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ITERATIVE APPROXIMATIONS FOR A FAMILY OF
MULTIVALUED MAPPINGS IN BANACH SPACES

ZHANFEI ZUO

Abstract. In this paper we consider the convergence of iterative processes for a family of mul-
tivalued nonexpansive mappings. Under somewhat different conditions the sequences of Noor,
Mann and Ishikawa iterates converge to the common fixed point of the family of multivalued
nonexpansive mappings.

1. Introduction

Let X be a Banach space and K a nonempty subset of X. Let 2X denote the
family of all subsets of X, CB(X) the family of all nonempty closed bounded subsets
of X and C(X) the family of nonempty compact subsets of X . A multivalued mapping
T : K — 2% issaid to be nonexpansive (resp, contractive) if

H(T.X,Ty) < H'x_y”a x,yEK,

(resp. H(Tx,Ty) < k||x—y||, for some k € (0,1)).
where H(-,-) denotes the Hausdorff metric on CB(X) defined by

H(A,B) := max{supinf ||x—y||, supinf ||x—y||}, A,B€ CB(X).
xeAYEB yeBXEA

A point x is called a fixed point of T if x € Tx. Since Banach’s Contraction Mapping
Principle was extended nicely to multivalued mappings by Nadler in 1969 (see [8]),
many authors have studied the fixed point theory for multivalued mappings (e.g. see[l,
4,5,6, 16, 21,]). For a single-valued nonexpansive mapping 7', Mann [7] and Ishikawa
[3] respectively introduced new iteration procedure for approximating its fixed point in
a Banach space as follows:

Xpr1 = (1= 1) Txy + tyxy (1
and
Xnr1 = (L= 1) Typ + tyxn,yn = (1 — 5,) Txp + Spxn, 2)

where {t,} and {s,} are sequences in [0,1]. Obviously, Mann iteration is a special
case of Ishikawa iteration. Subsequently, Mann iteration and Ishikawa iteration have
extensively been studied for constructions of fixed points of nonlinear mappings and
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of solutions of nonlinear operator equations involving monotone, accretive and pseu-
docontractive operators. It is a very natural question whether the strongly convergent
results of {x,} defined by (1) or (2) for a single-valued nonexpansive mapping 7 can
be extended to the multivalued case.

In this paper we consider the following iteration for a family of multivalued non-
expansive mapping {7, }. Let K be a nonempty closed convex subset of Banach space
X and T, : K — CB(K) be a family of multivalued nonexpansive mappings. For a given
x1 € K and s1 € Tix; let

21 = (1 —al)xl +apsy.

There exists 71 € Tjz; such that ||f; —s;|| < H(T1z1,Tix1). Let
y1= (1 — by —Cl)xl + b1ty +c151.-

There exists r; € Ty suchthat ||r — 11| < H(T1y1,Tiz1) and ||ry —s1|| < H(Tyy1, Tixy).
Let

x2= (1= —Pi—ri)xi +ourt + Pit1 + 181
There exists s € Toxp such that |[s; —ri|| < H(Tax2, Tiv1), ||s2 — 11| < H(Tx2,Tiz1)
and ||s2 — s1|| < H(Tax2, Ty x1) . Inductively, we can get the sequence {x;,} as follows:

In = (1 _an)xn + ansn
Yn = (1 —by— Cn)xn + buty + CuSp 3
Xn+1 = (1 — Oy — Bn - Yn)xn + 01y +Bntn +Yn5na

where {an},{bn},{cn}t,{bn+cn}t.{0},{Bn},{yn} and {, + B, + ya} are appropri-

ate sequence in [0, 1], furthermore s, € Tyxn,t, € T2, 7 € T yn such that ||g, — s, <
H(Tnzm Tnxn) ) Hrn - tn” g H(Tnym Tnzn) ) Hrn - SnH < H(Tnym Tnxn) ) Hsn-&-l - rnH <
H(Tn+1xn+1a Tn)’n) s Hsn-&-l _th < H(Y;q+lxn+la Tnzn) and ||Sn+l _SnH < H(Y;q+lxn+la Tnxn) .
The iterative scheme (3) is called Noor multivalued iterative scheme. If a, = ¢, = 8, =

1w =0 orlet a, = b, = ¢, = B = ¥4 =0, we get the algorithms in [22]

Xpr1 = (1 — 0y)xp + Oty yn = (1 =bp)x, +but, Yn €N, 4
Xn+l1 = (l_an)xn"‘anrna (5)
We call the iteration (4) and (5) is Ishikawa iteration and Mann iteration for a family

of multivalued nonexpansive mappings. In fact let ¥, =0 or ¢, =, =7, =0 or
b, = cn = 04 = ¥, =0, we also have the other three algorithms.

DEFINITION 1.1. A family of multivalued mappings 7, : K — CB(K) is said
to satisfy Condition (A") if there is a nondecreasing function f : [0,e0) — [0,00) with
f(0) =0, f(x) >0 for x € (0,%0) such that

d(x,T,x) > f(d(x,F(N,T,)) forallxeK,.

where F(N,T,) # 0 is the common fixed point set of the family of multivalued map-
pings {7, }. From now on, F(N,T,) stands for the common fixed point set of the family
of multivalued mappings {7,,}.
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2. Preliminaries

A Banach space X is said to be satisfy Opial’s condition [14] if, for any sequence
{xx} in X, x,, = x(n — o) implies the following inequality:

limsup ||x, — x|| < limsup ||x, — ||

n—oo n—oo

forall y € X with y # x. Itis well known that Hilbert spaces and I, (1 < p < o) have
the Opial’s condition. The following Lemmas will be useful in this paper.

LEMMA 2.1. Let {b,}, {a,} be two real sequences such that
(i) by, 0, €[0,1];
(ii) Timy, by — 0;
(iit) Xy bnOty = .

Let {y,} be a nonnegative real sequence such that ¥, by, (1 — by)y, is bounded.
Then {y,} has a subsequence which converges to zero.

LEMMA 2.2. (see [20]) Let {x,} and {yn} be bounded sequences in a Banach
space X such that

Xnt1 = OpXy + (1 - O‘n)ym n=0

where {0} is a sequence in [0,1] such that

0 < liminfoy, < limsupoy, < 1
n—oo

n—oo

limsup([[yn 1 = Yall = Pn 1 = xall) <O

n—-
Then lim;,_.c ||yn — x|| = 0.

LEMMA 2.3. (see [10]) Let {xn},{yn} and {z,} be sequence in uniformly convex
Banach space X. Suppose that {ay,},{B,} and {y,} are sequence in [0,1] with oy, +
Bn+ v, =1, limsup, ||x,|| < d,limsup, ||y,| < d,limsup, ||z:|| < d, and lim,, ||ct,x,, +
Buyn + Yuzul| = d. If liminf, &, > 0 and liminf, 8, > 0, then lim, ||x, — y,|| = 0.

LEMMA 2.4. (see [9]) Let X be a uniformly convex Banach space and B, := {x €
X :||lx|| < r},r > 0. Then there exists a continuous strictly increasing convex function
g:10,00) — [0,00) with g(0) =0 such that

12 + uy+Ezt 90> < A|x|? + ulyl + &zl + 0]

—%ﬁ(lg(\\x— o)) + pg(lly — @)+ ceg(llz— o))

forall x,y,z,0 € B, and A,u,&,9 €[0,1] with A+u+&+9=1.
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3. Main results

THEOREM 3.1. Let K be a nonempty compact convex subset of a uniformly
convex Banach space X. Suppose that T, : K — CB(K) be a family of multivalued
nonexpansive mappings and F(N,T,) # 0 satisfying T,(p) = {p} for any fixed point
p € F(N,T,) and {x,} be the sequence of Ishikawa iterates defined by (4). Assume
that

(ii) limy—eb, — 0;
(iii) Y| Oybp = oo.
Then, as n — oo, the sequence {x,} strongly converges to a common fixed point of T,.

Proof. Take p € F(N,T,), noting that T,,(p) = {p} for any fixed point p € F(N, T;,),
then ||u, — p|| = d(un, T,p) . Using Lemma 2.4, we have

1
[l X041 _pH2 <(1- O‘n)“xn_puz"'an“rn_P||2_ gan(l — )& (|10 — |
< (1 O(,,)Hxn—sz—l—OCn(H(T,,yn,Tnp))z
< (1= 00) %0 = P>+ 0allyn — pII?
< (1= 0)|lx = 1>+ o[ (1 = ) X0 — pI|> + bulltn — plI>

—2bu(1 =g~ )]

< (1= o)~ pI>+ 0al(1 ) [0 — pI12 + b (T, Tup)?
—2bu(1 =g~ )]

1
< lxn _P||2_ §O‘nbn(l —bu)g([|xn —tal])-

Therefore,

1
ganbn(l —bu)g(|Jxn — tll) < || —P||2 — [[xn 11 _PH2~

Then {||x, — p||} is a decreasing sequence and further lim,_. ||x, — p|| exists for each
p € F(N,T,,). It follows from that we have

a1 = pII* <l = I,

| =
52 )8l = ta]) < s = p|*.

From Lemma 2.1, there exists a subsequence {x,, —1,, } of {x,—1,} such that g(||x,, —
ty||) — 0 as k — oo, therefore we get ||x,, —,,|| — O, by the continuity and strictly
increasing nature of g. By the compactness of K, we may assume that x,, — ¢ for
some g € K. Thus for any n € N,

d(q,Tnq) < llg = x|l +dn, Tuxng) + H (T Tag)
< Mg =2 [l [ = B[l + [, — gl = O
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Hence ¢ is a common fixed point of {7,,}. Now we can take g in place of p, we get
that {||x, —¢l|} is a decreasing sequence, Since ||x,, —¢|| — 0 as k — oo, it follows
that {||x, —g||} — 0, so the desired conclusion follows.

THEOREM 3.2. Let X be a Banach space which satifies Opial’s condition and K
be a nonempty weakly compact convex subset of X. T,, {x,} and the condition be the
same as Theorem 3.1, furthermore

(i) by, 0 €[0,1];
(ii) limy_eby, — 0;
(iii) 357y bulty = oo.
Then, as n — oo, the sequence {x,} weakly converges to a common fixed point of T,,.
Proof. From Theorem 3.1, there exist a subsequence {x,, } of {x,} such that
Xp, = p € F(N,T;,) as ng — oo.

(Here — denotes the weak convergence.) Suppose that x;,, is not weakly convergent to
p € F(N,T,), then there exist a subsequence {x,,} C {x,} (i # k), such that {x, } —
q € F(N,T,),and p # q. Since X satisfies Opial’s condition, we have

lim ||lx, — p|| = lim [[xy, — p||
n—oo k—o0
< lim ||xy, — g = lim [|x,,, — q|
k—oo [—o0
< lim [lxy, — pl| = lim [|x, — p|.
1—00 n—oo
This is a contraction, so the desired conclusion follows.

THEOREM 3.3. Let K be a nonempty closed convex subset of a uniformly convex
Banach space X . Suppose that T,,, {x,} be the same as in Theorem 3.1 and by, 0, €
[a,b] C (0,1). Then, as n — oo, the sequence {x,} strongly converges to a common
fixed point of T,.

Proof. Using a similar proof of Theorem 3.1, we obtain that lim, ... |jx, — p||?

exists for p € F(N,T,) and

1
ganbn(l = bn)Q([Jxn — ta]) < [[xn _P||2 — [Jxn+1 _PH2~

Then we have

1

§a2(1 —b)@([lxn — tall) < [1%0 = pII* = %01 — PII*.

Therefore limy, e @(||x, —#,||) = 0 and lim, e ||x, — ,|| = 0. Since #, € T,x,, then
d(xn, Tnxn) < |[xn —ta]|. Therefore, lim, ... d(x,, T,x,) = 0, and condition A’ implies
limy, oo d (X, F (N, T,)) = 0. Since lim, o d(x,, F (N, T,)) =0, given € > 0, there exist
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Ne >0 and z; € F(N,T,) such that ||x, —z¢|| < € for all n > N,. Take & = 2lk for
k € N then corresponding to each g there is an Ny > 0 and a z; € F(N,T,) such that

g
[|%0 — 2k || < Zk forall n > N.

When Ny = Ny forall ke N,

E+1 &1
lzk = ze1ll = Mz = xw + 3N, — 2] < 2 —: = —4+ )

Let S(z,r) ={x€ X :||x—z|| < r}. For x € S(z+1,&+1) We have

llzk — || = ||lzk — 2e+1 + 2os1 — = &.

This implies S(zg+1,&+1) C S(zk, &) for k € N. By the Cantor intersection theorem,
there exist a single point p such that

mzozls(zlﬁ Ek) = {p}a

then ||z — p|| < & — 0 as k — oo which assure lim,,_.. ||x, — p|| =0 since limy_... Ny, =
o implies n — oo. For any n € N and x € T,,p, noting T,z = {2z}, we get

P =zl +d(x, Tuz) < [|p — 2| + H(Tup, Tuzx)
2lp =zl —0 ask— oo

I —x||

NN

Then p is a common fixed point of 7,, and {x,} strongly converges to p.
REMARK 3.4. The above results holds for Mann iteration (5).

THEOREM 3.5. Let K be a nonempty compact convex subset of a Banach space
X. Suppose that T, : K — CB(K) be a family of multivalued mappings satisfying
H(Tix,Tjy) < ||x—y|| for any i,j € N. Let {x,} be the sequence of Mann iterates
defined by (5). Assume that F(N,T,) # 0 and Yn € N, T,(p) = {p} for any fixed point
p € F(N,T,,). Assume that

0 < liminfoy, < limsupoy, < 1.

n—oo N0

Then, as n — oo, the sequence {x,} strongly converges to a common fixed point of T,.

Proof. Take p € F(N,T,), noting that T,,p = {p} and ||r, — p|| = d(rs, Tup), we
have

[Xn+1 =Pl < (1= 06)|[x0 — pl| + Qllrn — p|
< (1= 0g)[|xn = pll + 0t(H (Toxn, Tup))
< [l = plI-
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Then {|x, — p||} is a decreasing sequence and lim,_... ||x, — p|| exists for each p €
F(N,T,). It follows from the definition of Mann iteration (5) that

71 = 1l < H(Top1Xn41, Tuxn) < || X1 — X

Therefore we get limsup,_,.,(||rnt1 — 7nll — ||%n+1 — xn||) < 0. By Lemma 2.2, we ob-
tain lim, e ||, —x»|| = 0. Since r, € T,x,, then d(x,, Tyx,) < ||%n — ||, which assure
that lim,, .. d (xp, Tyx,) = 0. The remainder of the proof is the same as Theorem 3.1.

THEOREM 3.6. Let K be a nonempty closed convex subset of Banach space X .
Suppose that T, : K — CB(K) be a family of multivalued nonexpansive mappings satis-
fying Condition A’ and for any i,j € N H(Tix,Tjy) < ||x—y||. Tn, {xx} and condition
be the same as Theorem 3.5. Assume that

0 < liminfay, < limsupoy, < 1.

n—oo n—oo

Then as n — oo, the sequence {x,} strongly converges to common fixed point of T, .

Proof. 1t follows from the proof of Theorem 3.5 that lim,_..||x, — p|| exists for
each p € F(N,T,) and limy,_,ed(x,, T,x,) = 0. Since T, satisfying the Condition A’,
then we have lim,_,o.d(x,, F(N,7T,)) = 0. The remainder of the proof is the same as
Theorem 3.3.

THEOREM 3.7. Let X be a Banach space satisfying Opial’s condition and K be a
nonempty weakly compact convex subset of X. Suppose that T,, : K — C(K) be a family
of multivalued nonexpansive mappings that satisfies for any i,j € N H(Tx,Tjy) <
llx—y|l. T, {xa} and condition be the same as Theorem 3.5. Assume that

0 < liminfoy, < limsupo, < 1.

n—ee n—oo

Then as n — oo, the sequence {x,} weakly converges to a common fixed point of T,.

Proof. From the proof of Theorem 3.5 that lim ||x, — p|| exists for each p €

F(N,T,). Since K is weakly compact, there exists a subsequence {x,, } of {x,} such
that x,, — x* for some x* € K. Suppose there exists n € N and x* does not belong
to T,x*. By the compactness of T,x*, for any given x, , there is p; € T,x* such that
|1 Xn, — pill = d(xn,, Tux*) and py — p € T,x* then x* # p. Since X satisfies Opial’s
condition, then we get

limsup ||, — p| < limsup(|jx,, — pll + [ px — pll] = liZHSUP ([, — Pl

—s00 k—o0

< limsup(d (xp,, Tuxn, ) + H (Tpxn, , Thx"))

k—o0
< liznsup [|X%n, — x| < liinsup X, — |-
This is a contraction. Hence x* € T,x* for any n € N. The remainder of the proof is
the same as Theorem 3.2.
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LEMMA 3.8. Let X be a real Banach space and K be a nonempty convex subset of
X. Let T, : K — CB(K) be a multivalued nonexpansive mapping for which F(N,T,) #0
and T, (p) = {p} for any fixed point p € F (N, T;,). Let {x,} be a sequence in K defined
by (3), then we have the following conclusions:

lim||x, — p|| exists for any p € F(N,T,)
n

Proof. . Let p € F(N,T,), from iterative scheme (3), note that 7,(p) = {p} for
any fixed point p € F(N,T,), we have

llzn = pll < (1= an)|lxa — pll +anllsn — pll

(1 —an)|lxn — pll + and(sn, Tup)

(1 —an)||xn — pl| + anH (Txn, Tup)
|2 = pII,

NN

similarly ||y, — p|| < ||x» — p||, and so we have

o1 = pll < (1= 0t = Ba = ¥a) 1% — pll + 0| — p|
+Bulltn — Pl + Yallsn — Pl
< (1= aw—Bo— 1) lxa — Pl + € (Tuyn, Tup)
+BuH (Tuzn, Tup) + YaH (TnXn, Tup)
< (L= 0 = Bu = Ya)1Xn — Pl + Qtallyn — Pl
+Bullzn — pll + Yallxn — pl|
< e —pll-

Then {||x, — p||} is a decreasing sequence and hence lim,, ||x, — p|| exists for any p €
F(N.T,).

LEMMA 3.9. Let X be a uniformly convex Banach space and K be a nonempty
convex subset of X. Let T, : K — CB(K) be a multivalued nonexpansive mapping for
which F(N,T,) # 0 and T,(p) = {p} for any fixed point p € F(N,T,). Let {x,} be
a sequence in K defined by (3). If the coefficient satisfy one of the following control
conditions:

(i) 0 < liminf, B, < limsup, (o, + B+ 1) < 1 and limsup, a, < 1;
(ii) 0 < liminf,y, < limsup, (0p + B+ 1) < L;
(iii) 0 < liminf,(0pby + By) and 0 < liminf, a, < limsup, a, < 1,
then we have lim,, d(x,, T,x,) = 0.

Proof. By Lemma 3.8, it is well known that lim,, ||x, — p|| exists for any p €
F(N,T,), then it follows that {s, — p},{t, — p},and{r, — p} are all bounded. We may
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assume that these sequences belong to B, where r > 0. Note that 7,(p) = {p} for any
fixed point p € F(N,T,). By Lemma 2.4, we get

lzn = pII* < (1= an) %0 — P> + anllsn — p|I?
1 _an)”xn _p||2+and(5n7Tnp)2

(
< (1= ap)||xn — pl> + anH (Tpxn, Top)?
< |l — plI*,
Iva =PI < (1= bu—ca)lxa — P>+ bullta = pII* + cullsn — plI?
(1= bu—en)bug i — 5l + engllsn )
< (1= b —ca)|lxa = pII* + baH (Tyzn, Tup)* + caH (Tyxn, Tup)?
1

_5(1 — by —cn)bug([|tn — xal|)

1
< lxn _PH2_ 5(1 — by~ cn)bug([ltn —xal)),

therefore we have
X1 = plI* < (1=t = Bu—¥a) %0 — pII* + atallr — plI* + Bulltn — I
e pl = 31—~ By ) gl —ral)
+Bng([lxn — tall) + Vg (||xn — su )]
< (1=t — By — Ya)lxn — pII* + uH (Toyn, Tup)* + BuH (Tuzn, Tnp)?
FH (T, Tp)? = 5 (1= = By = 1) g (o~ )

+Bng (10 = tall) + vug (|1 — 5]

Oy

?(1 _bn_cn)bng(th_xn”) - (1 — Oy — B —

V) [0 g (%0 — 1ull) + Bug ([[xn — tall) + Vg ([[xn — snll)]-

W] =

< b —pl* ~

Then
(1= 0t = B = ¥u) tng ([0 — rall) < 3(lln — pII* = %1 — PII®) (6)
(1=t = B — ) Bug (10 — tall) < 3([[xa = pII* = [Purs — P11, (7
(1 — oy — B _Yn)Yng(Hxn _SnH) < 3(||xn _sz - Hanrl _p||2)7 (8)
and
0 (1= b = )bug (1t = xal) < 3(|lxa = pII* = 01— pI1?)- ©

Since lim, ||x, — p|| exists for any p € F(N,T,), it follows from (6) that lim, (1 — ot —
Brn — ¥n) etug(||xn — ra||) = 0. From g is continuous strictly increasing with g(0) =0
and 0 < liminf, a;, < limsup, (ct, + By + ¥n) < 1, then

lim ||x, — ry|| = 0. (10)
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Using a similarly method together with inequalities (7) and 0 < liminf, 8, < limsup, (04, +
Brn+7va) < 1, then

lim ||x, — £,]| = 0. (11)

Similarly, from (8) and 0 < liminf, y;,, < limsup,, (¢, + B+ ¥,) < 1, we have lim,, ||x, —
snll = 0, since s, € T,xp, then 0 < lim, d(x,, Tx,) < lim, ||x, — sp,|| = 0, thus we get
(ii).

If 0 < liminf, B, < limsup, (¢4, + B+ ¥») < 1 and limsup, a, < 1, we will prove
).

50— Xnll < llsn = tall + 1t — Xa|| < H(TuXn, Tazn) + [[tn — Xa||
< P =zl + [0 — x|
< anloxn — sull + |ltn — xa - (12)

Since limsup, a, < 1, then

liminf(1 — a,) = 1 — limsupa, > 0.

This together with (11), (12), we obtain the result.
Finally, we will prove (iii). From iterative scheme (3) and Lemma 3.1, we have

1 = pll < (1=t — Ba = ¥a) 1% — pll + 0tal| 7w — |
+Balltn — Il + Vallsn — Pl
< (L= 0= Bu— 1) l1Xn — Pl + ctallyn — Pl
+Bullzn — Pl + Yallxn — Pl
< (1= 04— B) %0 — pl| + an[(l _bn)Hxn _pH
+bnllza = Pl + Bullza — I,

which implies
[%n+1 = Pl = [0 = Pl + (Ctwbn =+ Bu) X0 — Pl < (0bn + Bu)l|zn — plI-

Notice that
0 < liminf(oy,by, + By) and lim||x, — p|| exists.

Hence we have
d =1im |x, — p|| <liminf |z, — p|| < limsup ||z, — p[| < d.
Thus we have
d =lim||z, — p|| = lim | (1 — @n) |lx2 = pl| +anllsn = pl|

By Lemma 2.3 and 0 < liminf, a, < limsup, a, < 1, we have 0 < lim, d(x,,Tx,) <
lim,, ||x,; — sn|| = 0.
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THEOREM 3.10. Let X,T, and {x,} be the same as in Lemma 3.9, K be a
nonempty compact convex subset of a Banach space X, then {x,} converges strongly
to a common fixed point of T,.

Proof. By Lemma 3.9, we have lim,d(x,,T,x,) = 0. Since K be a nonempty
compact convex subset, then there exist a subsequence {x,, } of {x,} such that lim_.., ||x,, —
g|l =0 for some g € K. Thus,

d(q,Tq) lq _xnk” +d(xnka Tnkxnk) +H(Tnkxnka Tn;ﬂ)

<
< qu_xnk” +d(xnk7Tnkxnk) — 0.

Hence g is a fixed point of T;,. Now taking ¢ in place of p, we get that lim, ... ||x, — ¢||
exists. So the desired conclusion follows.

THEOREM 3.11. Let X,K, T, and {x,} be the same as in Lemma 3.9, if T, sat-
isfies Condition A’ with respect to the sequence {x,}, then {x,} converges strongly to
a common fixed point of T,,.

Proof. By Lemma 3.9, we have lim, d(x,, Tx,) = 0. Since T, satisfies Condition
A’ with respect to {x, }. Thus we get d(x,,F(N,T,)) = 0. The remainder of the proof
is similar as Theorem 2.4 in [19], we omit it.

THEOREM 3.12. Let X,T,, and {x,} be the same as in Lemma 3.9 , K be a
nonempty weakly compact convex subset of a Banach space X and X satisfies Opial’s
condition, then {x,} converges weakly to a common fixed point of T,.

Proof. The proof of the Theorem is similar as Theorem 2.5 in [19], we omit it.
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