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BOUNDS IMPROVEMENT FOR ALTERNATING MATHIEU TYPE SERIES

TIBOR K. POGÁNY AND ŽIVORAD TOMOVSKI

(Communicated by N. Elezović)

Abstract. The aim of this research paper is to establish some precise, new bounding inequalities
for the generalized alternating Mathieu series using their integral representations and the classical
CBS inequality. The obtained inequalities improve certain bounds derived recently by Tomovski
and Hilfer in [17].

1. Motivation with introduction

The special function defined by series

S(r) =
∞

∑
n=1

2n
(n2 + r2)2 r > 0 (1.1)

is called Mathieu–series, after his ‘ancestor’ É.L. Mathieu, who introduced it in his
classical book [7] treating problematics in mathematical physics. Bounds on this series
have been used in discussing boundary value problems for the biharmonic equations in
2D rectangular domains [11, p. 258, Eq. (54)]. The alternating variant of S(r) , viz.

S̃(r) =
∞

∑
n=1

(−1)n−1 2n
(n2 + r2)2 r > 0 (1.2)

has been introduced recently by Pogány et al. in [9]. After that few article have been
devoted to alternating Mathieu series and its generalizations, such as alternating gen-
eralized Mathieu series, alternating Mathieu aaaa–series and alternating Mathieu (aaaa,λλλλ )–
series. Good sources for bounding ineqaulities for alternating Mathieu’s and alternating
Mathieu type series are the recent articles [9, 15, 17, 18]. However, further research
clearly showes that in [17] the authors didn’t take into account the oscillatory nature
of the Bessel function of the first kind in integrands. Clearly the mistake appears in
the proofs of related bounding inequalities. These cases are pointed out here and the
erroneous places are corrected in a set of theorems remarking in the same time that this
article is essentially not a corrigendum to [17].
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Several interesting problems and solutions dealing with integral representations
and bounding inequalities for the slight generalization of S(r), S̃(r) to Mathieu series
with a fractional power

Sμ(r) =
∞

∑
n=1

2n
(n2 + r2)μ

r,μ−1 > 0 (1.3)

can be found in an older article by Diananda [4] and in recent works by Tomovski and
Trenčevski [19] and Cerone and Lenard [3]. Motivated essentially by [3] and by [10] a
family of so–called generalized Mathieu series, reads

S(α ,β )
μ

(
r;(an)N

)
=: S(α ,β )

μ (r;aaaa) =
∞

∑
n=1

2aβn
(aαn + r2)μ

r,α,β ,μ > 0 (1.4)

has been defined in [14], tacitly assumed that the positive sequence aaaa = (an)N monotono-
usly diverges to the infinity, i.e. limn→∞ an = ∞ and the series (1.4) converges, that is
the auxiliary series

∞

∑
n=1

1

aμα−βn

is convergent. Specifiying parameters in (1.4) one recognizes S2(r) = S(r), Sμ(r) =
S(2,1)
μ (r,N) etc. compare some parts of [3, 4, 10, 15].

Introducing

S̃(α ,β )
μ

(
r;(an)N

)
=: S̃(α ,β )

μ (r;aaaa) =
∞

∑
n=1

(−1)n−1 2aβn
(aαn + r2)μ

r,α,β ,μ > 0 (1.5)

as the alternating variant of (1.4), in [9, 14, 16] several integral representations of

S(α ,β )
μ

(
r;aaaa
)

and S̃(α ,β )
μ

(
r;aaaa
)

in terms of different variants of generalized hypergeo-
metric functions and Bessel functions of the first kind were established.

2. Integral representations of S̃(α ,β )
μ

(
r;(an)N

)
The generalized hypergeometric function is defined by

pFq

[ a1, · · · ,ap

b1, · · · ,bq

∣∣∣x]= pFq

[ ap

bq

∣∣∣x] :=
∞

∑
m=0

∏p
�=1(a�)m

∏q
�=1(b�)m

xm

m!
(2.1)

where

(τ)0 := 1, (τ)m := τ(τ +1) · · ·(τ +m−1) =
Γ(τ +m)
Γ(τ)

m ∈ N

denotes the shifted factorial or Pochhammer symbol. Here, and in what follows, pΨq

denotes the Fox–Wright generalization of the hypergeometric pFq function with p nu-
merator and q denominator parameters (e.g. [14, p. 4, Eq. (2.4)]) defined by

pΨq

[ (a1,αp), · · · ,(ap,αp)
(b1,β1), · · · ,(bq,βq)

∣∣∣x]= pΨq

[ (ap,αp)
(bq,βq)

∣∣∣x] :=
∞

∑
m=0

∏p
�=1Γ

(
a� +α�m

)
∏q

�=1Γ
(
b� +β�m

) xm

m!
(2.2)
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for suitably bounded values of |x| , when the parameters involved satisfy

α� ∈ R+, � = 1, p; β j ∈ R+, j = 1,q; 1+
q

∑
�=1

β�−
p

∑
j=1

α j > 0 .

So that, obviously

pΨq

[ (ap,1)
(bq,1)

∣∣∣x]=
Γ(a1) · · ·Γ(ap)
Γ(b1) · · ·Γ(bq)

· pFq

[ap

bq

∣∣∣x] a j > 0,bk �∈ Z
−
0 . (2.3)

The following integral representations are closely connected to one reported in [9, Eqs.
(8.12), (9.7)] and to certain results (for Mathieu type series) reported in [14]. Denote in
the sequel N

δ :=
(
nδ
)
n∈N

, δ > 0. Hence

S̃(α ,β )
μ

(
r;Nγ)=

2
Γ(μ)

∫ ∞

0

xγ(μα−β )−1

ex +1 1Ψ1

[ (μ ,1)
(γ(μα−β ),γα)

∣∣∣− r2xγα
]
dx , (2.4)

valid for r,α,β ,γ,γ(μα −β )−1 > 0 and

S̃(α ,β )
μ

(
r;Nq/α)=

2

Γ
(
q[μ−β/α]

) ∫ ∞

0

xq(μ−β/α)−1

ex +1 1Fq

[ μ
Δ
(
q;q(μ−β/α)

) ∣∣∣− r2xq

qq

]
dx ,

(2.5)
where

r, α, β , q(μ−β/α)−1 > 0; Δ(q;λ ) :=
(λ

q
, · · · , λ +q−1

q

)
, q ∈ N .

Finally, for all r,μ > 0 there holds [9, Eq. (5.12)]

S̃(α ,α/2)
μ+1

(
r;N2/α)= S̃μ+1(r) =

√
π

(2r)μ−1/2Γ(μ +1)

∫ ∞

0

xμ+1/2

ex +1
Jμ−1/2(rx)dx. (2.6)

3. Laplace transforms of generalized hypergeometric functions

In the Bessel functions theory it is fairly well–known [6, p. 688, Eq. 6.612.3] that∫ ∞

0
e−αxJb(cx)Jb(hx)dx =

1

π
√

hc
Qb−1/2

(α2 + c2 +h2

2hc

)
, (3.1)

when α,c,h,b+1/2 > 0. Here

Qβ (z) =
B(β +1,1/2)

(2z)β+1 2F1

[β/2+1, (β +1)/2
β +3/2

∣∣∣z−2
]

stands for the Legendre function of the second kind in which B is the familiar Euler
Beta–function. Substituting α = 1,b = μ−1/2,c = h = r in (3.1), we get∫ ∞

0
e−xJ2

μ−1/2(rx)dx =
1
πr

Qμ−1

(
1+

1
2r2

)
=

B(μ ,1/2)r2μ

(1+2r2)μ 2F1

[ (μ +1)/2, μ/2
μ+1/2

∣∣∣ 4r4

(1+2r2)2

]
. (3.2)
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The next generation of hypergeometric type functions we will need in the sequel is the
Srivastava–Daoust generalization of Kampé de Fériet hypergeometric function in two
variables defined by double hypergeometric series [12, p. 199]

S A:B;B′
C:D;D′

( [(a) : θ ,Φ] : [(b) : ψ ]; [(b′) : ψ ′]
[(c) : δ ,ε] : [(d) : η ]; [(d′) : η ′]

∣∣∣x,y)= S A:B;B′
C:D;D′

(
x,y
)

:=
∞

∑
m=0

∞

∑
n=0

∏A
j=1Γ(a j +mθ j +nΦ j)∏B

j=1Γ(b j +mψ j)∏B′
j=1Γ(b′j +nψ ′

j)

∏C
j=1Γ(c j +mδ j +nε j)∏D

j=1Γ(d j +mη j)∏D′
j=1Γ(d′

j +nη ′
j)

xm

m!
yn

n!
,

(3.3)

where the coefficients

θ1, · · · ,θA, · · · ,η ′
1, · · · ,η ′

D′ > 0;

for the sake of brevity (a) is taken to denote the sequence of A parametars a1, · · · ,aA ,
with the similar interpretations for (b), · · · ,(d′) . Srivastava and Daoust find [13, p. 155]
that the series (3.3) converges absolutely for all x,y ∈ C when

Δ= 1+
C

∑
j=1

δ j +
D

∑
j=1

η j −
A

∑
j=1

θ j −
B

∑
j=1

ψ j > 0,

Δ′ = 1+
C

∑
j=1

ε j +
D′

∑
j=1

η ′
j −

A

∑
j=1

Φ j −
B′

∑
j=1

ψ ′
j > 0 .

It could be mention that the case Δ = Δ′ = 0 has been discussed also in [13, pp. 154–
155], while the remaining case, when at least one of Δ,Δ′ is negative results in formal
power series, that is (3.3) converges only in trivial situation x = y ≡ 0.

THEOREM 1. Assume μ ,X ,Y > 0, Z,W ∈ R, q ∈ N and ℜ{s} > 0 . Then we
have:

∫ ∞

0
e−sx

{
1Ψ1

[ (μ ,1)
(X ,Y )

∣∣∣−Z xY
]}2

dx

= s−1 S 1:1;1
0:1;1

( [1 : Y,Y ] : [μ : 1]; [μ : 1]
− : [X : Y ]; [X : Y ]

∣∣∣− Z
sY

, − Z
sY

)
, (3.4)∫ ∞

0
e−sx

{
1Fq

[ a1

bq

∣∣∣−W xq
]}2

dx

=
∏q

j=1Γ
2(b j)

sΓ2(a1)
S 1:1;1

0:q;q

( [1 : q,q] : [a1 : 1]; [a1 : 1]
− : [(b) : 1]; [(b) : 1]

∣∣∣− W
sq , −W

sq

)
. (3.5)
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Proof. By definition it is∫ ∞

0
e−sx

{
1Ψ1

[ (μ ,1)
(X ,Y )

∣∣∣−Z xY
]}2

dx

=
∫ ∞

0
e−sx

∞

∑
m=0

∞

∑
n=0

Γ(μ +m)Γ(μ+n)(−Z)m+n

Γ(X +Ym)Γ(X +Yn)
xY (m+n)

m!n!
dx

= s−1
∞

∑
m=0

∞

∑
n=0

Γ(1+Y(m+n))Γ(μ+m)Γ(μ+n)
Γ(X +Ym)Γ(X +Yn)

(−Z/sY )m+n

m!n!
, (3.6)

such that coincides with the right–hand expression in the display (3.4).
The formula (3.5) we prove analogously, firstly expressing the Γ–function terms

of the 1Fq function in the integrand in Pochhammer symbol terms.

4. Bounding inequalities

Now, we expose our new results concerning upper bounds for alternating Mathieu

series S̃(r), S̃μ+1(r), S̃
(α ,β )
μ

(
r;Nγ), S̃(α ,β )

μ
(
r;Nq/α) derived by means of the celebrated

Cauchy–Bunyakovsky–Schwarz (CBS) inequality.

THEOREM 2. For all r ∈ R there holds

S̃(r) �
√

3ζ (3)
1+4r2

(
=: B1(r)

)
. (4.1)

Here is ζ (3) = 1.2020569 . . . the famous Apéry’s constant.

Proof. Consider the integral representation formula [9, Eq. (2.8)]

S̃(r) =
1
r

∫ ∞

0

xsin(rx)
ex +1

dx r ∈ R .

By the CBS inequality one concludes

S̃2(r) � 1
r2

∫ ∞

0

x2

ex +1
dx ·

∫ ∞

0

sin2(rx)
ex +1

dx .

Substituting a = 2,b = 1 into∫ ∞

0

xa−1

ebx +1
dx =

1
ba

(
1−21−a)Γ(a)ζ (a) min

(
ℜ{a},ℜ{b})> 0 , (4.2)

we get ∫ ∞

0

x2

ex +1
dx =

3
2
ζ (3) .

On the other hand ∫ ∞

0

sin2(rx)
ex +1

dx <

∫ ∞

0
e−x sin2(rx)dx =

2r2

1+4r2 .
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Collecting all derived bounds we obtain

S̃(r) �
∣∣S̃(r)

∣∣�√ 3ζ (3)
1+4r2 .

The Theorem is proved.

REMARK 1. The upper bound (4.1) corrects the bound [17, Eq. (2.7)] when
μ = 2. On the other hand the authors report on [18, §4, B]

S̃(r) � π2

12r
=: B2(r) .

Comparing the bounds B1(r) in (4.1) with B2(r) we conclude

B1(r) � B2(r) r ∈ (0,r0]
B1(r) > B2(r) r > r0

although both bounds have the same asymptotical magnitude when r → ∞ . Here

r0 =
π2√

432ζ (3)−4π4
= 0.8667817 . . . .

THEOREM 3. For all r,μ > 0 we have

S̃μ+1(r) � C̃μ(r)

(
2F1

[ (μ+1)/2, μ/2
μ+1/2

∣∣∣ 4r4

(1+2r2)2

])1/2

, (4.3)

where

C̃μ(r) =

√
πr(2+1/μ)

2μ−1/2(1+2r2)μ/2

√
ζ (2μ+2)

B(2μ +1,1/2)
B(μ +1,μ+1/2)

.

Proof. Applying the CBS inequality to the integral in (2.6) we deduce(∫ ∞

0

xμ+1/2

ex +1
Jμ−1/2(rx)dx

)2

�
∫ ∞

0

x2μ+1

ex +1
dx ·

∫ ∞

0

J2
μ−1/2(rx)

ex +1
dx .

Putting a = 2μ+2,b = 1 in (4.2) we readily get∫ ∞

0

x2μ+1

ex +1
dx =

(
1−2−1−2μ)Γ(2μ+2)ζ (2μ+2) � Γ(2μ+2)ζ (2μ+2) .

Making use of Laplace–transform formula (3.2) we obtain∫ ∞

0

J2
μ−1/2(rx)

ex +1
dx <

∫ ∞

0
e−xJ2

μ−1/2(rx)dx

=
B(μ ,1/2)r2μ

(1+2r2)μ 2F1

[ (μ+1)/2, μ/2
μ+1/2

∣∣∣ 4r4

(1+2r2)2

]
.

Majorizing (2.6) by the achieved bounds we arrive at (4.3).
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REMARK 2. To correct the erroneous bound [17, Eq. (2.23)] it is enough to re-
place it by the upper bound (4.3).

THEOREM 4. We have

S̃μ+1(r) = O
(
rμ−1/2 ln

1+4r2

(1+2r2)2

)
r → ∞. (4.4)

Proof. Ramanujan’s asymptotic relation for zero–balanced 2F1 (cf. e.g. [2]),
reads

−B(a,b) · 2F1

[ a, b
a+b

∣∣∣x]= ψ(a)+ψ(b)+2γ

+ ln(1− x)+O
(
(1− x) ln(1− x)

)
x → 1−

where ψ(x) = Γ′(x)/Γ(x) is the familiar digamma–function, while γ denotes the fa-
mous Euler–Mascheroni constant. Applying this asymptotic formula with

x =
4r4

(1+2r2)2

to the Gaussian term in (4.3), we conclude the assertion.
In [1, Eq. (1.2)] Alzer has been proved the sharpness of the inequality

B(x,y)− 1
xy

� 0 min(x,y) � 1 (4.5)

given already by Dragomir et al. [5]. It is obvious that (4.5) is equivalent to

Γ(x+ y) � Γ(x+1) · Γ(y+1) (4.6)

on the same range of x,y .

THEOREM 5. For all r,α,β ,γ > 0, γ(μα−β ) > 1 we have

S̃(α ,β )
μ

(
r;Nγ)� C̃(α ,β )

μ (γ)2Ψ1

[ (3/2,γα),(μ ,1)(
γ(μα−β ),γα

) ∣∣∣ − r2
]

(4.7)

where

C̃(α ,β )
μ (γ) =

2
Γ(μ)

√
Γ
(
2γ(μα−β )−1

)
ζ
(
2γ(μα−β )−1

)
.

Proof. The Srivastava–Daoust S –function in (3.4) has been majorized by a square
of a 2Ψ1 –function expression via (4.6) specifying x =Ym+1/2, y =Yn+1/2 to eval-
uate the double indexed Γ–term in (3.6), that is:∫ ∞

0
e−sx

(
1Ψ1

[ (μ ,1)
(X ,Y )

∣∣∣−Z xY
])2

dx

� 1
s

(
∞

∑
m=0

Γ(3/2+Ym)Γ(μ +m)
Γ(X +Ym)

(−Z/sY )m

m!

)2

=
1
s

(
2Ψ1

[ (3/2,Y
)
,(μ ,1)

(X ,Y )

∣∣∣−Z s−Y
])2

. (4.8)



322 TIBOR K. POGÁNY AND ŽIVORAD TOMOVSKI

Specifying here X = γ(μα−β ),Y = γα, Z = r2 the upper bound in (4.8) becomes

1
s

(
2Ψ1

[ (3/2,γα
)
,(μ ,1)(

γ(μα−β ),γα
) ∣∣∣− r2 s−γα

])2
. (4.9)

The CBS inequality one transforms (2.4) into(
S̃(α ,β )
μ

(
r;Nγ))2

� 2
Γ(μ)

∫ ∞

0

x2[γ(μα−β )−1]

ex +1
dx

·
∫ ∞

0

(
1Ψ1

[ (μ ,1)(
γ(μα−β ),γα

) ∣∣∣− r2xγα
])2

ex +1
dx . (4.10)

Since, by usual reasons∫ ∞

0

x2[γ(μα−β )−1]

ex +1
dx � Γ

(
2γ(μα−β )−1

)
ζ
(
2γ(μα−β )−1

)
,

and by (4.8) and (4.9) it is

∫ ∞

0

(
1Ψ1

[ (μ ,1)(
γ(μα−β ),γα

) ∣∣∣− r2xγα
])2

ex +1
dx

�
∫ ∞

0
e−x
(

1Ψ1

[ (μ ,1)(
γ(μα−β ),γα

) ∣∣∣− r2xγα
])2

dx

�
(

2Ψ1

[ (3/2,γα
)
,(μ ,1)(

γ(μα−β ),γα
) ∣∣∣− r2

])2
,

we immediately deduce the asserted bound (4.7).

REMARK 3. By this estimation procedure we just have to replace [17, Eq. (2.27)]
by (4.7). However, a question on the existence of the upper bound offered by the authors
in [17] in the form

S̃(α ,β )
μ

(
r;Nγ)� M(α ,β )

μ (r;γ) =
Φ

(1+ r2)κ

remains open; here Φ= Φ(μ ,α,β ,γ) and κ = κ(μ ,α,β ,γ) are absolute constants.

THEOREM 6. For all q∈N; r, α, β , q(μ−β/α)−1> 0 there holds the bounding
inequality

S̃(α ,β )
μ

(
r;Nq/α)� K̃(α ,β )

μ (q) · 2Ψq

[ (3/2,q),(μ ,1)(
Δ
(
q;q[μ−β/α]

)
,1
) ∣∣∣− r2q−q

]
, (4.11)

where

K̃(α ,β )
μ (q) =

2(2π)
q−1
2

qq[μ−β/α ]−1/2Γ(μ)

√
Γ
(
2q(μ−β/α)−1

)
ζ
(
2q(μ−β/α)−1

)
.
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Proof. By (3.5), having on mind the Dragomir–Alzer inequality we conclude

∫ ∞

0
e−sx

(
1Fq

[ a1

bq

∣∣∣−W xq
])2

dx � 1
s

(
∏q

j=1Γ(b j)

Γ(a1)
2Ψq

[ (3/2,q),(a1,1)
((b),1)

∣∣∣− W
sq

])2

.

Taking here a1 = μ , (b) = Δ
(
q;q[μ−β/α]

)
, W = r2q−q one gets

∫ ∞

0
e−sx

(
1Fq

[
μ(

Δ
(
q;q[μ−β/α]

)) ∣∣∣∣∣− r2xq

qq

])2

dx

� 1
s

(
∏q

j=1Γ(b j)

Γ(a1)
2Ψq

[
(3/2,q),(μ ,1)(

Δ
(
q;q[μ−β/α]

)
,1
)∣∣∣∣∣− r2

(sq)q

])2

.

Applying once more the CBS inequality, now for the right hand side of the integral
representation (2.5), taking s = 1, we conclude

(
S̃(α ,β )
μ

(
r;Nq/α))2

� 2

Γ
(
q[μ−β/α]

) ∫ ∞

0

x2(q[μ−β/α ]−1)

ex +1
dx

·
∫ ∞

0

(
1Fq

[ μ(
Δ
(
q;q[μ−β/α]

)) ∣∣∣− r2(x/q)q
])2

ex +1
dx

�
(
K̃(α ,β )
μ (q)

)2 ·
(

2Ψq

[ (3/2,q),(μ ,1)(
Δ
(
q;q[μ−β/α]

)
,1
) ∣∣∣− r2q−q

])2
.

Having in mind (4.2) with a = 2(q[μ−β/α]−1),b = 1, we arrive at the asserted upper
bound, since

K̃(α ,β )
μ (q) =

2 ∏q−1
j=0 Γ

(
q[μ−β/α]+ j/q

)
Γ(μ)Γ

(
q[μ−β/α]

) √
Γ
(
2q(μ−β/α)−1

)
ζ
(
2q(μ−β/α)−1

)
=

2(2π)
q−1
2

qq[μ−β/α ]−1/2Γ(μ)

√
Γ
(
2q(μ−β/α)−1

)
ζ
(
2q(μ−β/α)−1

)
by the well–known Gauss–Legendre multiplication formula for Gamma function.

REMARK 4. The bounding ineqaulity (4.11) replaces [17, Eq. (2.25)].
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[17] Ž. TOMOVSKI, R. HILFER, Some bounds for alternating Mathieu type series, J. Math. Inequal., 2, 1

(2008), 17–26.
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