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FURTHER EXTENSION OF FURUTA INEQUALITY
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(Communicated by M. Fujii)

Abstract. If A2n � A2n−1 � · · · � A2 � A1 � B � 0 , with A1 > 0 , t1,t2 , · · · ,tn−1 , tn ∈ [0,1] and
p1, p2, · · · , p2n−1, p2n � 1 for a natural number n . Then the following inequality holds for r � tn
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where ð[2n] = {·· · [{[(p1− t1)p2 + t1]p3− t2}p4 + t2]p5−···− tn}p2n + tn.

1. Introduction

A capital letter means a bounded linear operator on a Hilbert space H. An operator
T is said to be positive (denoted by T � 0) if (Tx,x) � 0 for all x ∈ H , and T is said
to be strictly positive (denoted by T > 0) if T is positive and invertible.

THEOREM LH. (Löwner-Heinz inequality, denoted by (LH) briefly)

I f A � B � 0 holds, then Aα � Bα f or any α ∈ [0,1]. (LH)

This was originally proved in [18], [15], and then in [19]. Although (LH) asserts
that A � B � 0 ensures Aα � Bα for any α ∈ [0,1] , unfortunately Aα � Bα does not
always hold for α � 1. The following result was been obtained from this point of view.
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(1 + r)q = p + r
THEOREM F [11] . (Furuta inequality)
If A � B � 0 , then for each r � 0 ,
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hold for p � 0 and q � 1 with (1+ r)q � p+ r .
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The original proof of Theorem F is shown in [11], an elementary one-page proof
is in [12] and alternative ones are in [2] and [17]. We remark that the domain of the
parameters p ,q and r in Theorem F is the best possible for the inequalities (i) and (ii)
under the assumption A � B � 0, see [20].

LEMMA 1.1. [8] Let A be a positive invertible operator and B be an invertible
operator. For any real number s,

(BAB∗)s = BA
1
2 (A

1
2 B∗BA

1
2 )s−1A

1
2 B∗,

especially in the case s � 1, the equality holds without invertibility of A and B.

By using this Lemma 1.1 and preceding Theorems in [8], Furuta gives the follow-
ing Theorem’s original proof. An elementary one-page proof is in [9].

THEOREM GF. (Generalized Furuta inequality, denoted by (GF) briefly).
If A � B � 0 with A > 0, t ∈ [0,1], p � 1,

A1−t+r � {A r
2 (A

−t
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2 )sA

r
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(p−t)s+r . (GF)

holds for r � t and s � 1.

An alternative one is in [3]. We mention that further extensions of TheoremGF and
related results to Theorem F are in [4], [13], [14] and etc. It is originally shown in [21]
that the exponent value 1−t+r

(p−t)s+r of the right hand of (GF) is best possible and alternative
ones are in [5], [23]. It is known that the operator inequality (GF) interpolates Theorem
F and an inequality equivalent to the main result of Ando-Hiai log majorization [1] by
the parameter t ∈ [0,1] .

DEFINITION 1.1. [7] Let A > 0, B � 0, t ∈ [0,1] and p1, p2, · · · , pn, · · · , p2n � 1
for a natural number n . Let CA,B[2n] be defined by

CA,B[2n] = CA,B[2n; p1, p2, · · · , p2(n−1), p2n−1, p2n]
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(1.1)
Let q[2n] be defined by

q[2n] = q[2n; p1, p2, · · · , p2(n−1), p2n−1, p2n]

= {· · · [{[(p1− t)p2 + t]p3− t}p4 + t]p5−·· ·− t}p2n + t.
︸ ︷︷ ︸

−t and t alternately n times appear

(1.2)

For the sake of convenience, we define

CA,B[0] = B and q[0] = 1. (1.3)



FURTHER EXTENSION OF FURUTA INEQUALITY 393

THEOREM H. [7] Let A � B � 0 with A > 0, t ∈ [0,1] and p1, p2, · · · , p2n � 1
for natural number n. Then the following inequality holds for r � t ,
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where ϕ [2n;r, t] = q[2n]+ r− t.

2. Definitions of GAi,B[2n] and ð[2n]

DEFINITION 2.1. Let A2n−1,A2(n−1), · · · ,A2,A1 > 0, A2n,B � 0, t1, t2, · · · , tn−1,tn
∈ [0,1] and p1, p2, · · · , pn, · · · , p2(n−1), p2n−1, p2n � 1 for a natural number n .

Let GAi,B[2n] be defined by

GAi,B[2n] = GAi,B[2n; p1, p2, · · · , p2(n−1), p2n−1, p2n]

= A2n
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For examples,
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Let ð[2n] be defined by

ð[2n] = ð[2n; p1, p2, · · · , p2(n−1), p2n−1, p2n]

= {· · · [{[(p1− t1)p2 + t1]p3− t2}p4 + t2]p5−·· ·− tn}p2n + tn.
(2.2)

For examples,

ð[2] = (p1− t1)p2 + t1

and

ð[4] = {[(p1− t1)p2 + t1]p3− t2}p4 + t2

For the sake of convenience, we define

GAi,B[0] = B and ð[0] = 1. (2.3)

The following Lemma is easily shown by (2.1) and (2.2).
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LEMMA 2.1. For A2n+1, A2n, · · · ,A2, A1 > 0 and A2(n+1), B � 0 for any natural
number n,

(i) GAi,B[2(n+1)] = A2(n+1)
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(ii) ð[2(n+1)] = (ð[2n]p2n+1− tn+1)p2(n+1) + tn+1.

Also we remark that (2.2) easily implies
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holds for any natural number n .

3. Statement of results

THEOREM 3.1. If A2n � A2n−1 � · · ·� A2 � A1 � B � 0 , with A1 > 0 , t1,t2, · · · ,
tn−1,tn ∈ [0,1] and p1, p2, · · · , pn, · · · , p2(n−1), p2n−1, p2n � 1 for a natural number n.
Then the following inequality holds
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(3.1)
where ð[2n] is in (2.2).

COROLLARY 3.1. If A � B � 0 with A > 0 , t ∈ [0,1] and p1, p2, · · · , p2n−1, p2n �
1 for a natural number n, Then the following inequality holds,

A � {A t
2 [A

−t
2 (CA,B[2(n−1)])p2n−1A

−t
2 ]p2nA

t
2 } 1

q[2n] (3.2)

In order to prove the preceding conclusions, we need the following results.

LEMMA 3.1. (F. Hansen[16]) If X and A are bounded linear operators on a
Hilbert space with X � 0, ‖A‖� 1 , and f is an operator monotone function on interval
[0,+∞) . then

A∗ f (X)A � f (A∗XA).

THEOREM A. [10, 22] If A � B � C � 0 with B > 0 , then for t ∈ [0,1], p �

1, s � 1 and r � t

(i) A1−t+r � {A r
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Put r = t in (i) and (ii) of Theorem A, we have
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(iii) A � {A t
2 (B
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(iv) C � {C t
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REMARK 3.1. (i) and (ii) in Theorem A can be obtained by (iii) and (iv) of The-
orem A and Theorem F respectively. Now we shall give a simple proof of (iii) of
Theorem A which is different from ones in [10] and [22] as follows:

Without loss of generality, we can assume C is invertible. Firstly, Let’s prove the
following inequality to hold for p � 1, s � 1 and t ∈ [0,1],
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because x
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(p−t)s+t is an operator monotone function, by Lemma 3.1 and Theorem GF,
we have
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Proof of Theorem 3.1.
First step. (3.1) for n = 1 is shown by (iii) of Theorem A, that is, if A2 � A1 �

B � 0 with A1 > 0, then for t1 ∈ [0,1] and p1 � 1, p2 � 1

A2 � {A
t1
2
2 (A−

t1
2

1 Bp1A
− t1

2
1 )p2A

t1
2
2 }

1
(p1−t1)p2+t1 (3.3)

Second step. Assume (3.1) holds for n , that is, if A2n � A2n−1 � · · · � A2 �
A1 � B � 0, with A1 > 0,t1,t2, · · · ,tn ∈ [0,1] and p1, p2, · · · pn, · · · , p2n−1, p2n � 1 for a
natural number n ,

A2n � GA,B[2n]
1

ð[2n] . (3.1)

Then we shall show (3.1) forn+1 by Induction as follows. PutD = A2(n+1),E = A2n+1

and F = GA,B[2n]
1

ð[2n] . The hypothesis for n+1 and (3.1) imply

D � E � F � 0 with E > 0. (3.4)

(3.4) yields the following (3.5) by (iii) of Theorem A, for t ∈ [0,1], p � 1 and s � 1:

D � {D t
2 (E−

t
2 F pE−

t
2 )sD

t
2 } 1

(p−t)s+t . (3.5)

Put t = tn+1 ∈ [0,1], p = ð[2n]p2n+1 � 1 for p2n+1 � 1 and s = p2(n+1) � 1 in (3.5).
Then by (ii) of Lemma 2.1, (3.5) implies

(p− t)s+ t = (ð[2n]p2n+1− tn+1)p2(n+1) + tn+1 = ð[2(n+1)] (3.6)
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A2(n+1) � {A
tn+1
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2

2n+1 GA,B[2n]p2n+1A
−tn+1

2
2n+1 )p2(n+1)A

tn+1
2

2(n+1)}
1

ð[2(n+1)]

= GA,B[2(n+1)]
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ð[2(n+1)] , by (i) of Lemma 2.1 and (3.6)

(3.7)

and (3.7) means that (3.1) holds for n+1. Whence the proof is complete. �
Proof of Corollary 3.1. We have only to put A = A1 = A2 = A3 = · · ·= A2(n−1) =

A2n−1 = A2n, t = t1 = t2 = · · ·= tn−1 = tn in Theorem 3.1. �
THEOREM 3.2. If B � C1 � C2 � · · · � Cn−1 � Cn � Cn+1 � 0 with Cn > 0 ,

t1,t2, · · · , tn−1, tn ∈ [0,1] and p1, p2, · · · , p2n−1, p2n � 1 for a natural number n. Then
the following inequality holds
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Proof. We can assume C2n > 0 without loss of generality, then C2n
−1 �C2n−1

−1 �
· · ·� C2

−1 � C1
−1 � B−1 � 0.

Since (3.1) of Theorem 3.1 holds for t1,t2, · · · ,tn−1,tn ∈ [0,1] and p1, p2, · · · , p2n �
1 for a natural number n and by putting A2n = C2n
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THEOREM 3.3. If A2n � A2n−1 � · · ·� A2 � A1 � B � 0 , with A1 > 0 , t1,t2, · · · ,
tn−1,tn ∈ [0,1] and p1, p2, · · · , p2n−1, p2n � 1 for a natural number n. Then the follow-
ing inequality holds for r � tn
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(3.9)
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Proof. Put D = A2n, E = (GAi,B[2n])
1

ð[2n] in (3.1) of Theorem 3.1. Then D � E
by (3.1) for t1, t2, · · · ,tn−1,tn ∈ [0,1] and p1, p2, · · · , p2n−1, p2n � 1 for a natural number
n , by applying Theorem F,

D1+r1 � (D
r1
2 Es1D

r1
2 )

1+r1
s1+r1 holds f or s1 � 1 and r1 � 0. (3.10)

In (3.10) we have only to put r1 = r− tn � 0 and s1 = ð[2n] � 1 to obtain (3.9)
since s1 + r1 = ð[2n]− tn + r .

So the proof is completed. �

REMARK 3.2. Theorem 3.3 becomes Theorem H, when A1 = A2 = · · ·= A2n = A
and t1 = t2 = · · ·= tn = t hold.

THEOREM 3.4. If B �C1 �C2 � · · ·�C2(n−1) �C2n−1 �C2n � 0 with C2n−1 >
0 , t1,t2, · · · , tn−1, tn ∈ [0,1] and p1, p2, · · · , p2n−1, p2n � 1 for a natural number n. Then
the following inequality holds for r � tn

C2n
1−tn+r � {C2n

r
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Proof. The proof is similar to the proof of Theorem 3.2. �
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