

TWO NEW INEQUALITIES FOR GAUSSIAN AND GAMMA DISTRIBUTIONS

XIAO-LI HU

(Communicated by J. Pečarić)

Abstract. Two new inequalities regarding Q function and incomplete upper bound Gamma function are established, which are related to Gaussian and Gamma distributions respectively.

1. Introduction

Let us introduce some notations first. Assume that $f(\cdot)$ is a probability density function with an interval support [a,b], and $F:[a,b]\to [0,1]$ its corresponding distribution function. The corresponding reliability function or the survival function is defined by $\overline{F}(x)=1-F(x)=\int_x^b f(t)dt$. A function g(x) is logarithmically concave (or log-concave for short), if its natural logarithm ln(g(x)) is concave. It is found in [1] that if a continuously differentiable density function, with support $[0,+\infty)$, is log-concave, then for all $\forall x,y\geqslant 0$, we have

$$\bar{F}(x+y) \leqslant \bar{F}(x)\bar{F}(y).$$
 (1)

Moreover, if f is log-convex, then the above inequality is reversed.

Two typical distributions possessing property as (1) are Gamma distribution $\Gamma(k,x)$ and complementary error function $\operatorname{erfc}(x)$, which is given as

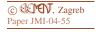
$$\Gamma(k,x) = \int_{x}^{\infty} \frac{t^{k-1}e^{-t}dt}{\Gamma(k)}, \quad \operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}}.$$

Here $\Gamma(k,x)$ is also called upper incomplete gamma function. It is also shown in [1] that such property holds for Weibull distribution, chi-squared distribution and chi distribution as well.

On the other side, the reverse inequality of (1) would rarely be occurred, since the general distributions are nearly all log-concave. It is the purpose of this paper to consider the reverse inequality of (1) at a special angle, i.e., even if (1) holds for a distribution, it is still possible to find a suitable parameter a such that

$$\bar{F}^2(x) \leqslant \bar{F}(ax). \tag{2}$$

Keywords and phrases: Q function, upper incomplete gamma function, Gaussian distribution, Gamma distribution.



Mathematics subject classification (2010): 33B20, 26D15.

610 Xiao-Li Hu

Obviously, (2) holds at least for a=1, since $\overline{F}(x) \in [0,1]$. It seems difficult to consider (2) for general distributions. As a starting point, here we study the corresponding inequality (2) for Gaussian Q function, i.e., $Q(x) = \int_x^\infty \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}}$, and upper incomplete gamma function respectively.

The main results of this paper are listed as following:

THEOREM 1.1. Suppose that $1 \le a \le \sqrt{2}$, then for $\forall x \in R$

$$Q^2(x) < Q(ax), \tag{3}$$

where $Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}}$.

THEOREM 1.2. Suppose that k > 1 and $0 \le a \le 2^{\frac{1}{k}}$, then for $\forall x > 0$

$$\Gamma^2(k,x) < \Gamma(k,ax),\tag{4}$$

where $\Gamma(k,x) = \int_x^\infty \frac{1}{\Gamma(k)} t^{k-1} e^{-t} dt$. On the other side, if $k \in (0,1]$, inequality (4) holds for $0 \le a < 2^{\frac{1}{k}}$ and $\forall x > 0$.

REMARK 1.1. For $a \in [0,1)$ in Theorem 1.1, the inequality (3) still holds for x > 0 in view of the monotonicity of Q(x).

If k=1 in Theorem 1.2, by the fact that $\Gamma(1,x)=\int_x^\infty e^{-t}dt=e^{-x}$, we know that $\Gamma^2(1,x)=\Gamma(1,2x)$.

2. Proofs for Main results

Proof of Theorem 1.1. By the fact $0 \le Q(x) \le 1$, (3) holds naturally for a = 1. Notice further that Q(x) decreases as x increases, it is sufficient to prove (3) for $a = \sqrt{2}$.

Define $\psi(x) = Q^2(x) - Q(\sqrt{2}x)$. Clearly,

$$\lim_{x \to -\infty} \psi(x) = 0, \quad \lim_{x \to +\infty} \psi(x) = 0, \tag{5}$$

and

$$\psi'(x) = -2Q(x)\frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} + \frac{\sqrt{2}}{\sqrt{2\pi}}e^{-x^2}$$

$$= \frac{1}{\sqrt{2\pi}}e^{-x^2}\left(\sqrt{2} - 2Q(x)e^{\frac{x^2}{2}}\right)$$

$$\stackrel{\triangle}{=} \frac{1}{\sqrt{2\pi}}e^{-x^2}\psi_1(x). \tag{6}$$

Let us study $\psi_1(x)$ first. Obviously, $\psi_1(0)=\sqrt{2}-1>0$. By the facts that $Q(-\infty)=1$ and $e^{\frac{x^2}{2}}\xrightarrow[x\to-\infty]{}+\infty$, we have $\lim_{x\to-\infty}\psi_1(x)=-\infty$. Notice further the

monotonicity of Q(x) and $e^{\frac{x^2}{2}}$ as $x \to -\infty$, the sign of function $\psi_1(x)$ changes once from negative to positive as x moves from $-\infty$ to 0.

It is left to consider the sign of $\psi_1(x)$ when x > 0. By the following inequality

$$Q(x) < \frac{1}{x\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

for x > 0, we derive

$$Q(x)e^{\frac{x^2}{2}} < \frac{1}{x\sqrt{2\pi}}.$$

Hence, for $\psi_1(x) > 0$, it is sufficient to require

$$\sqrt{2} - \frac{2}{x\sqrt{2\pi}} > 0,$$

which is equivalent to $x > \frac{1}{\sqrt{\pi}}$. This means $\psi_1(x) > 0$ for $x > \frac{1}{\sqrt{\pi}}$. Now only the case for $0 < x \leqslant \frac{1}{\sqrt{\pi}}$ is left. This can be analyzed directly as following: for $0 < x \leqslant \frac{1}{\sqrt{\pi}}$,

$$\psi_1(x) > \sqrt{2} - e^{\frac{x^2}{2}} \geqslant \sqrt{2} - e^{\frac{1}{2\pi}} = 1.4142 \dots - 1.1725 \dots = 0.2417 \dots > 0.$$

Here the approximating calculation in the last step is carried out by Matlab.

In conclusion, $\psi_1(x)$ changes its sign once from negative to positive as x moves from $-\infty$ to ∞ . Thus, by (6), $\psi'(x)$ change from negative to positive as x moves from $-\infty$ to ∞ , and the sign changes only once. This means $\psi(x)$ has only one local minimum. Together with (5), the assertion follows directly. \square

We need an upper bound for incomplete Gamma function $\Gamma(k,x)$ to prove Theorem 1.2. We refer to [2] for more details about this topic.

LEMMA 2.1. For k > 0 and x > k + 1,

$$\Gamma(k,x) < \frac{1}{\Gamma(k)} x^k e^{-x}. (7)$$

Proof. Define $\varphi(x) = \Gamma(k,x) - \frac{1}{\Gamma(k)}x^k e^{-x}$. Thus,

$$\varphi'(x) = \frac{1}{\Gamma(k)}(-x^{k-1}e^{-x} - kx^{k-1}e^{-x} + x^ke^{-x}) = \frac{1}{\Gamma(k)}(x^{k-1}e^{-x}(x-k-1)) > 0$$

for x > k+1. Together with the fact that $\lim_{x\to\infty} \varphi(x) = 0$, the inequality (7) follows directly. \Box

Now we are in a position to prove Theorem 1.2.

Proof of Theorem 1.2. We divide the whole proof into two cases: (i) k > 1, and (ii) $k \in (0,1]$.

612 Xiao-Li Hu

(i). The case k>1. By the facts that x>0 and $\Gamma(k,x)\in[0,1]$, it is sufficient to prove (4) for $a=2^{\frac{1}{k}}$. Clearly, $2^{\frac{1}{k}}\in(1,2)$, and we use a instead of $2^{\frac{1}{k}}$ below for brief. Define $\phi(x)=\Gamma^2(k,x)-\Gamma(k,ax)$. Clearly,

$$\phi(0) = 0, \quad \lim_{x \to +\infty} \phi(x) = 0, \tag{8}$$

and

$$\phi'(x) = -2\Gamma(k, x) \frac{x^{k-1}e^{-x}}{\Gamma(k)} + \frac{a(ax)^{k-1}e^{-ax}}{\Gamma(k)}$$

$$= \frac{2x^{k-1}e^{-x}}{\Gamma(k)} \left(e^{(1-a)x} - \Gamma(k, x) \right)$$

$$\stackrel{\Delta}{=} \frac{2x^{k-1}e^{-x}}{\Gamma(k)} \phi_1(x). \tag{9}$$

We use the fact $a^k = 2$ in the above second step. Clearly, $\phi_1(0) = 0$ and $\lim_{x \to \infty} \phi_1(x) = 0$. By Lemma 2.1, for x > k + 1, we have

$$\phi_1(x) > e^{(1-a)x} - \frac{1}{\Gamma(k)} x^k e^{-x} = e^{-x} \left(e^{(2-a)x} - \frac{1}{\Gamma(k)} x^k \right), \tag{10}$$

which means $\phi_1(x) > 0$ when $x > x_0$ with a sufficiently large point x_0 . Now let us consider the derivative of ϕ_1 below.

$$\phi_1'(x) = (1-a)e^{(1-a)x} + \frac{x^{k-1}e^{-x}}{\Gamma(k)}$$

$$= e^{-x} \left(\frac{x^{k-1}}{\Gamma(k)} - (a-1)e^{(2-a)x} \right) \stackrel{\Delta}{=} e^{-x} \phi_2(x). \tag{11}$$

We find that $\phi_2(0) = -(a-1) < 0$ and $\lim_{x \to \infty} \phi_2(x) = -\infty$. Due to the facts that $\phi_1(x)$ has positive value for $x > x_0$, starting at $\phi_1(0) = 0$, we know that its derivative $\phi_1'(x)$ must be positive somewhere between 0 and x_0 , and thus for $\phi_2(x)$.

If k is a positive integer, then the (k-1)-th and k-th derivatives are

$$\begin{split} &\phi_2^{(k-1)}(x) = 1 - (a-1)(2-a)^{k-1}e^{(2-a)x}, \\ &\phi_2^{(k)}(x) = -(a-1)(2-a)^k e^{(2-a)x} < 0. \end{split}$$

Notice further that $\phi_2^{(k-1)}(0) = 1 - (a-1)(2-a)^{k-1} > 0$ and $\lim_{x \to \infty} \phi_2^{(k-1)}(x) = -\infty$, we know that $\phi_2^{(k-1)}(x)$ starts at a positive value and then decreases monotonically to $-\infty$. This further means that $\phi_2^{(k-2)}(x)$ starts from a negative value to a positive local maximum and then decreases monotonically to $-\infty$, and so on till $\phi_2'(x)$. Thus, $\phi_2(x)$ increases piecewise monotonically from $\phi_2(0) < 0$ to a positive maximum and then decreases to $-\infty$. And then $\phi_1'(x)$ changes its sign twice, i.e., from negative to positive and then negative. Hence, $\phi_1(x)$ decreases from 0 to a negative minimum and

then increase to positive maximum and then decreases to 0. And this further holds for $\phi'(x)$, which means the sign of $\phi'(x)$ changes from negative to positive once. Finally, we know that $\phi(x)$ decreases from $\phi(0) = 0$ to a negative minimum and then increases to 0. This means $\phi(x) < 0$ as desired.

When k is not an integer, the [k]-th and ([k]+1)-th derivatives are

$$\begin{split} \phi_2^{([k])}(x) &= \frac{(k-1)\cdots(k-[k])x^{k-[k]-1}}{\Gamma(k)} - (a-1)(2-a)^{[k]}e^{(2-a)x}, \\ \phi_2^{([k]+1)}(x) &= \frac{(k-1)\cdots(k-[k]-1)x^{k-[k]-2}}{\Gamma(k)} - (a-1)(2-a)^{[k]}e^{(2-a)x} < 0. \end{split}$$

Notice further that $\phi_2^{([k])}(0) = +\infty$ and $\lim_{x \to \infty} \phi_2^{([k])}(x) = -\infty$, we know that $\phi_2^{([k])}(x)$ decreases monotonically from $+\infty$ to $-\infty$ as x moves from 0 to ∞ . The rest reasoning is similar to the above case.

(ii). The proof for the case $k \in (0,1]$ is similar. It is sufficient to consider $a \in (1,2^{\frac{1}{k}})$ by the monotonicity of $\Gamma(k,x)$. By the same definition of $\phi(x)$, the same assertions (8) follow. Observe that $1 < a < 2^{\frac{1}{k}}$ this time, we have different derivative of ϕ as:

$$\phi'(x) = \frac{x^{k-1}e^{-x}}{\Gamma(k)} \left(a^k e^{(1-a)x} - 2\Gamma(k, x) \right) \stackrel{\Delta}{=} \frac{x^{k-1}e^{-x}}{\Gamma(k)} \varphi(x),$$

and thus, $\phi'(0) < 0$ since $\varphi(0) = a^k - 2 < 0$, and $\lim_{x \to \infty} \phi'(x) = 0$. By Lemma 2.1 and similar to (10), we also know $\phi'(x)$ is positive for sufficiently large x. The rest proof is nearly the same to the counterpart of case (i). \square

REFERENCES

- A. BARICZ, A functional inequality for the survival function of the Gamma distribution, J. Inequal. Pure and Appl. Math., 9, 1 (2008), Article 13.
- [2] P. NATALINI AND B. PALUMBO, Inequalities for the incomplete Gamma Function, Mathematical Inequalities & Applications, 3, 1 (2000), 69–77.

(Received March 6, 2009)

Xiao-Li Hu

School of Electrical Engineering and Computer Science
The University of Newcastle

niversity of Newcastle Newcastle NSW 2308

Australia

e-mail: xiaoli.hu@newcastle.edu.au, xlhu@amss.ac.cn