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FURTHER EXTENSION OF FURUTA INEQUALITY

CHANGSEN YANG AND YAQING WANG

(Communicated by M. Fujii)

Abstract. If Ayy 2 Aop—1 =2+ 2A2>2A1 2B>0,with A} >0, t1,t2, -, ty—1, th € [07 l] and
P1,P2, s P2n—1,P2n = 1 for a natural number n. Then the following inequality holds for r > 1,
- r A 1 Do, T =1
Az T2 A2 [Aan 172 {Aguor) T A4 [A3 2 {A27 (A2 BPIA; 2 )2

1—tn+r

n —h 2 n—1 i L
Ay T }3A3 T |PAAL D Aoy 2 }p2n71A2’171‘2i]P2r1A2n2}TT&)ZV1 —int7

where 9[2n] = {---[{[(p1 —t1)p2 +11]p3 —t2}pa+02]ps — - —tn} pan +1a.

1. Introduction

A capital letter means a bounded linear operator on a Hilbert space H. An operator
T is said to be positive (denoted by 7 > 0) if (Tx,x) >0 forall x € H, and T is said
to be strictly positive (denoted by 7' > 0) if T is positive and invertible.

THEOREM LH. (Lowner-Heinz inequality, denoted by (LH) briefly)
If A> B >0 holds, then A% > B* for any a € [0,1]. (LH)

This was originally proved in [18], [15], and then in [19]. Although (LH) asserts
that A > B > 0 ensures A* > B% for any « € [0, 1], unfortunately A* > B* does not
always hold for o > 1. The following result was been obtained from this point of view.

p (l+r)g=p+r
THEOREM F[' | (Furuta inequality)
If A> B >0, then for each r > 0,

r r l r r l
(i) (B2APB?)1 > (B2BPB?)4

and
(i) (ASAPA5)i > (A5BPA%)d
hold for p >0 and g= 1 with (1+r)g=p—+r. 0 1) (1,0) q
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The original proof of Theorem F is shown in [11], an elementary one-page proof
is in [12] and alternative ones are in [2] and [17]. We remark that the domain of the
parameters p ,q and r in Theorem F is the best possible for the inequalities (i) and (ii)
under the assumption A > B > 0, see [20].

LEMMA 1.1. [8] Let A be a positive invertible operator and B be an invertible
operator. For any real number s,

(BAB")* = BA* (AYB*BA?)*'A1B",
especially in the case s > 1, the equality holds without invertibility of A and B.

By using this Lemma 1.1 and preceding Theorems in [8], Furuta gives the follow-
ing Theorem’s original proof. An elementary one-page proof is in [9].

THEOREM GF. (Generalized Furuta inequality, denoted by (GF) briefly).
IfAZB>0withA>0,t€]0,1], p>1,

AT s (AB (AT BPAT YAS ) B (GF)

holds for r >t and s > 1.

An alternative one is in [3]. We mention that further extensions of Theorem GF and
related results to Theorem F are in [4], [13], [14] and etc. It is originally shown in [21]
that the exponent value (;:;)tjrr of the right hand of (GF) is best possible and alternative
ones are in [5], [23]. It is known that the operator inequality (GF) interpolates Theorem
F and an inequality equivalent to the main result of Ando-Hiai log majorization [1] by

the parameter 7 € [0, 1].

DEFINITION 1.1. [7] LetA>0,B>0,t<[0,1] and py,pa2,---,Pn, -+ P2n = 1
for a natural number n. Let C4 g[2n] be defined by

CaB[2n] = Ca B[21;p1, P2, * s P2(n—1), P2n—1, P2
:A%{A%’ [A% [A%’{A%(A%t BPlA%')PzA%}PzA%’}m .. .A%]pZH—lA%t}PZnA%

—t t —t r
«—A2 and A2 alternately n times A2 and A2 alternately n times—

(1.1)
Let g[2n] be defined by
q[2n] = Q[Z’l;Pl,Pz,'",Pz(n—l)’Pzn—l,Pzn]
={-[{l(pr=t)p2+1t]ps —t}pa+tlps — - —t}pay +t. (1.2)

—t and ¢ alternately n times appear

For the sake of convenience, we define

Capl0]=B and q[0]=1. (1.3)
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THEOREM H. [7] Let A>B >0 with A>0,t€(0,1] and py,p2,---,pan =1
for natural number n. Then the following inequality holds for r > t,

Al > A% [A%'{Ag ---[A%{Aé(A%’ BmA%’)pzA%}psA%’}mAé AT }FZnAz] e

=t L =t L
—A 2 ntimes and A2 A2 ntimes and A2 n—1
n—1 times by turns times by turns—

where @[2n;r,t] = q[2n]+r—t.

2. Definitions of G4, g[2n] and 0[2n]

DEFINITION 2.1. Let A2n717A2(n,1),---7A27A1 >0,A2,B=20, t1,t2,- ,th—1,tn
€[0,1] and p1,p2,-*+,Pn,** s P2(n-1), P2n—1, P20 = 1 for a natural number n.
Let Gy, g[2n] be defined by

Ga,.B[2n] = Ga, B[215 P15 P2, Pa(n—1), P2n—1, P2n]
1

=A2n%[A2n—1%m{A2(n—1)%"'A4%[A3%Q{A2%( A7 BMA T )p2A22 3

—h n n—1 ~n n
A3 > }174A42 "'A2(n71) 2 }PZn—1A2n71 2 }PZnAznz
(2.1)

For examples,

Ga, 82] = A2 (A1 > BplA1 )P2A22

and
Ga, 4] = A3 AT (A F (A T BNAL T )AL YAy T I reA,

Let 9[2n] be defined by

0[2n] = 0[2n; p1, P2, Pa(n—1)> P2n—1, P2n]

={--[{l(pr —t1)p2+t1lps —t2}pa+02]ps — - —tn} pon + tn. 2.2)

For examples,
2] =(p1—t1)p2+1
and
O] ={[(p1 —t1)p2+tlps —t2}ps+ta
For the sake of convenience, we define

GA“B[O} =B and 5[0] =1. (2.3)

The following Lemma is easily shown by (2.1) and (2.2).
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LEMMA 2.1. For Ayui1, Agn,-+-,A2, A1 >0 and A2<n+1), B > 0 for any natural
number n,
Int1 Intl

n —In _
(1) G200+ 1)) = Aggyety T (Aagt 2 (G p[20))P2r1 Ay 3 )P0 Ay
(ii) 8[2(n+ 1)] = (8[2n]p2n+1 _tn+1)p2(n+1) F 1.

Also we remark that (2.2) easily implies

~

0[2n] = {' {1 —fl)Pz +t1lp3 —t2}pa+t)ps— - —ta}pon +n
n—1 n 2n
—le+2 g H pi)+ta— 2,1 T[] pi)
=1 i=2j41 =1 i=2j

holds for any natural number n.

3. Statement of results

THEOREM 3.1. IfA2n >A2n71 2 e >A2 >Al >B> O) WithAl > 0; 11,0,
ti—1,tn € [0,1] and p1,p2,-++, Py, Pa(n—1)s Pan—1,P20 = | for a natural number n.
Then the following inequality holds

n =in =1
Az = {A2n 2 [Aon—172 {Ag(n1) 7 -+ A4 [A3 ks {Az AT AT )mAzz}m
A3%Q}p4A4%~~~A2(n,1) 2

1

= (G, p[2n]) 7"

1%"}P2nA2n%}m

(3.1)
where 3[2n] is in (2.2).

COROLLARY 3.1. IfAZ2B>0withA>0, t€[0,1] and p1,p2,-*,P2n—1,P2n =
1 for a natural number n, Then the following inequality holds,

t —t -t Ly T
A (AT (Cagl2(n— D)) 147 At TS (32)

In order to prove the preceding conclusions, we need the following results.

LEMMA 3.1. (F. Hansen[16]) If X and A are bounded linear operators on a
Hilbert space with X >0, ||A|| < 1, and f is an operator monotone function on interval
[0,4o0). then

A" f(X)A < f(A"XA).
THEOREM A. [10,22] IfA>B>C >0 with B> 0, then for t € [0,1], p >
I,s>1landr>t
, +
(i) A=+ > [A3(B 7CPBY )‘AZ} 0547
—+
(ii) C'*r < {C3(BTAPBT)*C2} o0,

Put r=t in (i) and (ii) of Theorem A, we have
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(iii) A > {AZ(B 7 CPBT )SAZ} P ”*t
l
(iv) C<{C2( zAsz)Cz} s
REMARK 3.1. (i) and (ii) in Theorem A can be obtained by (iii) and (iv) of The-
orem A and Theorem F respectively. Now we shall give a simple proof of (iii) of
Theorem A which is different from ones in [10] and [22] as follows:

Without loss of generality, we can assume C is invertible. Firstly, Let’s prove the
following inequality to hold for p > 1, s > 1 and ¢ € [0, 1],

{A (BzC PBz)SA 2 } A+t >A_

Since A > B >0, 1 €[0,1], we have A’ > B' by LH, and yields A7 B'A7 <1,

1
because x (-5t is an operator monotone function, by Lemma 3.1 and Theorem GF,
we have

{AZ(BZC I’BZ)‘A2}ptla+r_{Asz (B%C’*”B%) BZAz} S
> A7 B2(B7 (B5C PB5)'B7 )0 TR AR
>ATB AT > A7)

this is
A> {AY (BT CPBT AR T,

Proof of Theorem 3.1.
First step. (3.1) for n =1 is shown by (iii) of Theorem A, that is, if Ay > A; >
B >0 with A| >0, then for #; € [0,1] and p; > 1,p, > 1

t 1
A2 > {A;l( ZBPIA )P2A2 } pL—11)p2+1] (33)

Second step. Assume (3.1) holds for n, that is, if Ay, > Ay 12 -2 A2 >
Al B>0 WlthAl>0t17t27 : 7tn6[071} and p17p2»'"Pn»"'7p2n717p2n21fOfa
natural number n,

1
Azn 2 GA7B[2}’Z} a[2n] (31)
Then we shall show (3.1) forn+ 1 by Induction as follows. PutD = Ay, 1), E = Aopt1
and F = Gy g[2n]%2" . The hypothesis for n+ 1 and (3.1) imply

D>E>F >0 with E > 0. (3.4)

(3.4) yields the following (3.5) by (iii) of Theorem A, for t € [0,1],p > 1 and s > 1

D> {D}(E-SFPE-HyDE) T (3.5)

Put t = 1,11 € [0,1],p = 0[2n]p2ps1 = 1 forpay1 > 1 and s = pyg,pq) > 1 in (3.5).
Then by (ii) of Lemma 2.1, (3.5) implies

(p—1t)s+t=(012n]p2n+1 — tas1)P2(ns1) +tar1 = O2(n + 1)] (3.6)
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Agnt) {A 2nt1) (A;'_l:l Gy B[zn]Pzn+1A_2_)pz (n+1) A_(Z_H)}m 57
= Gap[2(n+1)]% ’%“)1 by (i) of Lemma 2.1 and (3.6)
and (3.7) means that (3.1) holds for n+ 1. Whence the proof is complete. [
Proof of Corollary 3.1. We have only toput A=A} =Ay =A3 =+ =Ay(,_1) =

Ay 1 =Agy, t=tj=th=---=1t,_1 =t, in Theorem3.1. [

THEOREM 3.2. If B2>2C1 >2C, 2 - 2Ch1 2 C, 2 Cy1 20 with G, > 0,
t, b, stn—1,ty € [0,1] and pi1,pay-++,Pan—1,P2n = 1 for a natural number n. Then
the following inequality holds

n —n tn*
Con <4022 [Cont T {Cou )T - CEG TG (G2 B ety

—h 3 In_1 —n In
C3 5 ]P4C42 "'C2(n—l) 3 }P271—1C2n71 2 }PZnCznz }B[Zn]

Proof. We can assume C,, > 0 without loss of generality, then Co ' 2Co1 7' >
~z2G07' =207 2B >0,
Since (3.1) of Theorem 3.1 holds for tl,tz,---7tn,17t,, [0,1] and pl,pz, P =
1 for a natural number n and by putting Ay, = Co ! , A1 = Cop ™ ,---,A2 =
G ' A =C"", B=B"in(3.1), we have

tn
Con 1>{C2n [C2n12{c2n1 T C42[C32{C22(C123 mCl )p2C22}p3

c37]P4c4T "'Cz(n—1) 71%]1’2)@2”%}%

or equivalently

n —In In—
Con <{Con Z[Con1 2 {C2(n71) T C [C3 - {C2 (Cl TBPI Cl )1’2C2 4 1P3

—h 3 n—1 —n In o
C3 ) }P4C4 2 .. 'CZ(n—l) 7 }17271—1(:2n_l 2 }PZnCzn 2 }G[Zn]
1

= (G, p[2n]) T O

THEOREM 3.3. If Ay, 2 Aon_1>---2A22A1 2B >0, with A; >0, 11,60, -+,
th—1,tn € [0,1] and p1,pa,--+, Pan—1,Pan = 1 for a natural number n. Then the follow-
ing inequality holds for r > t,

r —tn Iy i —t t —t —t
AT > (A, [A2n—th{A2(n—l) SR A7 [A3TZ{A271(AITIBP1A1TI)P2

1—th+r

Ayt 134, %Q}p4A4'% "'Az(n—l)ln% P21 A, F P A, B} T

r —In —In P e
— {A2n7 [A2n71 2 (GAI',B[Z(” _ l)})p2n71A2n71 2 ]p2)1A2n7}3[2n]7tn+r
(3.9)
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1
Proof. Put D = Az,, E = (G, 5[2n])! in (3.1) of Theorem 3.1. Then D > E
by (3.1) for t;,t2, - ,ty—1,1, € [0,1] and py1,p2,---,Pan—1,P2n = 1 for a natural number
n, by applying Theorem F,

I+

D" > (DT END )T holds fors; > 1and ry > 0. (3.10)

In (3.10) we have only to put r; =r—1#, > 0 and s; = 9[2n] > 1 to obtain (3.9)
since 51 +r; =02n] —ty+r.
So the proof is completed. O

REMARK 3.2. Theorem 3.3 becomes Theorem H, when A} = A, =---=A, =A
and tj =t =---=1t, =1 hold.

THEOREM34. IfB>Ci1>2Cr > -+ 2> C2(n71) > Coy1 =2 Gy, 20 with Gy >
0, 11,02, ytn—1,tn € [0,1] and p1,p2,-+, Pan—1,P2n = 1 for a natural number n. Then
the following inequality holds for r > t,

n—1 v} )

Con' " < {C2n%[c2n—l%n{c2(n—l) ? "'C47[CsT{Cz%(Cl%”Bplcl%”)pz

In

n — 3 —1 —in £y ahsitr
C22 }P3C3 5 ]P4C42 "'CZ(n—l) 3 }P2n—1C2n71 2 ]PZnCznz}ﬁ[Zn]—ln+r

L =B —In ro A=tntr
= {Con?[Con_1 5 (G, 5[2(n — 1)])P2-1Cyyy T’]pznc2nz } Sl
(3.11)

Proof. The proof is similar to the proof of Theorem 3.2. [
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