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TWO NEW INEQUALITIES FOR
GAUSSIAN AND GAMMA DISTRIBUTIONS

X1Ao-L1 Hu

(Communicated by J. Pecari¢)

Abstract. Two new inequalities regarding Q function and incomplete upper bound Gamma func-
tion are established, which are related to Gaussian and Gamma distributions respectively.

1. Introduction

Let us introduce some notations first. Assume that f(-) is a probability density
function with an interval support [a,b], and F : [a,b] — [0,1] its corresponding dis-
tribution function. The corresponding reliability function or the survival function is
defined by F(x) = 1—F(x) = [” f(t)dt. A function g(x) is logarithmically concave
(or log-concave for short), if its natural logarithm In(g(x)) is concave. It is found in
[1] that if a continuously differentiable density function, with support [0, 4), is log-
concave, then for all Vx,y > 0, we have

F(x+y) < F(x)F(y). (1)

Moreover, if f is log-convex, then the above inequality is reversed.
Two typical distributions possessing property as (1) are Gamma distribution I'(k, x)
and complementary error function erfc(x), which is given as

< th=le~1dy 2 e
Tlhx) = [ 2D erfe(x) = —= [ .
(k) / g e = / e

Here I'(k,x) is also called upper incomplete gamma function. It is also shown in [1]
that such property holds for Weibull distribution, chi-squared distribution and chi dis-
tribution as well.

On the other side, the reverse inequality of (1) would rarely be occurred, since
the general distributions are nearly all log-concave. It is the purpose of this paper to
consider the reverse inequality of (1) at a special angle, i.e., even if (1) holds for a
distribution, it is still possible to find a suitable parameter a such that

Fo(x) < F(a). 2)
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Obviously, (2) holds at least for @ = 1, since F(x) € [0, 1]. It seems difficult to consider
(2) for general distributions. As a starting point, here we study the corresponding in-
2
equality (2) for Gaussian Q function, i.e., Q(x) = [~ \/Lz_ﬂe_% , and upper incomplete
gamma function respectively.
The main results of this paper are listed as following:

THEOREM 1.1. Suppose that 1 < a < V2, then for Vx € R

0*(x) < Q(ax), 3)

2

where Q(x) = [° \/%—ﬂe_

THEOREM 1.2. Suppose that k > 1 and 0 < a < 2%, then for ¥x >0
% (k,x) < T(k,ax), (4)
where T(k,x) = [~ <=t*"1e7dt. On the other side, if k € (0,1], inequality (4) holds

x T'(k)
f0r0<a<2% and Vx > 0.

REMARK 1.1. For a € [0,1) in Theorem 1.1, the inequality (3) still holds for
x> 0 in view of the monotonicity of Q(x).

If k=1 in Theorem 1.2, by the fact that I'(1,x) = [ e 'dr = e~*, we know that
I2(1,x) =T(1,2x).

2. Proofs for Main results

Proof of Theorem 1.1. By the fact 0 < Q(x) < 1, (3) holds naturally for a = 1.
Notice further that Q(x) decreases as x increases, it is sufficient to prove (3) for a =

V2.
Define y(x) = Q*(x) — Q(v/2x). Clearly,

lim y(x)=0, lim y(x) =0, Q)

X——oco X—>+foo
and

2
! T+ V2 e

V2 \V2¢

= \/lz_ne—x2 (xfz - 2Q(x)e%>

1
V21

Let us study y(x) first. Obviously, y;(0) = v2—1 > 0. By the facts that

v (x) = ~20(x)

=2

ey (x). (6)

%2
O(—<) =1 and eZ7 —— oo, we have limy_,_.. Y (x) = —oo. Notice further the

X——o0
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\/2 . .
monotonicity of Q(x) and eZ as x — —eo, the sign of function y;(x) changes once
from negative to positive as x moves from —eo to 0.
It is left to consider the sign of yq(x) when x > 0. By the following inequality

for x > 0, we derive
2 1
x)e? < .
0(x) T

Hence, for y(x) > 0, it is sufficient to require

N

2
>0
xV2m
which is equ1va1ent to x > \/— This means y;(x) > 0 for x > \/— Now only the case
for 0 <x < ﬁ is left. This can be analyzed directly as following: for 0 < x < ﬁ’

2
Vi) > V2—eT > V2 e = 1.4142...— 1.1725--- = 0.2417--- > 0.

Here the approximating calculation in the last step is carried out by Matlab.

In conclusion, yq(x) changes its sign once from negative to positive as x moves
from —oo to 0. Thus, by (6), ¥'(x) change from negative to positive as x moves
from —eo to oo, and the sign changes only once. This means w(x) has only one local
minimum. Together with (5), the assertion follows directly. [

We need an upper bound for incomplete Gamma function I'(k,x) to prove Theo-
rem 1.2. We refer to [2] for more details about this topic.

LEMMA 2.1. For k>0 and x > k+1,

1 —Xx
[(k,x) < @xke . (7
Proof. Define ¢(x) =T'(k,x) — ﬁxke”‘. Thus,

/() = —— (et kLot ke ¥y = L (kLo k1)) > 0

['(k)
for x > k+ 1. Together with the fact that limy ... ¢(x) = 0, the inequality (7) follows
directly. [

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the whole proof into two cases: (i) k > 1, and
(ii) k € (0,1].
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(i). The case k > 1. By the facts that x > 0 and I'(k,x) € [0, 1], it is sufficient to

prove (4) for a = 2% . Clearly, 2t € (1,2), and we use a instead of 2t below for brief.
Define ¢(x) = I'?(k,x) — I'(k,ax). Clearly,

¢(0)=0, lim ¢(x) =0, (®)

X—>—+oo
and

—1,—x k—1 _,—ax
q)/(x)=—2F(k7x)Xk e +a(ax) e

(k) (k)
—le—x
= ZX;T <e(1_“)x - F(k,x))
A 2kl
= W(])l (%) 9

We use the fact af = 2 in the above second step. Clearly, ¢;(0) =0 and lim,_... ¢ (x) =
0. By Lemma 2.1, for x > k+ 1, we have

o1 (x) > ell-ax _ kaefx =" (e(2“)x — ﬁf) , (10)

which means ¢;(x) > 0 when x > xp with a sufficiently large point xy. Now let us
consider the derivative of ¢; below.

k—1 ,—x
91(x) = (1—a)el =M+ xr(lf)
=e* (% —(a— 1)6(2“)"> 2 e (). (1)

We find that ¢»(0) = —(a— 1) < 0 and limy_. ¢2(x) = —eo. Due to the facts that ¢; (x)
has positive value for x > xo, starting at ¢;(0) =0, we know that its derivative ¢;(x)
must be positive somewhere between 0 and xg, and thus for ¢ (x).

If k is a positive integer, then the (k — 1)-th and k-th derivatives are

¢2(k—1)(x) =1- (a — 1)(2 _ a)k—le(z_a)x,
¢2(k) (¥) = —(a— 1)(2 — a)ke® % < 0.

Notice further that q)z(k_l)(O) =1—(a—1)(2—a)*! >0 and lim,_... ¢2(k—1) (x) = —oo,
we know that q)z(k_l)(x) starts at a positive value and then decreases monotonically

to —eo. This further means that ¢2(k_2)(x) starts from a negative value to a positive
local maximum and then decreases monotonically to —ee, and so on till q)é (x). Thus,
¢2(x) increases piecewise monotonically from ¢ (0) < O to a positive maximum and
then decreases to —eo. And then ¢ (x) changes its sign twice, i.e., from negative to
positive and then negative. Hence, ¢;(x) decreases from 0 to a negative minimum and



TWO NEW INEQUALITIES FOR GAUSSIAN AND GAMMA DISTRIBUTIONS 613

then increase to positive maximum and then decreases to 0. And this further holds for
¢’ (x), which means the sign of ¢’(x) changes from negative to positive once. Finally,
we know that ¢ (x) decreases from ¢(0) = 0 to a negative minimum and then increases
to 0. This means ¢(x) < 0 as desired.

When £ is not an integer, the [k]-th and ([k] 4 1)-th derivatives are

(k= 1) (k= [k
(k)
(k—1)--(k— [k] — 1)x* k=2
(k)

0" ()= ~(a= D@2 a)elr,

o\ () = —(a—1)(2—a)Me®x < 0.

Notice further that ¢2(["“(0) = oo and limy_eo q)z([k]) (x) = —oo, we know that q)z([k])(x)
decreases monotonically from +oo to —oo as x moves from 0 to o. The rest reasoning
is similar to the above case.

(ii). The proof for the case k € (0,1] is similar. It is sufficient to consider

ac (1,2%) by the monotonicity of I'(k,x). By the same definition of ¢(x), the same

. T . —
assertions (8) follow. Observe that 1 < a < 2% this time, we have different derivative
of ¢ as:

—1,—x

=P (e ar ) & xkr(—,f)cp(xx

and thus, ¢’(0) < 0 since @(0) =af—2 <0, and lim, ... ¢’ (x) = 0. By Lemma 2.1
and similar to (10), we also know ¢’(x) is positive for sufficiently large x. The rest
proof is nearly the same to the counterpart of case (i). U
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