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SUMS OF REAL PARTS OF EIGENVALUES OF PERTURBED MATRICES

M. I. GIL’

(Communicated by A. Čižmešija)

Abstract. Let A be Ã be n× n matrices, whose eigenvalues are λk and λ̃k , respectively. As-
suming that A is Hermitian, we prove the inequality

[
n

∑
k=1

| Re λ̃k −λk|p]1/p � Np(ER)+ b̃pNp(EI) (2 � p < ∞)

where Np(A) is the Schatten-von Neumann norm of A , E = Ã−A , ER = (E +E∗)/2 , EI =
(E−E∗)/2i , and b̃p � pe1/3 . That inequality is generalized then to the Schatten-von Neumann
operators.

1. Introduction

Let A and Ã be linear operators (matrices) in the complex Euclidean n -dimensional
space Cn,n < ∞ , whose eigenvalues counted with their multiplicities are λk and λ̃k

(k = 1, ...,n) , respectively. By Np(A) (1 � p < ∞) we denote the Schatten-von Neu-
mann norm of A :

Np
p (A) := trace [(A∗A)p/2],

cf. [1, 4]; the asterisk means the adjoint operator. In particular, N2(.) is the Hilbert-
Schmidt (Frobeinus) norm, cf. [1, 4]. Furthermore, AR = (A+A∗)/2, AI = (A−A∗)/2i
and E = Ã−A .

Introduce the quantity

mp(A, Ã) := min
π

n

∑
k=1

|λπ(k)− λ̃k|p (p � 1)

where π ranges over all permutations of the integers 1,2, ..,n . It plays an essential role
in the perturbation theory of matrices, cf. [8, 11]. One of the famous results on m2(A, Ã)
is the Hoffman-Wiellandt theorem proved in [6] (see also [11, p. 189] and [8, p. 126])
which asserts that for all normal matrices A and Ã , the inequality m2(A, Ã) � N2(A−Ã)
is valid.

In [9] L. Mirsky has proved that for all Hermitian matrices A and Ã we have

mp(A, Ã) � Np(A− Ã) (p � 1) (1.1)
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(see also [11, p. 194] and [8, p. 126]).
In 1975 W. Kahan [7] (see also [11, Theorem IV.5.2, p. 213]) derived the following

result: let A be a Hermitian operator and Ã an arbitrary one in C
n , and

λ1 � λ2 � ... � λn and Re λ̃1 � Re λ̃2 � ... � Re λ̃n. (1.2)

Then

[
n

∑
k=1

(Re λ̃k −λk)2]1/2 � N2(ER)+ [N2
2 (EI)−

n

∑
k=1

(Im λk)2]1/2 �
√

2N2(E). (1.3)

Here ER = (E +E∗)/2, EI = (E −E∗)/2i .
The Kahan theorem generalizes the Mirsky result in the case p = 2. Inequality

(1.3) can be easily generalized to the Hilbert-Schmidt operators. In the present paper
we establish an analogous result for a p ∈ (2,∞) . The results obtained below enable us
to derive estimates for the sums of the eigenvalues of perturbed Schatten-von Neumann
operators.

2. The main result

Let cm (m = 1,2, ...) be a sequence of positive numbers defined by by the recursive
relation

c1 = 1, cm = cm−1 +
√

c2
m−1 +1 (m = 2,3, ...).

To formulate our main result, for a p ∈ [2m,2m+1] (m = 1,2, ...) , put

bp = ct
mc1−t

m+1 with t = 2−2−mp.

As it is proved in [3, Corollary 1.3],

bp � pe1/3

2
� p (p � 2).

Again assume that (1.2) holds. Now we are in a position to formulate the main result of
the paper.

THEOREM 2.1. Let A be a Hermitian operator and Ã an arbitrary one in Cn .
Then for any p ∈ [2,∞) ,

[
n

∑
k=1

|Re λ̃k −λk|p]1/p � Np(ER)+2bpNp(EI). (2.1)

Proof. As it is well known, according to the Schur theorem, cf. [11], we can write

Ã = QT̃Q−1
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where T̃ is an upper triangular matrix. Since T̃ and Ã are similar, they have the same
eigenvalues, and without loss of generality we can assume that Ã is already upper
triangular, i.e.

Ã = D̃+ Ṽ (σ(Ã) = σ(D̃)) (2.2)

where D̃ is the diagonal matrix and Ṽ is the strictly upper triangular matrix. Here and
below σ(A) denotes the spectrum of A . We have Ã = D̃R + iD̃I + Ṽ and thus, the real
and imaginary part of A are

ÃR = A+ER = D̃R + ṼR and ÃI = EI = D̃I + ṼI,

respectively. Since A and D̃R are Hermitian, by (1.1) we obtain

[
n

∑
k=1

|Re λ̃k −λk|p]1/p � Np(A− D̃R) = Np(A−AR + ṼR) =

Np(ER + ṼR) (1 � p < ∞).

Thus

[
n

∑
k=1

|Re λ̃k −λk|p]1/p � Np(ER)+Np(ṼR) (1 � p < ∞). (2.3)

Making use Lemma 2.2 from [3], we get the inequality

Np(ṼR) � bpNp(ṼI) (2 � p < ∞) (2.4)

(see also [5, Section 3.6] and [2]). In addition, by (2.2) ṼI = ÃI − D̃I and therefore

Np(ṼI) � Np(ÃI)+Np(D̃I) (1 � p < ∞).

Thanks to the Weyl inequalities [4],

Np(D̃I) � Np(ÃI) and Np(D̃R) � Np(ÃR) (1 � p < ∞).

Thus,
Np(ṼI) � 2Np(ÃI) (1 � p < ∞). (2.5)

Now (2.4) implies the inequality

Np(ṼR) � 2bpNp(ÃI) (2 � p < ∞).

So by (2.3) we get the desired inequality

[
n

∑
k=1

|Re λ̃k −λk|p]1/p � Np(ER)+Np(ṼR) � Np(ER)+2bpNp(EI). �

The proved theorem is sharp in the following sense: if Ã is Hermitian, then
Np(EI) = 0 and inequality (2.1) becomes the Mirsky result (1.1).
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COROLLARY 2.2. Let a matrix Ã = (a jk)n
j,k=1 have the real diagonal entries. Let

W be the off-diagonal part of Ã : W = Ã−diag (a11, ...,ann) . Then for any p ∈ [2,∞) ,

[
n

∑
k=1

|Re λ̃k −akk|p]1/p � Np(WR)+2bpNp(WI)

and therefore,

[
n

∑
k=1

|Re λ̃k|p]1/p � [
n

∑
k=1

|akk|p]1/p−Np(WR)−2bpNp(WI). (2.6)

Indeed, this result is due to the previous theorem with A = diag [a j j] .
Certainly, inequality (2.6) has a sense only if its right-hand side is positive.
The latter corollary complements the Weyl inequality

n

∑
k=1

|Re λ̃k|p � Np
p (ÃR) (p � 1).

Furthermore, for a p � 1, let Sp be the Schatten-von Neumann ideal of compact opera-
tors A in a separable Hilbert space with the finite norm Np(A) [4, 1]. Since any operator
from Sp can be considered as a limit in Np of finite rank operators [1], Theorem 2.1
implies

COROLLARY 2.3. Let A ∈ Sp (2 � p < ∞) be a Hermitian operator and Ã ∈ Sp

an arbitrary one. Then

[
∞

∑
k=1

|Re λ̃k −λk|p]1/p � Np(ER)+2bpNp(EI).

3. The case p = 1 and perturbations of determinants

The case 1 � p < 2 should be considered separately from the case p � 2, since
the relations between Np(ṼR) and Np(ṼI) similar to inequality (2.3) are unknown if
p = 1, and we could not use the arguments of the proof of Theorem 2.1.

Furthermore, by (2.2) one can write out

n

∑
k=1

|Re λ̃k −λk| � N1(ER)+N1(ṼR).

But by the well-known Theorem 3.2.1 from [5],

N1(VR) � N1(VI)vn where vn :=
4
π

n

∑
k=1

1
2k−1

. (3.1)

Thus (2.4) and (3.1) yield the inequality

N1(VR) � N1(VI)vn � 2N1(AI)vn.
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Taking into account that

n

∑
k=1

|Im λ̃k| � N1(ÃI) = N1(EI),

cf. [4, Section II.6], we obtain the following Theorem.

THEOREM 3.1. Let A be a Hermitian operator and Ã an arbitrary one in Cn .
Then the inequalities

n

∑
k=1

|Re λ̃k −λk| � N1(ER)+2vnN1(EI)

and
n

∑
k=1

|λ̃k −λk| �
n

∑
k=1

|Re λ̃k −λk|+
n

∑
k=1

|Im λ̃k| � ηn(E)

are true, where
ηn(E) := N1(ER)+ (1+2vn)N1(EI).

Let us apply the latter theorem to determinants. To this end note that

det A−det Ã =
n

∑
j=1

j−1

∏
k=1

λk

(
λ j − λ̃ j

) n

∏
k= j+1

λ̃k.

Here we put
0

∏
k=1

λk =
n

∏
k=n+1

λk = 1.

Hence,

|det A−det Ã| �
n

∑
j=1

|λ j − λ̃ j| max
1� j�n

(
j−1

∏
k=1

|λk|
n

∏
k= j+1

|λ̃k|
)

. (3.2)

According to the inequality for the arithmetic and geometric mean values,

j−1

∏
k=1

|λk|
n

∏
k= j+1

|λ̃k| �
[

1
n−1

(
j−1

∑
k=1

|λk|+
n

∑
k= j+1

|λ̃k|
)]n−1

.

But thanks to Theorem 2.1,

n

∑
k=1

|λ̃k| �
n

∑
k=1

|λk|+ηn(E).

Thus
j−1

∏
k=1

|λk|
n

∏
k= j+1

|λ̃k| �
[

1
n−1

(
n

∑
k=1

|λk|+ηn(E)

)]n−1

.

Making use Theorem 3.1 and (3.2), we arrive at the following result.
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COROLLARY 3.2. Let A be a Hermitian operator and Ã an arbitrary one in Cn .
Then

|det A−det Ã| � ηn(E)

[
1

n−1

(
n

∑
k=1

|λk|+ηn(E)

)]n−1

.

Taking in this corollary A = diag (a11, ...,ann) we get

COROLLARY 3.3. Let a matrix Ã = (a jk)n
j,k=1 have the real diagonal entries.

Then ∣∣∣∣∣det Ã−
n

∏
k=1

akk

∣∣∣∣∣� ηn(W )

[
1

n−1

(
n

∑
k=1

|akk|+ηn(W )

)]n−1

.

Recall that W is the off-diagonal part of Ã . Besides,

ηn(W ) = N1(WR)+ (1+2vn)N1(WI).

RE F ER EN C ES

[1] N. DUNFORD, AND J.T. SCHWARTZ, Linear Operators, part II. Spectral Theory, Interscience Pub-
lishers, New York, London, 1963.

[2] M.I. GIL’, Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830,
Springer-Verlag, Berlin, 2003.

[3] M.I. GIL’, Lower bounds for eigenvalues of Schatten-von Neumann operators, J. Inequal. Pure Appl.
Mathem., 8, 3 (2007), 117–122.

[4] I.C. GOHBERG, AND M.G. KREIN, Introduction to the Theory of Linear Nonselfadjoint Operators,
Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R. I., 1969.

[5] I.C. GOHBERG, AND M.G. KREIN, Theory and Applications of Volterra Operators in Hilbert Space,
Trans. Mathem. Monogr., Vol. 24, Amer. Math. Soc., R. I. 1970.

[6] A.J. HOFFMAN, AND H.W. WIELLANDT,The variation of the spectrum a normal matrix, Duke Math.
J., 20 (1953), 37–39.

[7] W. KAHAN, Spectra of nearly Hermitian matrices, Proc. Am. Math. Soc., 48 (1975), 11–17.
[8] T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
[9] L. MIRSKY, Symmetric gage functions and unitarily invariant norms, Q. J. Math., 11 (1960), 50–59.

[10] M. SIGG, A Minkowski-type inequality for the Schatten norm, J. Inequal. Pure Appl. Math., 6, 3
(2005), Paper No. 87, 7 p., electronic only.

[11] G. W. STEWART AND JI-GUANG SUN, Matrix Perturbation Theory, Academic Press, New York,
1990.

(Received July 5, 2009) M. I. Gil’
Department of Mathematics

Ben Gurion University of the Negev
P.0. Box 653

Beer-Sheva 84105
Israel

e-mail: gilmi@cs.bgu.ac.il

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


