SHARP BOUNDS FOR SEIFFERT MEANS
IN TERMS OF LEHMER MEANS

MIAO-KUN WANG, YE-FANG QIU AND YU-MING CHU

Abstract. In this paper, we establish two sharp inequalities as follows: \(P(a, b) > L_{-\frac{1}{6}}(a, b) \) and \(T(a, b) < L_{\frac{1}{3}}(a, b) \) for all \(a, b > 0 \) with \(a \neq b \). Here, \(L_r(a, b) \), \(P(a, b) \) and \(T(a, b) \) are the Lehmer, first and second Seiffert means of \(a \) and \(b \), respectively.

1. Introduction

For \(r \in \mathbb{R} \) and \(a, b > 0 \), the Lehmer mean \(L_r(a, b) \) was introduced by Lehmer [1] as follows:

\[
L_r(a, b) = \frac{a^{r+1} + b^{r+1}}{a^r + b^r} \tag{1.1}
\]

It is well known that \(L_r(a, b) \) is increasing with respect to \(r \in \mathbb{R} \) for fixed \(a \) and \(b \). Many means are the special cases of Lehmer mean, for example,

\[
A(a, b) = \frac{a + b}{2} = L_0(a, b) \quad \text{is the arithmetic mean,}
\]

\[
G(a, b) = \sqrt{ab} = L_{-\frac{1}{2}}(a, b) \quad \text{is the geometric mean,}
\]

\[
H(a, b) = \frac{2ab}{a+b} = L_{-1}(a, b) \quad \text{is the harmonic mean.}
\]

Investigation of the inequalities between Lehmer and other means has attracted the attention of a considerable number of mathematicians [2–5].

The first and second Seiffert means \(P(a, b) \) [6] and \(T(a, b) \) [7] of two positive numbers \(a \) and \(b \) are defined by

\[
P(a, b) = \begin{cases}
\frac{a - b}{4 \arctan(\sqrt{a^{-\frac{1}{2}}} - \pi)}, & a \neq b, \\
\frac{a}{a+b}, & a = b
\end{cases} \tag{1.2}
\]

and

\[
T(a, b) = \begin{cases}
\frac{a - b}{2 \arctan(\frac{a-b}{a+b})}, & a \neq b, \\
\frac{a}{a+b}, & a = b
\end{cases} \tag{1.3}
\]
respectively.

Recently, both means \(P \) and \(T \) have been the subject of intensive research. In particular, many remarkable inequalities for \(P \) and \(T \) can be found in the literature [7–11]. The first Seiffert mean \(P(a,b) \) can be rewritten as (see [10, Eq.(2.4)])

\[
P(a,b) = \begin{cases} \frac{a-b}{2\arcsin\left(\frac{a-b}{a+b}\right)}, & a \neq b, \\ a, & a = b. \end{cases}
\] (1.4)

The power mean of order \(p \) of the positive real numbers \(a \) and \(b \) is defined by

\[
M_p(a,b) = \begin{cases} \left(\frac{a^p + b^p}{2}\right)^{\frac{1}{p}}, & p \neq 0, \\ \sqrt{ab}, & p = 0. \end{cases}
\]

The main properties of the power mean \(M_p \) are given in [12]. In particular, \(M_p(a,b) \) is continuous and strictly increasing with respect to \(p \in \mathbb{R} \) for fixed \(a \) and \(b \) with \(a \neq b \).

Let

\[
I(a,b) = \begin{cases} \frac{1}{e} \left(\frac{b^p}{a^p}\right)^{\frac{1}{p-1}}, & b \neq a, \\ a, & b = a \end{cases}
\]

and

\[
L(a,b) = \begin{cases} \frac{b-a}{\log b - \log a}, & b \neq a, \\ a, & b = a \end{cases}
\]

be the identric and logarithmic means of two positive numbers \(a \) and \(b \), respectively. Then it is well known that

\[
\min\{a,b\} < H(a,b) = L_{-1}(a,b) = M_{-1}(a,b) < G(a,b)
= L_{-\frac{1}{2}}(a,b) = M_{0}(a,b) < L(a,b) < I(a,b) < A(a,b)
= L_{0}(a,b) = M_{1}(a,b) < \max\{a,b\} \tag{1.5}
\]

for all \(a,b > 0 \) with \(a \neq b \).

In [6], Seiffert proved that

\[
L(a,b) < P(a,b) < I(a,b) \tag{1.6}
\]

for all \(a,b > 0 \) with \(a \neq b \).

Alzer [4] established that

\[
I(a,b) > L_{-\frac{1}{6}}(a,b)
\]

for all \(a,b > 0 \) with \(a \neq b \).

Seiffert [7] obtained the power mean bounds for the second Seiffert mean \(T \) as follows:

\[
M_1(a,b) < T(a,b) < M_2(a,b) \tag{1.7}
\]

for all \(a,b > 0 \) with \(a \neq b \).
The following bounds for the first Seiffert mean P in terms of power means are proved by H"ast"o [8]:

$$M_{\log_2} (a, b) < P(a, b) < M_{\frac{2}{3}} (a, b)$$

for all $a, b > 0$ with $a \neq b$.

The purpose of this paper is to present the optimal upper and lower Lehmer mean bounds for the first and second Seiffert means.

2. Main Results

Theorem 2.1. Inequality $L_{-\frac{1}{6}} (a, b) < P(a, b) < L_0 (a, b)$ holds for all $a, b > 0$ with $a \neq b$, and $L_{-\frac{1}{6}} (a, b)$ and $L_0 (a, b)$ are the best possible lower and upper Lehmer mean bounds for the first Seiffert mean $P(a, b)$.

Proof. From (1.1) and (1.4) we clearly see that both $L_r (a, b)$ and $P(a, b)$ are symmetric and homogeneous of degree 1, without loss of generality, we assume that $a > b = 1$. Let $t = \sqrt[6]{a} > 1$. Then (1.1) and (1.2) give

$$P(a, b) - L_{-\frac{1}{6}} (a, b) = -\frac{t(t^5 + 1)}{(4 \arctan t^3 - \pi)(t + 1)}\{4 \arctan t^3 - \frac{(t + 1)(t^6 - 1)}{t(t^5 + 1)} - \pi\}. \tag{2.1}$$

Let

$$f(t) = 4 \arctan t^3 - \frac{(t + 1)(t^6 - 1)}{t(t^5 + 1)} - \pi, \tag{2.2}$$

then simple computations yield that

$$\lim_{t \to 1} f(t) = 0 \tag{2.3}$$

and

$$f'(t) = -\frac{(t - 1)^4(t + 1)^2(t^2 + t + 1)}{t^2(t^5 + 1)^2(t^6 + 1)} f_1(t), \tag{2.4}$$

where

$$f_1(t) = t^{10} + t^9 + 3t^8 + 4t^7 - 5t^6 + 3t^5 - 5t^4 + 4t^3 + 3t^2 + t + 1 = t^6(t^4 + t^3 + 3t^2 - 5) + t^4(4t^3 + 3t - 5) + 4t^3 + 3t^2 + t + 1 \tag{2.5}$$

for all $t > 0$.

Therefore, $P(a, b) > L_{-\frac{1}{6}} (a, b)$ follows from (2.1)–(2.5).

On the other hand, $P(a, b) < L_0 (a, b)$ follows from (1.5) and (1.6).

Next, we prove that $L_{-\frac{1}{6}} (a, b)$ and $L_0 (a, b)$ are the best possible lower and upper Lehmer mean bounds for $P(a, b)$.

For any $\varepsilon > 0$ and $x > 0$, from (1.1) and (1.2) one has

$$L_{-\frac{1}{6} + \varepsilon} (1, 1 + x) - P(1, 1 + x) = \frac{g_1(x)}{(4 \arctan \sqrt{x + 1} - \pi)[1 + (x + 1)^{-\frac{1}{6} + \varepsilon}]} \tag{2.6}$$
and
\[\lim_{x \to +\infty} \frac{P(1,x)}{L_\varepsilon(1,x)} = \lim_{x \to +\infty} \frac{x - 1}{\pi(x^{1-\varepsilon} + 1)} = +\infty, \quad (2.7) \]

where \(g_1(x) = [1 + (x + 1)^{\frac{\varepsilon}{2} + \varepsilon}](4 \arctan \sqrt{x + 1} - \pi) - x[1 + (x + 1)^{-\frac{1}{2} + \varepsilon}] \).

Let \(x \to 0 \), making use of the Taylor expansion we get
\[g_1(x) = \left[2 + \left(\frac{5}{6} + \varepsilon \right)x + \left(\frac{5}{6} + \varepsilon \right) \left(\frac{\varepsilon}{2} - \frac{1}{12} \right) x^2 + o(x^2) \right] \left[x - \frac{1}{2} x^2 + \frac{7}{24} x^3 + o(x^3) \right] - x \left[2 + \left(\varepsilon - \frac{1}{6} \right)x + \left(\varepsilon - \frac{1}{6} \right) \left(\frac{\varepsilon}{2} - \frac{7}{12} \right) x^2 + o(x^2) \right] = \frac{1}{2} \varepsilon x^3 + o(x^3). \quad (2.8) \]

Equations (2.6) and (2.8) imply that for any \(\varepsilon > 0 \) there exists \(\delta_1 = \delta_1(\varepsilon) > 0 \), such that \(L_{-\frac{1}{2} + \varepsilon}(1,1+x) > P(1,1+x) \) for \(x \in (0, \delta_1) \).

Equation (2.7) implies that for any \(\varepsilon > 0 \) there exists \(X_1 = X_1(\varepsilon) > 1 \), such that \(P(1,x) > L_{-\varepsilon}(1,x) \) for \(x \in (X_1, \infty) \).

THEOREM 2.2. Inequality \(L_0(a,b) < T(a,b) < L_{\frac{1}{3}}(a,b) \) holds for all \(a,b > 0 \) with \(a \neq b \), and \(L_0(a,b) \) and \(L_{\frac{1}{3}}(a,b) \) are the best possible lower and upper Lehmer mean bounds for the second Seiffert mean \(T(a,b) \).

Proof. From (1.1) and (1.3) we clearly see that both \(L_r(a,b) \) and \(T(a,b) \) are symmetric and homogeneous of degree 1, without loss of generality, we assume that \(a > b = 1 \). Let \(t = \sqrt[3]{a} > 1 \). Then (1.1) and (1.3) give
\[T(a,b) - L_{\frac{1}{3}}(a,b) = \frac{t^4 + 1}{2(t + 1) \arctan \frac{t^2 - 1}{t^3 + 1}} \left[\frac{(t^3 - 1)(t + 1)}{t^4 + 1} - 2 \arctan \frac{t^3 - 1}{t^3 + 1} \right]. \quad (2.9) \]

Let
\[g(t) = \frac{(t^3 - 1)(t + 1)}{t^4 + 1} - 2 \arctan \frac{t^3 - 1}{t^3 + 1}, \quad (2.10) \]
then simple computations yield that
\[\lim_{t \to 1} g(t) = 0, \quad (2.11) \]
\[g'(t) = -\frac{(t - 1)^2(t^2 + t + 1)}{(t^4 + 1)^2(t^6 + 1)}(t^6 + 3t^5 + 9t^4 + 12t^3 + 9t^2 + 3t + 1) < 0 \quad (2.12) \]
for \(t > 1 \).

Therefore, \(T(a,b) < L_{\frac{1}{3}}(a,b) \) follows from (2.9)–(2.12).

On the other hand, \(T(a,b) > L_0(a,b) \) follows from (1.5) and (1.7).

Next we prove that \(L_0(a,b) \) and \(L_{\frac{1}{3}}(a,b) \) are the best possible lower and upper Lehmer mean bounds for \(T(a,b) \).
For any $\varepsilon > 0$ and $x > 0$, from (1.1) and (1.3) one has

$$T(1,1+x) - L_{\frac{1}{3}-\varepsilon}(1,1+x) = \frac{g_2(x)}{2[1+(1+x)^{\frac{1}{3}-\varepsilon}]\arctan\frac{x}{2+x}}\tag{2.13}$$

and

$$\lim_{x\to\infty} \frac{L_\varepsilon(1,x)}{T(1,x)} = \lim_{x\to\infty} \frac{\pi(x^{\varepsilon+1}+1)}{2(x^\varepsilon+1)(x-1)} = \frac{\pi}{2} > 1, \tag{2.14}$$

where $g_2(x) = x[1+(1+x)^{\frac{1}{3}-\varepsilon}] - 2[1+(1+x)^{\frac{1}{3}-\varepsilon}]\arctan\frac{x}{2+x}$.

Let $x \to 0$, making use of the Taylor expansion we get

$$g_2(x) = x \left[2 + \left(\frac{1}{3} - \varepsilon \right) x - \frac{(1-3\varepsilon)(2+3\varepsilon)}{18} x^2 + o(x^2) \right]$$

$$- x \left[1 - \frac{1}{2} x + \frac{1}{6} x^2 + o(x^2) \right] \left[2 + \left(\frac{4}{3} - \varepsilon \right) x + \frac{(4-3\varepsilon)(1-3\varepsilon)}{18} x^2 + o(x^2) \right]$$

$$= \frac{1}{2} \varepsilon x^3 + o(x^3). \tag{2.15}$$

Equations (2.13) and (2.15) imply that for any $0 < \varepsilon < \frac{1}{3}$, there exists $\delta_2 = \delta_2(\varepsilon) > 0$ such that $T(1,1+x) > L_{\frac{1}{3}-\varepsilon}(1,1+x)$ for $x \in (0,\delta_2)$.

Equation (2.14) implies that for any $\varepsilon > 0$ there exists $X_2 = X_2(\varepsilon) > 1$, such that $L_\varepsilon(1,x) > T(1,x)$ for $x \in (X_2,\infty)$. \hfill \Box

Acknowledgements. This research is partially supported by N S Foundation of China under Grant 60850005 and the N S Foundation of Zhejiang province under Grants D7080080 and Y607128.

REFERENCES

(Received December 30, 2009)

Miao-Kun Wang
Department of Mathematics
Zhejiang Sci-Tech University
Hangzhou 310018
China

Ye-Fang Qiu
Department of Mathematics
Zhejiang Sci-Tech University
Hangzhou 310018
China

Yu-Ming Chu
Department of Mathematics
Huzhou Teachers College
Huzhou 313000
China
e-mail: chuyuming@hutc.zj.cn