t) by

0, <1
fe("_l)(t) =< 2R e, +e]
I, t>2t+e,

and we argue as above.
For the case wy, (1)) < 0 the proof is similar.

THEOREM 4. Assume that for some even n, f" is a continuous function on
[—1,1] and Wy (-,x) has a constant sign on [—1,0]. Then there exists n € (—1,1)
such that the following identity holds:

[ O = An 70+ 7]+ B [ (1)~ (1)

+ T () + 2Hy1,0(x) - 0 (). (2.10)
Proof. According to the relation (2.2), we have to prove the identity

/ W (1,01 (1)t = 2Hys1.0(x) - P (1),
~1

Observe that W, ,,(-,x) is an even function. Since W, ,,(-,x) does not change the sign,
then by the mean value theorem there exists n € (—1,1) such that

/ 1 Wy (£,) ) (1)t = £ (17) - / : Wy (1,)dt
_1 1

=f"m)-2- /O1 Wi (£,)dt = 2 (1) (W g1 (x) — W3 41 (x))

=2H,1,(x) - f" ().
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REMARK 1. In particular, for n =4 we get

[ w0 = Ay 70+ )+ B [ (1)~ £1(1)] 4 2Hs )9 ().
(2.11)

Imposing x = 0,1 3 2,1 in (2.11) we get the corrected version of midpoint, Newton-
Cotes two-point formula, Maclaurin two-point formula and trapezoid formula, respec-
tively. By choosing x € [0, 1] such that B,,(x) = 0, the two-point quadrature formula
of Gauss type is obtained. These formulae are exact for all polynomials of order < 3.

REMARK 2. In particular, for n = 6, the following formula is obtained:

[ W) = AuF () + 1@ Bl [ (1)

-1
o+ Hs o (06) [ £ (=) + £9 ()] + Hol®) [ £9 (=) = 70 (0)]
+2H7,(x) - £ (). (2.12)

From the condition Hs,,(x) = 0, a unique solution x € [0,1] is obtained. For that x
formula (2.12) becomes the corrected version of Gauss type quadrature formula. That
formula is more accurate than the ordinary Gauss formula. In fact, it is exact for all
polynomials of order < 5.

3. Special cases

In this section we apply the results of the second section to the special cases of
weights: w(t) =1, w(t) = \/11_ and w(z) = V1 — 2, and we establish the corrected

2

version of quadrature formulae of Gauss type. All the computations were done using
the Wolfram Mathematica software.

3.1. The case w(r) =1

In this case we compute

LSS}

2

1 x X 1

Av=1 By =g -5, Cal)=75-xts,

» X2 1 O 2 1
C ) = —— _—— CW = —— —_—
2w =g+t T 50 G =" % " T80

4 2

X X 7
He (p)=_* % T
swl) = =30 15 7 360
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COROLLARY 1. Let f:[—1,1] — R be such that f") is piecewise continuous on
[—1,1], for some n € N. Then

1 x

[ 10 =50+ 10+ (-5 ) 0= )

+ Tp(x) + (=1)" [ 11 W (£,) £ (1)dt.

Proof. Apply Theorem 2 for the case w(t) = 1.
Let us consider special cases for x € [0,1]:

a) For x = 0 we get the corrected midpoint formula. In this case we compute
B,(0) = % and Hs,,(0) = —37@. If £ is continuous, then we have by Theorem 4

1
[ £ =270)+ ¢ [ (1) = 5 (-1)] = o5 9.

If £ € L,[~1,1], then Theorem 3 implies:

1 1
‘ [ 0 =2£0) = 2 [£/(1) = £1(=1)] = T )| < Cul,0,) LSl
In particular, for n = 2,3,4 there is T;,,,(x) =0, so we have
4
Cw(2,0,1) = —— ~0.25660011

93
1
C(2,0,00) = 3 ~0.33333333

1
Cu(3,0,1) = 75 ~0.08333333

1
Cy(3,0,00) = —— ~ 0.06415003
wl( ) Wi

7
C(4.0,1) = Jo5 ~ 0.03888888

1
Co(4,0,02) = 77 ~ 0.04166667.

REMARK 3. For n € {2,3,4} and g € {1,°} the same constants C,,(n,0,q) have
been obtained in [6].

b) For x = % the corrected Newton-Cotes two-point formula is established. In

this case we compute Bw(%) = é and H57w(%) = —%. If £ is continuous, then we
have by Theorem 4

0dr=1(=3)+7(5) 45 P -] - o .
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If £ € L,[~1,1], then Theorem 3 implies:

‘/11 fe)dt—f (‘%) ~f (%) S PO =D = T

1 n
<Culn 5.0l

In particular, for n =2,3,4 there is T;,,,(x) =0, so we have

Co(2, % 1) = 2—1@ ~0.13967541
1 1

CW(Z,?oo) = ?;0,11111111

Cu(3,3:1) = 557 ~ 0.04012345
1 2V2

Cy (3, ?w) = é ~ 0.03491885

C,(4, ? 1) = ? ~0.02139917

Cu4,3.%2) = g ~0.02006172.

REMARK 4. For n € {3,4} and g € {1,%} the same constants C,,(n, 1,¢) have
been obtained in [7].

¢) For x = % we get the corrected Maclaurin two-point formula. In this case we

compute By, (1) = 4 and Hs,, (1) = —577%. If f* is continuous, then we have by
Theorem 4

I 1 N 1., ) 7
[y =r (=5 )5 (3) + 34 0= 50] = 5557,
If £ € L,[—1,1], then Theorem 3 implies:
1

‘/11 floyde—f (%) —f (%) — 5 PO = D] = T

1 n
< Culn, 301
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In particular, for n =2,3,4 there is T;,,,(x) =0, so we have

C(2, % 1) = % ~0.06415002
1 1

C(2, ?w) = i_z ~0.08333333

Cu(3,53.1) = 5¢ ~0.01041666

C(3, %,oo) = % ~0.00801875
1 7

Culd,3.1) = 5oos ~ 0.00243055

Cy(4, %,oo) = ﬁ ~ 0.00260416.

REMARK 5. The constants CW(Z,%,ooL Cw(37%,oo) and CW(Z,%J) are better

than the constants obtained for Maclaurin two-point formula in [2], while the con-
stant C,, (4, %, 1) is weaker than the constant obtained for Maclaurin two-point formula.

The constants C,,(4, 1,%0) and C,(3,1,1) are the same as the appropriate constants
obtained for Maclaurin formula in [2].

d) For x =1 we get the corrected trapezoid formula. In this case we compute
B,(1)=—1% and Hs ,,(1) = 5. If f® is continuous, then we have by Theorem 4

[ =04 50 - LW - ]+ )

If £ € L,[—1,1], then Theorem 3 implies:

1

‘ / 11 F@ydt = f(=1) = f) + 3 [ () = £ (= D] = Tw®)| < Culn, L) [ £

In particular, for n = 2,3,4 there is T;,,,(x) = 0, so we have

4
Cw(2,1,1) = —— ~0.25660011

93

1
Cp(2,1,00) = 3 ~0.33333333

1
Cw(3,1,1) = T ~ 008333333

1
C,(3,1,00) = —— ~ 0.06415002
wl ) 9/3

2
Gl 1,1) = o= ~0.04444444

1
Cy(4,1,%) = 57~ 0.04166666.
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REMARK 6. For n € {2,3,4} and g € {1,c} the same constants C,,(n,1,q) have
been obtained in [5].

e) The condition Hs,,(x) =0 implies x =4/1— \/—— In this case we compute

By(x) = \/TOS*S, He,,(x) =0 and Hy,,(x) = 7\40—7 45 1f (9 is continuous, then we
have by Theorem 4

1 2v/30 2v/30
[ swar=r [ 122 ) e r (/1= 22
D08 iy — )] - L0 oy,

70875

which we call a corrected Gauss-Legendre two-point formula. If £ € Ly[—1,1], then
Theorem 3 implies:

1- 22 1 - 2=

2v/30 24/30
/f R 15 15

— [//(1) = f/(=1)] = Tuw(®)| < Culn,x,0) £ -

15

In particular, for n =2,3,4,5,6 there is 7, ,,(x) =0, so we have

P

2,x,1) ~ 0.06502076
(2,x,00) 2 0.08370696
(3,x,1) ~0.010903178
3,x,0) & 0.01090496
4,x,1) ~ 0.00209576
(4,x,00) 2 0.00241499
(5,x,1) ~ 0.00050307
5,x,00) &~ 0.00052394

90 — 144/30
w(6,x,1) = 0875 0.00018792

(6,x,00) 2~ 0.00025153.

w

8o

RIS 1 g

a 0

REMARK 7. The same constants for the corrected Gauss-Legendre formula have
been obtained in [4].



250 SANJA KOVAC

3.2. The case w(t) = —=

1-12

In this case we compute

2 2
T T TXx X X T
Ay ==, Bylx)=2——, wl¥) === +l-g,
> Bl =5 - Gl =—7-—3 3
3 2 5 2
mx nxt 1 om X X T 1
c Bt e 1e GvW=-505% 56 " To3 T 355
20(%) D8 o 1e W59 192 " 23
nx*  nx* 5m
Hs (x) = ——— + — — —.
500 =5 T 2r 3%

COROLLARY 2. Let f:[—1,1] = R be such that f") is piecewise continuous on
[—1,1], for some n € N. Then

L £ n n o nx , /
L S = S (=0 + )] + (———) [f ()= f(-1)]

1

Proof. Apply Theorem 2 for the case w(t) = \/1_

12"

Let us consider special cases for x € [0,1]: a) For x =0 we get the corrected mid-
point formula. In this case we compute B,,(0) = § and Hs,,(0) = —;T’Z. If ¥ is
continuous, then we have by Theorem 4

v 7
[ =)+

If £ € L,[~1,1], then Theorem 3 implies:

oo

bf@) TTr o / n
|/1 mdr—nf(o)—g[f(l)—f(—l)]—Tn,w(x) < Cu(n,0.9) £ -

In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have

(2,0, 1) ~ 0.51838540
C(2,0,00) = 1 — g ~ 0.60730091

2
Cu(3,0,1) = % ~ 5 ~0.17047685

Cys(3,0,00) & 0.12959635

5
C(4,0,1) = Fnz ~ 0.08181230
T

1
Cy(4,0,0) = TN 0.08523842.
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b) For x = 1 we established the corrected Newton-Cotes two-point formula. In

3
this case we compute B,,( 1) IZ and Hs w( )= glz?gff. If £ is continuous, then

we have by Theorem 4

/_11 {(i)tz‘” -3 (f (‘%) +f (%)) PP~ P~ e 9 ).

If £ € L,[—1,1], then Theorem 3 implies:

[ a5 (r(5)+1(3)) - B P -ren - tw

1 n
< Gl 3,01 F

In particular, for n = 2,3,4 there is T;,,,(x) =0, so we have

1
Cy (2,5, ) 7~ 0.34175596
1 1
Cy(2,=,0) = — ~0.30543261
( 3’ ~) 92
1
Cw (375,1) ~ 0.10260294
1
Cw (3,5, o) &2 0.08543899
1 2697
4,-,1)= —— ~0.054
C(,3, )= 15552 0.05433953
1 67 — 144
Cu(4,3,%°) = 95— ~ 0.05130147.
¢) For x = % we get the corrected Maclaurm two -point formula. In this case we
compute Bw(%) = {& and H57W(2) = —5e. If f® is continuous, then we have by

Theorem 4

a5 () () s s

If £ € L,[—1,1], then Theorem 3 implies:

‘/11 \/J%dt_ g (f (‘%) +f<%)> - % [F(1) = F(=1D)] = Ty()

1 n
< Culn, 3017
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In particular, for n =2,3,4 there is T;,,,(x) =0, so we have

Co(2,=,1) ~0.16414959

2
~

T
o0) = — 22 (.19634954
) ) 16
,1)~0.03957716
,00) ~ 0.04103739

T
=187~ 0.02454369

_8—-3m

\:ﬂ
=
|

2
=

~0.01978858.

3

NI»—‘I\)I»—I\)|»—[\)|»—N|>—N —_

d) or x =1 we get the co rrected trapezoid formula. In this case we compute
)=—% and Hs (1) = 5. If ¥ is continuous, then we have by Theorem 4

B,(1

/_11 J;(t_)tzdtzg(f(_l)+f(l))_%[f/(l)_f/(_l)]+6£4'f(4)(n)~

If £ € L,[~1,1], then Theorem 3 implies:

T

[ A= F U )+ 10 - D] = Tl < Gl L,

In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have
C,y(2,1,1) ~0.28081219
Cyy(2,1,00) = = ~0.39269908

“’00|=1

Co(3.1,1) =5~ ﬁ ~0.09132252

Co(3,1,00) ~ 0.07020304
Co(4,1,1) = 614 ~ 0.04908738

16 —3m
144

C(4,1,00) = ~0.04566126.

e) The condition Hs,,(x) =0 implies x = /1 — i In this case we compute

By(x) = (\/— 2) , Hew(x) =0 and Hy,,(x) = (3\4/‘;081(? If f( is continuous, then
we have by Theorem 4

0] n V6 V6
[lmdtzz =3 +r(yi-%
S22 ) ) B0 oy
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which we call a corrected Gauss-Chebyshev two-point formula. If f*) € L,[—1,1],
then Theorem 3 implies:

Lf) 7 V6 V6
‘/_1 B L e R R

RS PP R

g Cw(nrxa q)”f(n) HF

In particular, for n =2,3,4,5,6 there is 7, ,,(x) =0, so we have

Cy(2,x,1) ~ 0.10751580
2,x,00) & 0.13473273
3,x,1) ~ 0.01835509
3,x,00) &~ 0.01601592
4,x,1) ~0.00362114
4,x,00) & 0.00380096
5,x,1) ~ 0.00091496
5,x,00) =~ 0.00090528
(6.0.1) = (3v6—10)n
23040
w(6,x,00) 7 0.00045748.

NS A1 N NS

w

o

o

~ 0.00036154

9

3.3. The case w(t) = V1 —12

In this case we compute

T T K o mx 1w
A =Z B)= L T W X, .7
p BW=3-% Oul="-F+3-5
e ot w1 nxs X2 1 T
Cul) =+ - Tt Gl = - T -
2 (%) 7 6 et Wkt 1o T 1575 7es
4 2
X X T
Ho ()= 2> ™ T
swl) =~ 5+ I8 " 256

COROLLARY 3. Let f:[—1,1] = R be such that f") is piecewise continuous on
[—1,1], for some n € N. Then

[ 1OVT=Ra = S0+ s+ (-5 ) - )
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Proof. Apply Theorem 2 for the case w(t) = V1 —12.
Let us consider special cases for x € [0, 1]:

a) For x =0 we get the corrected midpoint formula. In this case we compute
B, (0) = %5 and Hs,,(0) = —5%. If ¥ is continuous, then we have by Theorem 4

[ HOVT = 0+ 2 [0~ 11 - L ),

32 128
If f) € L,[—1,1], then Theorem 3 implies:
! T T
[ SOV S0 - Z ) - -] < a0l

In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have

C,(2,0,1) ~ 0.16724762
(2,0, 00) ~ 0.23515856
Cu(3, o 1) ~0.05373032
C(3,0,00) ~ 0.04181190
Cp(4,0,1) = Ens ~ 0.02454369
C(4,0,00) ~ 0.02686516.

b) For x = % we established the corrected Newton-Cotes two-point formula. In

this case we compute B,,(}) = 3% and Hs,,,(}) = — 3% If f (4) is continuous, then
we have by Theorem 4

[rovi=ra=5(s(=5)+(5)) « s b-rien)
1077

107
31104 ()

If £ € L,[—1,1], then Theorem 3 implies:

‘/11 FO)V1—2di - % (f (-%) +f (%)) - % [F/(1) = £(=1)] = Ty(x)
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In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have

,1) ~ 0.07309774
,00) A 0.07202776
,1) ~0.01979336

,00) ~ 0.01827443

1077
)= 31104~ 0.01080730

_ 576-2657
25920

1

~2 0.00989668.

3

QW = W = W] = W] = W] = W] =

¢) For x =} we get B,,(}) =0 and Hs ,,(%) = %z, so the term associated with
the first derivative disappears. If f (4) is continuous, then we have by Theorem 4

[ v ra=" (f (‘%) +f<%>) R

which is well-known Chebyshev-Gauss two-point quadrature formula of the second
kind. If ) € L,[~1,1], then Theorem 3 implies:

‘/_llf(t)mw— g (f (—%) +f (%)) — Tp(x)

In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have

1 n

,1) ~0.05471452
,00) & 0.06296013
,1)~0.01171952
,00) 2 0.01367863

T
= — ~0.00409061
768

64— 157
~ 2880

—_—
~—

~ 0.00585976.

3

RO = RO = D = DN = DO = DN | =

3r

—32 and Hs,,(1) = 2&. If f (4) is continuous, then we have by Theorem 4

d) For x =1 we get the corrected trapezoid formula. In this case we compute
B, (1) =

1
[ OV T = (1) +50) = 22 () = £ (=1 + A )



256 SANJA KOVAC

If f) € L,[~1,1], then Theorem 3 implies:

‘/ POV = T (71 + F1) 4 22 [7(1) = /(- 1)] = To()

< CW(n» lvq)Hf(n)”P
In particular, for n =2,3,4 there is T;,,,(x) = 0, so we have

Cy(2,1,1) ~ 0.23778656
Cp(2,1,00) = i—g ~0.29452431

2
Co3.11) = =+ 5 T ~0.07716936

Cy(3,1,00) = 0.05944664
S
Cv(4,1,1) = Ve 0.04090615

64+4r
2880

Cy(4,1,00) = ~ 0.03858468.

e) The condition Hs,,(x) =0 implies x =1/1— \/ﬁ In this case we compute

By(x) = (‘/_ 3) , He(x) =0 and Hy,,(x) = (2\4;647 If £ is continuous, then
we have by Theorem 4

/jlf(t)\/l—tzdt:% 7l - 1—@ +f 1—@

L m(/I0-4)

T [f/(l)_f/(_l)]+m f(6)

ez ()

which we call a corrected Gauss-Chebyshev two-point formula of the second kind. If
f" € L,[—1,1], then Theorem 3 implies:

Lﬁ
o

‘/llf(t)\/l—tzdt—g fl- 1—— +f

_n(V10-4)

2 P - £ D) < Culnr
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In particular, for n =2,3,4,5,6 there is T, ,,(x) =0, so we have

C(2,x,1) ~ 0.04552286
(2,x,00) & 0.06082252
»(3,x,1) ~0.00736171
(3,x,0) ~ 0.00813962
(
(
(
(

a0

99

4,x,1) = 0.00138313
w(4,x,00) 2 0.00171062
w(5,x,1) =~ 0.00032053
5,x,00) = 0.00034578

(7-2V10)m
w(6x 1) =755

(6,x,00) & 0.00016026.

OO 0O

P

~ 0.00011512

P

REMARK 8. The results introduced in Example 3.2 and Example 3.3 are new, and

they could be helpful in approximation of a wider class of integrals where an integrand
is a product of two functions: n—times differentiable function f and weight w with
possible discontinuities. In both cases, the maximum degree of exactness is achieved
when applying a node x which is a solution of the equation Hs,,(x) = 0. Also, by
comparing the constants Cy,(n,x,q), it is obvious that the best constants are reached in
examples 3.2 e) and 3.3 e), that is for the corrected Gauss quadrature formulae.
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