SUMS OF REAL PARTS OF EIGENVALUES OF PERTURBED MATRICES

M. I. GIL'

(Communicated by A. Čižmešija)

Abstract. Let A be \tilde{A} be $n \times n$ matrices, whose eigenvalues are λ_{k} and $\tilde{\lambda}_{k}$, respectively. Assuming that A is Hermitian, we prove the inequality

$$
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(E_{R}\right)+\tilde{b}_{p} N_{p}\left(E_{I}\right) \quad(2 \leqslant p<\infty)
$$

where $N_{p}(A)$ is the Schatten-von Neumann norm of $A, E=\tilde{A}-A, E_{R}=\left(E+E^{*}\right) / 2, E_{I}=$ $\left(E-E^{*}\right) / 2 i$, and $\tilde{b}_{p} \leqslant p e^{1 / 3}$. That inequality is generalized then to the Schatten-von Neumann operators.

1. Introduction

Let A and \tilde{A} be linear operators (matrices) in the complex Euclidean n-dimensional space $\mathbb{C}^{n}, n<\infty$, whose eigenvalues counted with their multiplicities are λ_{k} and $\tilde{\lambda}_{k}$ $(k=1, \ldots, n)$, respectively. By $N_{p}(A)(1 \leqslant p<\infty)$ we denote the Schatten-von Neumann norm of A :

$$
N_{p}^{p}(A):=\operatorname{trace}\left[\left(A^{*} A\right)^{p / 2}\right]
$$

cf. [1, 4]; the asterisk means the adjoint operator. In particular, $N_{2}($.$) is the Hilbert-$ Schmidt (Frobeinus) norm, cf. [1, 4]. Furthermore, $A_{R}=\left(A+A^{*}\right) / 2, A_{I}=\left(A-A^{*}\right) / 2 i$ and $E=\tilde{A}-A$.

Introduce the quantity

$$
m_{p}(A, \tilde{A}):=\min _{\pi} \sum_{k=1}^{n}\left|\lambda_{\pi(k)}-\tilde{\lambda}_{k}\right|^{p}(p \geqslant 1)
$$

where π ranges over all permutations of the integers $1,2, . ., n$. It plays an essential role in the perturbation theory of matrices, cf. [8, 11]. One of the famous results on $m_{2}(A, \tilde{A})$ is the Hoffman-Wiellandt theorem proved in [6] (see also [11, p. 189] and [8, p. 126]) which asserts that for all normal matrices A and \tilde{A}, the inequality $m_{2}(A, \tilde{A}) \leqslant N_{2}(A-\tilde{A})$ is valid.

In [9] L. Mirsky has proved that for all Hermitian matrices A and \tilde{A} we have

$$
\begin{equation*}
m_{p}(A, \tilde{A}) \leqslant N_{p}(A-\tilde{A})(p \geqslant 1) \tag{1.1}
\end{equation*}
$$

Mathematics subject classification (2010): 15A42, 15A18, 47A10, 47B10.
Keywords and phrases: Matrices, inequalities for eigenvalues, Schatten-von Neumann ideals.
(see also [11, p. 194] and [8, p. 126]).
In 1975 W. Kahan [7] (see also [11, Theorem IV.5.2, p. 213]) derived the following result: let A be a Hermitian operator and \tilde{A} an arbitrary one in \mathbb{C}^{n}, and

$$
\begin{equation*}
\lambda_{1} \leqslant \lambda_{2} \leqslant \ldots \leqslant \lambda_{n} \text { and } \operatorname{Re} \tilde{\lambda}_{1} \leqslant \operatorname{Re} \tilde{\lambda}_{2} \leqslant \ldots \leqslant \operatorname{Re} \tilde{\lambda}_{n} \tag{1.2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left[\sum_{k=1}^{n}\left(\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right)^{2}\right]^{1 / 2} \leqslant N_{2}\left(E_{R}\right)+\left[N_{2}^{2}\left(E_{I}\right)-\sum_{k=1}^{n}\left(\operatorname{Im} \lambda_{k}\right)^{2}\right]^{1 / 2} \leqslant \sqrt{2} N_{2}(E) \tag{1.3}
\end{equation*}
$$

Here $E_{R}=\left(E+E^{*}\right) / 2, E_{I}=\left(E-E^{*}\right) / 2 i$.
The Kahan theorem generalizes the Mirsky result in the case $p=2$. Inequality (1.3) can be easily generalized to the Hilbert-Schmidt operators. In the present paper we establish an analogous result for a $p \in(2, \infty)$. The results obtained below enable us to derive estimates for the sums of the eigenvalues of perturbed Schatten-von Neumann operators.

2. The main result

Let $c_{m}(m=1,2, \ldots)$ be a sequence of positive numbers defined by by the recursive relation

$$
c_{1}=1, c_{m}=c_{m-1}+\sqrt{c_{m-1}^{2}+1}(m=2,3, \ldots)
$$

To formulate our main result, for a $p \in\left[2^{m}, 2^{m+1}\right](m=1,2, \ldots)$, put

$$
b_{p}=c_{m}^{t} c_{m+1}^{1-t} \text { with } t=2-2^{-m} p
$$

As it is proved in [3, Corollary 1.3],

$$
b_{p} \leqslant \frac{p e^{1 / 3}}{2} \leqslant p(p \geqslant 2)
$$

Again assume that (1.2) holds. Now we are in a position to formulate the main result of the paper.

Theorem 2.1. Let A be a Hermitian operator and \tilde{A} an arbitrary one in \mathbb{C}^{n}. Then for any $p \in[2, \infty)$,

$$
\begin{equation*}
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(E_{R}\right)+2 b_{p} N_{p}\left(E_{I}\right) \tag{2.1}
\end{equation*}
$$

Proof. As it is well known, according to the Schur theorem, cf. [11], we can write

$$
\tilde{A}=Q \tilde{T} Q^{-1}
$$

where \tilde{T} is an upper triangular matrix. Since \tilde{T} and \tilde{A} are similar, they have the same eigenvalues, and without loss of generality we can assume that \tilde{A} is already upper triangular, i.e.

$$
\begin{equation*}
\tilde{A}=\tilde{D}+\tilde{V} \quad(\sigma(\tilde{A})=\sigma(\tilde{D})) \tag{2.2}
\end{equation*}
$$

where \tilde{D} is the diagonal matrix and \tilde{V} is the strictly upper triangular matrix. Here and below $\sigma(A)$ denotes the spectrum of A. We have $\tilde{A}=\tilde{D}_{R}+i \tilde{D}_{I}+\tilde{V}$ and thus, the real and imaginary part of A are

$$
\tilde{A}_{R}=A+E_{R}=\tilde{D}_{R}+\tilde{V}_{R} \text { and } \tilde{A}_{I}=E_{I}=\tilde{D}_{I}+\tilde{V}_{I} \text {, }
$$

respectively. Since A and \tilde{D}_{R} are Hermitian, by (1.1) we obtain

$$
\begin{gathered}
{\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(A-\tilde{D}_{R}\right)=N_{p}\left(A-A_{R}+\tilde{V}_{R}\right)=} \\
N_{p}\left(E_{R}+\tilde{V}_{R}\right)(1 \leqslant p<\infty) .
\end{gathered}
$$

Thus

$$
\begin{equation*}
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(E_{R}\right)+N_{p}\left(\tilde{V}_{R}\right) \quad(1 \leqslant p<\infty) . \tag{2.3}
\end{equation*}
$$

Making use Lemma 2.2 from [3], we get the inequality

$$
\begin{equation*}
N_{p}\left(\tilde{V}_{R}\right) \leqslant b_{p} N_{p}\left(\tilde{V}_{I}\right) \quad(2 \leqslant p<\infty) \tag{2.4}
\end{equation*}
$$

(see also [5, Section 3.6] and [2]). In addition, by (2.2) $\tilde{V}_{I}=\tilde{A}_{I}-\tilde{D}_{I}$ and therefore

$$
N_{p}\left(\tilde{V}_{I}\right) \leqslant N_{p}\left(\tilde{A}_{I}\right)+N_{p}\left(\tilde{D}_{I}\right) \quad(1 \leqslant p<\infty) .
$$

Thanks to the Weyl inequalities [4],

$$
N_{p}\left(\tilde{D}_{I}\right) \leqslant N_{p}\left(\tilde{A}_{I}\right) \text { and } N_{p}\left(\tilde{D}_{R}\right) \leqslant N_{p}\left(\tilde{A}_{R}\right)(1 \leqslant p<\infty) .
$$

Thus,

$$
\begin{equation*}
N_{p}\left(\tilde{V}_{I}\right) \leqslant 2 N_{p}\left(\tilde{A}_{I}\right) \quad(1 \leqslant p<\infty) . \tag{2.5}
\end{equation*}
$$

Now (2.4) implies the inequality

$$
N_{p}\left(\tilde{V}_{R}\right) \leqslant 2 b_{p} N_{p}\left(\tilde{A}_{I}\right) \quad(2 \leqslant p<\infty) .
$$

So by (2.3) we get the desired inequality

$$
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(E_{R}\right)+N_{p}\left(\tilde{V}_{R}\right) \leqslant N_{p}\left(E_{R}\right)+2 b_{p} N_{p}\left(E_{I}\right) .
$$

The proved theorem is sharp in the following sense: if \tilde{A} is Hermitian, then $N_{p}\left(E_{I}\right)=0$ and inequality (2.1) becomes the Mirsky result (1.1).

COROLLARY 2.2. Let a matrix $\tilde{A}=\left(a_{j k}\right)_{j, k=1}^{n}$ have the real diagonal entries. Let W be the off-diagonal part of $\tilde{A}: W=\tilde{A}-\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$. Then for any $p \in[2, \infty)$,

$$
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-a_{k k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(W_{R}\right)+2 b_{p} N_{p}\left(W_{I}\right)
$$

and therefore,

$$
\begin{equation*}
\left[\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}\right|^{p}\right]^{1 / p} \geqslant\left[\sum_{k=1}^{n}\left|a_{k k}\right|^{p}\right]^{1 / p}-N_{p}\left(W_{R}\right)-2 b_{p} N_{p}\left(W_{I}\right) \tag{2.6}
\end{equation*}
$$

Indeed, this result is due to the previous theorem with $A=\operatorname{diag}\left[a_{j j}\right]$.
Certainly, inequality (2.6) has a sense only if its right-hand side is positive.
The latter corollary complements the Weyl inequality

$$
\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}\right|^{p} \leqslant N_{p}^{p}\left(\tilde{A}_{R}\right)(p \geqslant 1)
$$

Furthermore, for a $p \geqslant 1$, let S_{p} be the Schatten-von Neumann ideal of compact operators A in a separable Hilbert space with the finite norm $N_{p}(A)[4,1]$. Since any operator from S_{p} can be considered as a limit in N_{p} of finite rank operators [1], Theorem 2.1 implies

Corollary 2.3. Let $A \in S_{p}(2 \leqslant p<\infty)$ be a Hermitian operator and $\tilde{A} \in S_{p}$ an arbitrary one. Then

$$
\left[\sum_{k=1}^{\infty}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|^{p}\right]^{1 / p} \leqslant N_{p}\left(E_{R}\right)+2 b_{p} N_{p}\left(E_{I}\right)
$$

3. The case $p=1$ and perturbations of determinants

The case $1 \leqslant p<2$ should be considered separately from the case $p \geqslant 2$, since the relations between $N_{p}\left(\tilde{V}_{R}\right)$ and $N_{p}\left(\tilde{V}_{I}\right)$ similar to inequality (2.3) are unknown if $p=1$, and we could not use the arguments of the proof of Theorem 2.1.

Furthermore, by (2.2) one can write out

$$
\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right| \leqslant N_{1}\left(E_{R}\right)+N_{1}\left(\tilde{V}_{R}\right)
$$

But by the well-known Theorem 3.2.1 from [5],

$$
\begin{equation*}
N_{1}\left(V_{R}\right) \leqslant N_{1}\left(V_{I}\right) v_{n} \text { where } v_{n}:=\frac{4}{\pi} \sum_{k=1}^{n} \frac{1}{2 k-1} \tag{3.1}
\end{equation*}
$$

Thus (2.4) and (3.1) yield the inequality

$$
N_{1}\left(V_{R}\right) \leqslant N_{1}\left(V_{I}\right) v_{n} \leqslant 2 N_{1}\left(A_{I}\right) v_{n}
$$

Taking into account that

$$
\sum_{k=1}^{n}\left|\operatorname{Im} \tilde{\lambda}_{k}\right| \leqslant N_{1}\left(\tilde{A}_{I}\right)=N_{1}\left(E_{I}\right)
$$

cf. [4, Section II.6], we obtain the following Theorem.
THEOREM 3.1. Let A be a Hermitian operator and \tilde{A} an arbitrary one in \mathbb{C}^{n}. Then the inequalities

$$
\sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right| \leqslant N_{1}\left(E_{R}\right)+2 v_{n} N_{1}\left(E_{I}\right)
$$

and

$$
\sum_{k=1}^{n}\left|\tilde{\lambda}_{k}-\lambda_{k}\right| \leqslant \sum_{k=1}^{n}\left|\operatorname{Re} \tilde{\lambda}_{k}-\lambda_{k}\right|+\sum_{k=1}^{n}\left|\operatorname{Im} \tilde{\lambda}_{k}\right| \leqslant \eta_{n}(E)
$$

are true, where

$$
\eta_{n}(E):=N_{1}\left(E_{R}\right)+\left(1+2 v_{n}\right) N_{1}\left(E_{I}\right) .
$$

Let us apply the latter theorem to determinants. To this end note that

$$
\operatorname{det} A-\operatorname{det} \tilde{A}=\sum_{j=1}^{n} \prod_{k=1}^{j-1} \lambda_{k}\left(\lambda_{j}-\tilde{\lambda}_{j}\right) \prod_{k=j+1}^{n} \tilde{\lambda}_{k}
$$

Here we put

$$
\prod_{k=1}^{0} \lambda_{k}=\prod_{k=n+1}^{n} \lambda_{k}=1
$$

Hence,

$$
\begin{equation*}
|\operatorname{det} A-\operatorname{det} \tilde{A}| \leqslant \sum_{j=1}^{n}\left|\lambda_{j}-\tilde{\lambda}_{j}\right| \max _{1 \leqslant j \leqslant n}\left(\prod_{k=1}^{j-1}\left|\lambda_{k}\right| \prod_{k=j+1}^{n}\left|\tilde{\lambda}_{k}\right|\right) . \tag{3.2}
\end{equation*}
$$

According to the inequality for the arithmetic and geometric mean values,

$$
\prod_{k=1}^{j-1}\left|\lambda_{k}\right| \prod_{k=j+1}^{n}\left|\tilde{\lambda}_{k}\right| \leqslant\left[\frac{1}{n-1}\left(\sum_{k=1}^{j-1}\left|\lambda_{k}\right|+\sum_{k=j+1}^{n}\left|\tilde{\lambda}_{k}\right|\right)\right]^{n-1}
$$

But thanks to Theorem 2.1,

$$
\sum_{k=1}^{n}\left|\tilde{\lambda}_{k}\right| \leqslant \sum_{k=1}^{n}\left|\lambda_{k}\right|+\eta_{n}(E) .
$$

Thus

$$
\prod_{k=1}^{j-1}\left|\lambda_{k}\right| \prod_{k=j+1}^{n}\left|\tilde{\lambda}_{k}\right| \leqslant\left[\frac{1}{n-1}\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|+\eta_{n}(E)\right)\right]^{n-1} .
$$

Making use Theorem 3.1 and (3.2), we arrive at the following result.

Corollary 3.2. Let A be a Hermitian operator and \tilde{A} an arbitrary one in \mathbb{C}^{n}. Then

$$
|\operatorname{det} A-\operatorname{det} \tilde{A}| \leqslant \eta_{n}(E)\left[\frac{1}{n-1}\left(\sum_{k=1}^{n}\left|\lambda_{k}\right|+\eta_{n}(E)\right)\right]^{n-1}
$$

Taking in this corollary $A=\operatorname{diag}\left(a_{11}, \ldots, a_{n n}\right)$ we get
Corollary 3.3. Let a matrix $\tilde{A}=\left(a_{j k}\right)_{j, k=1}^{n}$ have the real diagonal entries. Then

$$
\left|\operatorname{det} \tilde{A}-\prod_{k=1}^{n} a_{k k}\right| \leqslant \eta_{n}(W)\left[\frac{1}{n-1}\left(\sum_{k=1}^{n}\left|a_{k k}\right|+\eta_{n}(W)\right)\right]^{n-1}
$$

Recall that W is the off-diagonal part of \tilde{A}. Besides,

$$
\eta_{n}(W)=N_{1}\left(W_{R}\right)+\left(1+2 v_{n}\right) N_{1}\left(W_{I}\right)
$$

REFERENCES

[1] N. Dunford, and J.T. Schwartz, Linear Operators, part II. Spectral Theory, Interscience Publishers, New York, London, 1963.
[2] M.I. GIL', Operator Functions and Localization of Spectra, Lecture Notes In Mathematics vol. 1830, Springer-Verlag, Berlin, 2003.
[3] M.I. GIL', Lower bounds for eigenvalues of Schatten-von Neumann operators, J. Inequal. Pure Appl. Mathem., 8, 3 (2007), 117-122.
[4] I.C. Gohberg, and M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators, Trans. Mathem. Monographs, v. 18, Amer. Math. Soc., Providence, R. I., 1969.
[5] I.C. Gohberg, and M.G. Krein, Theory and Applications of Volterra Operators in Hilbert Space, Trans. Mathem. Monogr., Vol. 24, Amer. Math. Soc., R. I. 1970.
[6] A.J. Hoffman, and H.W. Wiellandt, The variation of the spectrum a normal matrix, Duke Math. J., 20 (1953), 37-39.
[7] W. Kahan, Spectra of nearly Hermitian matrices, Proc. Am. Math. Soc., 48 (1975), 11-17.
[8] T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.
[9] L. Mirsky, Symmetric gage functions and unitarily invariant norms, Q. J. Math., 11 (1960), 50-59.
[10] M. Sigg, A Minkowski-type inequality for the Schatten norm, J. Inequal. Pure Appl. Math., 6, 3 (2005), Paper No. 87, 7 p., electronic only.
[11] G. W. Stewart and Ji-guang Sun, Matrix Perturbation Theory, Academic Press, New York, 1990.
M. I. Gil'

Department of Mathematics Ben Gurion University of the Negev
e-mail: gilmi@cs.bgu.ac.il

[^0]
[^0]: Journal of Mathematical Inequalities
 www.ele-math.com
 jmi@ele-math.com

