GENERALIZATIONS OF CONVERSE JENSEN’S INEQUALITY AND RELATED RESULTS

S. IVELIĆ AND J. PEČARIĆ

(Communicated by A. Guessab)

Abstract. In this paper we prove generalizations of Converse Jensen’s inequality for convex functions defined on convex hulls. As consequences we get generalizations of the Hermite-Hadamard inequality for convex functions defined on \(k \)-simplices in \(\mathbb{R}^k \). We also present some related results which generalize results in [8].

1. Introduction

Let \(U \) be a convex subset of \(\mathbb{R}^k \) and \(n \in \mathbb{N} \). If \(f : U \to \mathbb{R} \) is a convex function, \(x_1, \ldots, x_n \in U \) and \(p_1, \ldots, p_n \) nonnegative real numbers with \(P_n = \sum_{i=1}^{n} p_i \), then the well known Jensen’s inequality

\[
f \left(\frac{1}{P_n} \sum_{i=1}^{n} p_i x_i \right) \leq \frac{1}{P_n} \sum_{i=1}^{n} p_i f(x_i)
\]

holds.

If the following conditions are satisfied

\[
p_1 > 0, \quad p_i \leq 0 \quad (i = 2, \ldots, n) \quad P_n > 0,
\]

then Reversed Jensen’s inequality

\[
f \left(\frac{1}{P_n} \sum_{i=1}^{n} p_i x_i \right) \geq \frac{1}{P_n} \sum_{i=1}^{n} p_i f(x_i)
\]

holds (see [14]).

The convex hull of vectors \(x_1, \ldots, x_n \in \mathbb{R}^k \) is represented by \(K = \text{conv}(\{x_1, \ldots, x_n\}) \).

Barycentric coordinates over \(K \) are continuous functions \(\lambda_1, \lambda_2, \ldots, \lambda_n \) on \(K \) with following properties:

\begin{itemize}
 \item Keywords and phrases: Jensen’s inequality, Converse Jensen’s inequality, convex hull, convex functions, Hermite-Hadamard inequality, \(k \)-simplex, barycentric coordinates.
\end{itemize}
\begin{enumerate}
 \item $\lambda_i(x) \geq 0$, \quad $i = 1, \ldots, n$,
 \item $\sum_{i=1}^{n} \lambda_i(x) = 1$,
 \item $x = \sum_{i=1}^{n} \lambda_i(x)x_i$.
\end{enumerate}

If $x_2 - x_1, \ldots, x_n - x_1$ are linearly independent vectors, then each $x \in K$ can be written in unique way as convex combination of x_1, \ldots, x_n in the form (3).

We also consider k-simplex $S = [v_1, \ldots, v_{k+1}]$ in \mathbb{R}^k which is convex hull of its vertices $v_1, v_2, \ldots, v_{k+1} \in \mathbb{R}^k$. Barycentric coordinates $\lambda_1, \lambda_2, \ldots, \lambda_{k+1}$ over S are nonnegative linear polynomials on S and have special form (see the third section).

The next variant of Jensen’s inequality was proved by A. Matković and J. Pečarić [8].

THEOREM A. Let U be a convex subset in \mathbb{R}^k, $x_1, \ldots, x_n \in U$ and $y_1, \ldots, y_m \in \text{conv}(\{x_1, \ldots, x_n\})$. If f is a convex function on U, then the inequality

$$f \left(\frac{\sum_{i=1}^{n} p_i x_i - \sum_{j=1}^{m} w_j y_j}{P_n - W_m} \right) \leq \frac{\sum_{i=1}^{n} p_i f(x_i) - \sum_{j=1}^{m} w_j f(y_j)}{P_n - W_m}$$ (1.3)

holds for all positive real numbers p_1, \ldots, p_n and w_1, \ldots, w_m satisfying the condition

$$p_i \geq W_m \quad \text{for all} \quad i = 1, \ldots, n,$$

where $P_n = \sum_{i=1}^{n} p_i$ and $W_m = \sum_{j=1}^{m} w_j$.

In the following, let E be a nonempty set and L be a linear class of functions $f : E \to \mathbb{R}$ having the properties:

(L1) if $f, g \in L$ then $(af + bg) \in L$ for all $a, b \in \mathbb{R}$

(L2) $1 \in L$ where $1(t) = 1$ for all $t \in E$.

We consider positive linear functionals $A : L \to \mathbb{R}$. That is, we assume:

(A1) $A(af + bg) = aA(f) + bA(g)$ for all $f, g \in L$, $a, b \in \mathbb{R}$ (linearity)

(A2) if $f \in L$, $f(t) \geq 0$ for all $t \in E$ then $A(f) \geq 0$ (positivity).

From (A1) we obtain

(A1’) $A \left(\sum_{i=1}^{k} a_i g_i \right) = \sum_{i=1}^{k} a_i A(g_i)$ for $g_1, \ldots, g_k \in L$, $a_1, \ldots, a_k \in \mathbb{R}$ (linearity).
If in addition $A(1) = 1$ is satisfied, we say that A is a positive normalized linear functional.

With L^k we denote a linear class of functions $g : E \to \mathbb{R}^k$ defined by

$$g(t) = (g_1(t), \ldots, g_k(t)), g_i \in L \ (i = 1, \ldots, k).$$

We also consider linear operators $\tilde{A} : L^k \to \mathbb{R}^k$ defined by

$$\tilde{A}(g) = (A(g_1), \ldots, A(g_k)).$$

If $A(1) = 1$ is satisfied, then using (A1) we also have

(A3) $A(f(g)) = f(\tilde{A}(g))$ for every linear function f on \mathbb{R}^k.

Next we introduce the functional versions of Jensen’s inequality and some related results which we generalize in sequel.

B. Jessen [14, p. 47] gave the following generalization of Jensen’s inequality for positive linear functionals.

Theorem B. (Jessen’s inequality) Let L satisfy properties L1, L2 on nonempty set E and A be a positive normalized linear functional on L. Let f be a continuous convex function on an interval $I \subset \mathbb{R}$. Then for all $g \in L$ such that $g(E) \subset I$ and $f(g) \in L$, we have $A(g) \in I$ and

$$f(A(g)) \leq A(f(g)). \quad (1.4)$$

The next theorem, proved by J. Pečarić and P. R. Beesack, presents generalization of Theorem Lah-Ribarić (see [10, p. 98], [14, p. 98]).

Theorem C. (Converse Jessen’s inequality) Let L satisfy properties L1, L2 and A be a positive normalized linear functional on L. Let f be a convex function on an interval $I = [m, M] \subset \mathbb{R}$ ($-\infty < m < M < \infty$). Then for all $g \in L$ such that $g(E) \subset I$ and $f(g) \in L$, we have

$$A(f(g)) \leq \frac{M - A(g)}{M - m} f(m) + \frac{A(g) - m}{M - m} f(M). \quad (1.5)$$

Using Theorem C, Beesack and Pečarić also proved the next result [14, p. 101].

Theorem D. Let L, A and f be as in Theorem C. Let J be an interval in \mathbb{R} such that $f(J) \subset J$. If $F : J \times J \to \mathbb{R}$ is an increasing function in the first variable, then for all $g \in L$ such that $g(E) \subset I$ and $f(g) \in L$, we have

$$F(A(f(g)), f(A(g))) \leq \max_{x \in [m, M]} F \left(\frac{M - x}{M - m} f(m) + \frac{x - m}{M - m} f(M), f(x) \right) = \max_{\theta \in [0,1]} F \left(\theta f(m) + (1 - \theta) f(M), \theta m + (1 - \theta) M \right). \quad (1.6)$$
REMARK 1. If we choose $F(x, y) = x - y$, as a simple consequence of Theorem D it follows

$$A(f(g)) - f(A(g)) \leq \max_{\theta \in [0, 1]} \left[\theta f(m) + (1 - \theta)f(M) - f(\theta m + (1 - \theta)M) \right].$$ \hspace{1cm} (1.7)

Choosing $F(x, y) = \frac{x}{y}$, it follows

$$\frac{A(f(g))}{f(A(g))} \leq \max_{\theta \in [0, 1]} \left[\frac{\theta f(m) + (1 - \theta)f(M)}{f(\theta m + (1 - \theta)M)} \right].$$ \hspace{1cm} (1.8)

It is obviously that the main results in [15], [16] and [17] can be obtained as direct consequences of Theorem D published many years earlier.

Additional generalization of Jessen’s inequality (1.4) is proved by E. J. McShane (see [9], [14, p. 48]).

THEOREM E. (McShane’s inequality) Let L satisfy properties L1, L2, A be a positive normalized linear functional on L and $\tilde{A} = (A, ..., A) : L^k \to \mathbb{R}^k$ a linear operator. Let f be a continuous convex function on a closed convex set $U \subset \mathbb{R}^k$. Then for all $g \in L^k$ such that $g(E) \subset U$ and $f(g) \in L$, we have that $\tilde{A}(g) \in U$ and

$$f(\tilde{A}(g)) \leq A(f(g)).$$ \hspace{1cm} (1.9)

It is known that for a convex function $f : [a, b] \to \mathbb{R}$ the Hermite-Hadamard inequality

$$f \left(\frac{a + b}{2} \right) \leq \frac{1}{b - a} \int_a^b f(x) \, dx \leq \frac{f(a) + f(b)}{2}$$ \hspace{1cm} (1.10)

holds.

In this paper, as our main results we present generalizations of Theorem C and Theorem D for convex functions defined on convex hulls. As consequences, we obtain generalizations of the Hermite-Hadamard inequality (1.10) for convex functions defined on k-simplices in \mathbb{R}^k. Some related results can be found in [5], [6], [7]. We also present related results which generalize results in [8].

2. Main results

For $n \in \mathbb{N}$ we denote

$$\Delta^n = \left\{ (\Lambda_1, ..., \Lambda_n) : \Lambda_i \geq 0, \forall i \in \{1, ..., n\}, \sum_{i=1}^{n} \Lambda_i = 1 \right\}.$$

The next theorem presents generalization of Theorem C.
THEOREM 1. Let \(L \) satisfy properties \(L1, L2 \) on nonempty set \(E \) and \(A \) be a positive normalized linear functional on \(L \). Let \(f \) be a convex function on \(K \) and \(\lambda_1, \ldots, \lambda_n \) barycentric coordinates over \(K \). Then for all \(g \in L^k \) such that \(g(E) \subset K \) and \(f(g), \lambda_i(g) \in L \) \((i = 1, \ldots, n)\) we have

\[
A(f(g)) \leq \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i).
\]

(2.1)

Proof. For each \(t \in E \) we have \(g(t) \in K \). Then there exist barycentric coordinates \(\lambda_i(g(t)) \geq 0 \) \((i = 1, \ldots, n)\) such that \(\sum_{i=1}^{n} \lambda_i(g(t)) = 1 \) and

\[
g(t) = \sum_{i=1}^{n} \lambda_i(g(t)) x_i.
\]

Since \(f \) is convex on \(K \), then

\[
f(g(t)) = f \left(\sum_{i=1}^{n} \lambda_i(g(t)) x_i \right) \leq \sum_{i=1}^{n} \lambda_i(g(t)) f(x_i).
\]

Now, applying a functional \(A \) on the last inequality we get

\[
A(f(g)) \leq A \left(\sum_{i=1}^{n} \lambda_i(g) f(x_i) \right) = \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i). \quad \square
\]

REMARK 2. If all the assumptions of Theorem 1 are satisfied and in addition \(f \) is continuous, then

\[
f(\tilde{A}(g)) \leq A(f(g)) \leq \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i)
\]

The first inequality is consequence of Theorem E and the second of Theorem 1.

Using Theorem 1 we prove generalization of Theorem E and the second of Theorem 1.

THEOREM 2. Let \(L \) satisfy properties \(L1, L2 \) on nonempty set \(E \), \(A \) be a positive normalized linear functional on \(L \) and \(\Lambda = (A_1, \ldots, A) : L^k \to \mathbb{R}^k \) a linear operator. Let \(x_1, \ldots, x_n \in \mathbb{R}^k \) and \(K = \text{conv}(\{x_1, \ldots, x_n\}) \). Let \(f \) be a convex function on \(K \) and \(\lambda_1, \ldots, \lambda_n \) barycentric coordinates over \(K \). If \(J \) is an interval in \(\mathbb{R} \) such that \(f(K) \subset J \) and \(F : J \times J \to \mathbb{R} \) is an increasing function in the first variable, then for all \(g \in L^k \) such that \(g(E) \subset K \) and \(f(g), \lambda_i(g) \in L \) \((i = 1, \ldots, n)\) we have

\[
F \left(A(f(g)), f(\tilde{A}(g)) \right) \leq F \left(\sum_{i=1}^{n} A(\lambda_i(g)) f(x_i), f(\tilde{A}(g)) \right) \leq \max_{(\Lambda_1, \ldots, \Lambda_n) \in \Lambda^n} F \left(\sum_{i=1}^{n} \Lambda_i f(x_i), f \left(\sum_{i=1}^{n} \Lambda_i x_i \right) \right).
\]

(2.2)
Proof. For each $t \in E$ we have $g(t) \in K$. Then there exist barycentric coordinates $\lambda_i(g(t)) \geq 0$ ($i = 1, ..., n$) such that $\sum_{i=1}^{n} \lambda_i(g(t)) = 1$ and

$$g(t) = \sum_{i=1}^{n} \lambda_i(g(t)) x_i.$$

Since A is a positive normalized linear functional on L and $\tilde{A} = (A, ..., A)$ a linear operator on L^k, we have

$$\tilde{A}(g) = (A(g_1), ..., A(g_k)) = \sum_{i=1}^{n} A(\lambda_i(g)) x_i,$$

where

$$A(\lambda_i(g)) \geq 0, \quad i = 1, ..., n$$

and

$$\sum_{i=1}^{n} A(\lambda_i(g)) = A \left(\sum_{i=1}^{n} \lambda_i(g) \right) = A(1) = 1.$$

Therefore, $\tilde{A}(g) \in K$.

Since $F : J \times J \to \mathbb{R}$ is an increasing function in the first variable, using (2.1) we have

$$F \left(A(f(g)), f(\tilde{A}(g)) \right) \leq F \left(\sum_{i=1}^{n} A(\lambda_i(g)) f(x_i), f(\tilde{A}(g)) \right). \quad (2.3)$$

By substitutions

$$A(\lambda_i(g)) = \Lambda_i \quad (i = 1, ..., n),$$

it follows

$$\tilde{A}(g) = \sum_{i=1}^{n} \Lambda_i x_i.$$

Now we have

$$F \left(\sum_{i=1}^{n} A(\lambda_i(g)) f(x_i), f(\tilde{A}(g)) \right) = F \left(\sum_{i=1}^{n} \Lambda_i f(x_i), f \left(\sum_{i=1}^{n} \Lambda_i x_i \right) \right) \leq \max_{(\Lambda_1, ..., \Lambda_n) \in \Delta^n} F \left(\sum_{i=1}^{n} \Lambda_i f(x_i), f \left(\sum_{i=1}^{n} \Lambda_i x_i \right) \right). \quad (2.4)$$

By combining (2.3) and (2.4) we get (2.2). \hfill \Box

Remark 3. If we choose $F(x, y) = x - y$, as a simple consequence of Theorem 2 it follows

$$A(f(g)) - f(\tilde{A}(g)) \leq \max_{(\Lambda_1, ..., \Lambda_n) \in \Delta^n} \left(\sum_{i=1}^{n} \Lambda_i f(x_i) - f \left(\sum_{i=1}^{n} \Lambda_i x_i \right) \right). \quad (2.5)$$
Choosing $F(x,y) = \frac{x}{y}$, it follows
\[
\frac{A(f(g))}{f(A(g))} \leq \max_{(\Lambda_1, \ldots, \Lambda_n) \in \Delta^n} \left(\frac{\sum_{i=1}^{n} \Lambda_i f(x_i)}{f\left(\sum_{i=1}^{n} \Lambda_i x_i\right)}\right).
\tag{2.6}
\]

The inequalities (2.5) and (2.6) present generalizations of (1.7) and (1.8).

Replacing F by $-F$ in Theorem 2 we get the next theorem.

Theorem 3. Let L satisfy properties L_1, L_2 on nonempty set E, A be a positive normalized linear functional on L and $\tilde{A} = (A_1, \ldots, A_n) : L^k \to \mathbb{R}^k$ a linear operator. Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = \text{conv} \{x_1, \ldots, x_n\}$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. If J is an interval in \mathbb{R} such that $f(K) \subset J$ and $F : J \times J \to \mathbb{R}$ is an decreasing function in the first variable, then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L$ ($i = 1, \ldots, n$) we have
\[
F \left(A(f(g)), f(\tilde{A}(g)) \right) \geq F \left(\sum_{i=1}^{n} A(\lambda_i(g)) f(x_i), f(\tilde{A}(g)) \right) \\
\geq \min_{(\Lambda_1, \ldots, \Lambda_n) \in \Delta^n} F \left(\sum_{i=1}^{n} \Lambda_i f(x_i), f\left(\sum_{i=1}^{n} \Lambda_i x_i\right)\right).
\]

3. Convex functions on k-simplices in \mathbb{R}^k

In this section we give analogs to Theorem 1 and Theorem 2 for convex functions defined on k-simplices in \mathbb{R}^k. As a consequence we obtain generalizations of the Hermite-Hadamard inequality (1.10).

Let $S = [v_1, v_2, \ldots, v_{k+1}]$ be k-simplex in \mathbb{R}^k with vertices $v_1, v_2, \ldots, v_{k+1} \in \mathbb{R}^k$. The barycentric coordinates $\lambda_1, \ldots, \lambda_{k+1}$ over S are nonnegative linear polynomials that satisfy Lagrange's property:

\[
\lambda_i(v_j) = \delta_{ij} = \begin{cases}
1, & i = j \\
0, & i \neq j
\end{cases}.
\]

Therefore, it is known that for each $x \in S$ the barycentric coordinates $\lambda_1(x), \ldots,
\[\lambda_{k+1}(\mathbf{x}) \] have the form

\[
\begin{align*}
\lambda_1(\mathbf{x}) &= \frac{\text{Vol}_k([\mathbf{x}, \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)}, \\
\lambda_2(\mathbf{x}) &= \frac{\text{Vol}_k([\mathbf{v}_1, \mathbf{x}, \mathbf{v}_3, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)}, \\
&\vdots \\
\lambda_{k+1}(\mathbf{x}) &= \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{x}])}{\text{Vol}_k(S)},
\end{align*}
\] (3.1)

where \(\text{Vol}_k \) denotes \(k \)-dimensional Lebesgue measure on \(S \).

Here, for example, \([\mathbf{v}_1, \mathbf{x}, \ldots, \mathbf{v}_{k+1}] \) denotes the subsimplex obtained by replacing \(\mathbf{v}_2 \) by \(\mathbf{x} \), i.e. the subsimplex opposite to \(\mathbf{v}_2 \), when adding \(\mathbf{x} \) as a new vertex.

In other words, we see that the barycentric coordinates \(\lambda_1, \ldots, \lambda_{k+1} \) for each \(\mathbf{x} \in S \) can be presented as the ratios of the volume of subsimplex with one vertex in \(\mathbf{x} \) and the volume of \(S \) (see Picture 1).

\begin{center}
\begin{tikzpicture}
 \filldraw[blue!20] (0,0) -- (1,0) -- (0.5,1) -- cycle;
 \filldraw[green!20] (0,0) -- (0.5,1) -- (1,0) -- cycle;
 \filldraw[red!20] (0,0) -- (0.5,1) -- (0.5,0) -- cycle;
 \draw (0,0) -- (1,0) -- (0.5,1) -- cycle;
 \draw (0.5,0) -- (0.5,1);
 \node at (0.25,0.5) {\(\mathbf{x} \)};
 \node at (0,0) {\(\mathbf{v}_1 \)};
 \node at (1,0) {\(\mathbf{v}_2 \)};
 \node at (0.5,1) {\(\mathbf{v}_3 \)};
\end{tikzpicture}
\end{center}

\textit{Picture 1.} 2-simplex \(S = [\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3] \) in \(\mathbb{R}^2 \) divided into 3 subsimplices.

The signed volume \(\text{Vol}_k(S) \) is given by \((k+1) \times (k+1)\) determinant

\[
\text{Vol}_k(S) = \frac{1}{k!} \begin{vmatrix}
1 & 1 & \cdots & 1 \\
\mathbf{v}_{11} & \mathbf{v}_{21} & \cdots & \mathbf{v}_{k+11} \\
\mathbf{v}_{12} & \mathbf{v}_{22} & \cdots & \mathbf{v}_{k+12} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{v}_{1k} & \mathbf{v}_{2k} & \cdots & \mathbf{v}_{k+1k}
\end{vmatrix},
\]

where \(\mathbf{v}_1 = (v_{11}, v_{12}, \ldots, v_{1k}), \ldots, \mathbf{v}_{k+1} = (v_{k+11}, v_{k+12}, \ldots, v_{k+1k}) \) (see [18]).

Since vectors \(\mathbf{v}_2 - \mathbf{v}_1, \ldots, \mathbf{v}_{k+1} - \mathbf{v}_1 \) are linearly independent, then each \(\mathbf{x} \in S \) can be written in unique way as convex combination of \(\mathbf{v}_1, \ldots, \mathbf{v}_{k+1} \) in the form

\[
\mathbf{x} = \frac{\text{Vol}_k([\mathbf{x}, \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)} \mathbf{v}_1 + \ldots + \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, \mathbf{x}])}{\text{Vol}_k(S)} \mathbf{v}_{k+1}.
\] (3.2)
Now we present an analog of Theorem 1 for convex functions defined on k-simplices in \mathbb{R}^k.

Theorem 4. Let L satisfy properties $L1, L2$ on nonempty set E, A be a positive normalized linear functional on L and $\tilde{A} = (A, ..., A) : L^k \rightarrow \mathbb{R}^k$ a linear operator. Let f be a convex function on k-simplex $S = [v_1, v_2, ..., v_{k+1}]$ in \mathbb{R}^k and $\lambda_1, ..., \lambda_{k+1}$ barycentric coordinates over S. Then for all $g \in L^k$ such that $g(E) \subset S$ and $f(g) \in L$ we have

$$A(f(g)) \leq \sum_{i=1}^{k+1} A(\lambda_i(g)) f(v_i)$$

(3.3)

$$= \frac{\text{Vol}_k\left(\tilde{A}(g), v_2, ..., v_{k+1}\right)}{\text{Vol}_k(S)} f(v_1) + ... + \frac{\text{Vol}_k\left(v_1, v_2, ..., \tilde{A}(g)\right)}{\text{Vol}_k(S)} f(v_{k+1}).$$

Proof. For each $t \in E$ we have $g(t) \in S$. Then there exist the barycentric coordinates

$$\lambda_1(g(t)) = \frac{\text{Vol}_k\left(g(t), v_2, ..., v_{k+1}\right)}{\text{Vol}_k(S)} = \frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\
1 & g_1(t) & v_2 & v_{k+1} \\
\vdots & \vdots & \ddots & \vdots \\
g_k(t) & v_{2k} & \cdots & v_{k+1k}\end{vmatrix},$$

$$\vdots$$

$$\lambda_{k+1}(g(t)) = \frac{\text{Vol}_k\left(v_1, ..., v_k, g(t)\right)}{\text{Vol}_k(S)} = \frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\
1 & v_{11} & v_{k1} & g_1(t) \\
\vdots & \vdots & \ddots & \vdots \\
v_{1k} & \cdots & v_{kk} & g_k(t) \\
v_{1k} & v_{2k} & \cdots & v_{k+1k}\end{vmatrix},$$

such that $\sum_{i=1}^{k+1} \lambda_i(g(t)) = 1$ and $g(t) = \sum_{i=1}^{k+1} \lambda_i(g(t)) v_i$.

Since f is convex on S, then

$$f(g(t)) \leq \sum_{i=1}^{k+1} \lambda_i(g(t)) f(v_i).$$
Using the Laplace expansion of the determinant we can easily check that $\lambda_i(g) \in L$ for all $i = 1, \ldots, k + 1$.

Now, applying A on the last inequality we have

$$A(f(g)) \leq A \left(\sum_{i=1}^{k+1} \lambda_i(g) f(v_i) \right) = \sum_{i=1}^{k+1} A(\lambda_i(g)) f(v_i), \quad (3.4)$$

where

$$A(\lambda_1(g)) = \frac{1}{k!} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \\ v_{11} & v_{21} & \cdots & v_{k+1} \\ \vdots & \vdots & \ddots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1} \end{vmatrix} = \frac{\text{Vol}_k \left([\tilde{A}(g), v_2, \ldots, v_{k+1}] \right)}{\text{Vol}_k(S)}, \quad \text{and}$$

$$A(\lambda_{k+1}(g)) = \frac{1}{k!} \begin{vmatrix} 1 & \cdots & 1 & 1 \\ v_{11} & v_{k1} & A(g_1) & \vdots \\ \vdots & \vdots & \vdots & \vdots \\ v_{1k} & v_{2k} & \cdots & v_{k+1} \end{vmatrix} = \frac{\text{Vol}_k \left([v_1, \ldots, v_k, \tilde{A}(g)] \right)}{\text{Vol}_k(S)},$$

$$\vdots$$

By combining (3.4) and (3.5) we obtain (3.3). \(\square\)

Using Theorem 4 we prove an analog of Theorem 2.

Theorem 5. Let L satisfy properties L1, L2 on nonempty set E, A be a positive normalized linear functional on L and $\tilde{A} = (A_1, \ldots, A) : L^k \to \mathbb{R}^k$ a linear operator. Let f be a convex function on k-simplex $S = [v_1, v_2, \ldots, v_{k+1}]$ in \mathbb{R}^k and $\lambda_1, \ldots, \lambda_{k+1}$ barycentric coordinates over S. If J is an interval in \mathbb{R} such that $f(S) \subset J$ and $F : J \times J \to \mathbb{R}$ an increasing function in the first variable, then for all $g \in L^k$ such that $g(E) \subset S$ and $f(g) \in L$ we have

$$F \left(A(f(g)), f(\tilde{A}(g)) \right) \leq \max_{x \in S} F \left(\frac{\text{Vol}_k([x, v_2, \ldots, v_{k+1}])}{\text{Vol}_k(S)} f(v_1) + \ldots + \frac{\text{Vol}_k([v_1, \ldots, v_k, x])}{\text{Vol}_k(S)} f(v_{k+1}), f(x) \right)$$

$$= \max_{(\Lambda_1, \ldots, \Lambda_{k+1}) \in \Delta^{k+1}} \left(\sum_{i=1}^{k+1} \Lambda_i f(v_i) \right) \left(\sum_{i=1}^{k+1} \Lambda_i f(v_i) \right), \quad (3.6)$$
Proof. Since for each \(t \in E \) we have \(\mathbf{g}(t) \in S \), then it follows \(\tilde{A}(\mathbf{g}) \in S \) (see the first part of proof of Theorem 2).

Since \(F : J \times J \to \mathbb{R} \) is an increasing function in the first variable, by Theorem 4 we have

\[
F \left(A(f(\mathbf{g})), f(\tilde{A}(\mathbf{g})) \right) \\
\leq F \left(\frac{\text{Vol}_k([\tilde{A}(\mathbf{g}), \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)} f(\mathbf{v}_1) + \ldots + \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, \tilde{A}(\mathbf{g})])}{\text{Vol}_k(S)} f(\mathbf{v}_{k+1}), f(\tilde{A}(\mathbf{g})) \right) \\
\leq \max_{x \in S} F \left(\frac{\text{Vol}_k([x, \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)} f(\mathbf{v}_1) + \ldots + \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, x])}{\text{Vol}_k(S)} f(\mathbf{v}_{k+1}), f(x) \right).
\]

The equality in (3.6) is simple consequence of substitutions

\[
\Lambda_1 = \frac{\text{Vol}_k([\tilde{A}(\mathbf{g}), \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)}, \ldots, \Lambda_{k+1} = \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, x])}{\text{Vol}_k(S)},
\]

and

\[
x = \sum_{i=1}^{k+1} \Lambda_i \mathbf{v}_i. \quad \square
\]

Remark 4. Replacing \(F \) by \(-F\) in Theorem 5 we can get an analog of Theorem 3 for convex functions defined on \(k \)-simplices in \(\mathbb{R}^k \).

Remark 5. If all the assumptions of Theorem 4 are satisfied and in addition \(f \) is continuous, then

\[
f(\tilde{A}(\mathbf{g})) \leq A(f(\mathbf{g}))
\]

\[
\leq \sum_{i=1}^{k+1} A(\lambda_i(\mathbf{g})) f(\mathbf{v}_i)
\]

\[
= \frac{\text{Vol}_k([\tilde{A}(\mathbf{g}), \mathbf{v}_2, \ldots, \mathbf{v}_{k+1}])}{\text{Vol}_k(S)} f(\mathbf{v}_1) + \ldots + \frac{\text{Vol}_k([\mathbf{v}_1, \ldots, \mathbf{v}_k, \tilde{A}(\mathbf{g})])}{\text{Vol}_k(S)} f(\mathbf{v}_{k+1}).
\]

The first inequality is consequence of Theorem E and the second of Theorem 4.

Example 1. Let \(p_1, \ldots, p_{k+1} \geq 0 \) such that \(\sum_{i=1}^{k+1} p_i = 1 \). We define the functional \(A : L \to \mathbb{R} \) by

\[
A(\mathbf{g}) = \sum_{i=1}^{k+1} p_i g(t_i).
\]

It is obviously that \(A \) is positive normalized linear functional on \(L \). Then the linear operator \(\tilde{A} = (A, \ldots, A) : L^k \to \mathbb{R}^k \) is defined by

\[
\tilde{A}(\mathbf{g}) = \sum_{i=1}^{k+1} p_i \mathbf{g}(t_i).
\]
We set $g(t_i) = v_i$ for all $i = 1, \ldots, k + 1$. Let $S = [v_1, v_2, \ldots, v_{k+1}]$ be k-simplex in \mathbb{R}^k and f be a continuous convex function on S such that $f(g) \in L$. Then as a simple consequence of (3.7) it follows

$$f \left(\sum_{i=1}^{k+1} p_i v_i \right) \leq A(f(g)) \leq \sum_{i=1}^{k+1} p_i f(v_i).$$

Setting $p_1 = \ldots = p_{k+1} = \frac{1}{k+1}$ we get

$$f \left(\frac{1}{k+1} \sum_{i=1}^{k+1} v_i \right) \leq A(f(g)) \leq \frac{1}{k+1} \sum_{i=1}^{k+1} f(v_i).$$

Related results are obtained in [1], [20].

Example 2. Let $S = [v_1, v_2, \ldots, v_{k+1}]$ be k-simplex in \mathbb{R}^k and f a continuous convex function on S. Let $L = (E, \mathcal{A}, \lambda)$ be a measure space with positive measure λ. We define the functional $A : L \to \mathbb{R}$ by

$$A(g) = \frac{1}{\lambda(E)} \int_E g(t) d\lambda(t).$$

It is obviously that A is positive normalized linear functional on L. Then the linear operator $\tilde{A} = (A_1, \ldots, A_k) : L^k \to \mathbb{R}^k$ is defined by

$$\tilde{A}(g) = \frac{1}{\lambda(E)} \int_E g(t) d\lambda(t).$$

We denote $\overline{g} = \frac{1}{\lambda(E)} \int_E g(t) d\lambda(t).$ If $g(E) \subset S$ and $f(g) \in L$, then from (3.7) it follows

$$f(\overline{g}) \leq A(f(g)) \leq \frac{\text{Vol}_k([\overline{g}, v_2, \ldots, v_{k+1}])}{\text{Vol}_k(S)} f(v_1) + \ldots + \frac{\text{Vol}_k([v_1, \ldots, v_k, \overline{g}])}{\text{Vol}_k(S)} f(v_{k+1}),$$

Related results are obtained as consequences of Choquet’s theory (see [4], [11], [12], [13], [19]).

4. Related results

In this section we present generalizations of results in [8].

The next theorem generalizes Theorem A.

Theorem 6. Let L satisfy properties $L1, L2$ on nonempty set E, A be a positive linear functional on L and $\tilde{A} = (A_1, \ldots, A_k) : L^k \to \mathbb{R}^k$ a linear operator. Let $x_1, \ldots, x_n \in \mathbb{R}^k$ and $K = \text{conv}(\{x_1, \ldots, x_n\})$. Let f be a convex function on K and $\lambda_1, \ldots, \lambda_n$ barycentric coordinates over K. Then for all $g \in L^k$ such that $g(E) \subset K$ and $f(g), \lambda_i(g) \in L$
(i = 1, ..., n) and positive real numbers \(p_1, \ldots, p_n \), with \(P_n = \sum_{i=1}^{n} p_i \), satisfying the condition

\[p_i \geq A(1) \quad \text{for all} \quad i = 1, \ldots, n, \quad (4.1) \]

we have

\[
f\left(\frac{\sum_{i=1}^{n} p_i x_i - \tilde{A}(g)}{P_n - A(1)} \right) \leq \frac{\sum_{i=1}^{n} p_i f(x_i) - \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i)}{P_n - A(1)} \leq \frac{\sum_{i=1}^{n} p_i f(x_i) - A(f(g))}{P_n - A(1)}. \quad (4.2)
\]

Proof. For each \(t \in E \) we have \(g(t) \in K \). Then there exist barycentric coordinates \(\lambda_i(g(t)) \geq 0 \) \((i = 1, \ldots, n) \) such that \(\sum_{i=1}^{n} \lambda_i(g(t)) = 1 \) and \(g(t) = \sum_{i=1}^{n} \lambda_i(g(t)) x_i \).

Since \(f \) is convex on \(K \), then

\[
f(g(t)) \leq \sum_{i=1}^{n} \lambda_i(g(t)) f(x_i). \quad (4.3)
\]

Applying a positive linear functional \(A \) on (4.3) we get

\[
A(f(g)) \leq \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i),
\]

where

\[
\sum_{i=1}^{n} A(\lambda_i(g)) = A\left(\sum_{i=1}^{n} \lambda_i(g) \right) = A(1)
\]

and

\[
A(1) \geq A(\lambda_i(g)) \geq 0 \quad \text{for all} \quad i = 1, \ldots, n.
\]

Also we have

\[
\tilde{A}(g) = \sum_{i=1}^{n} A(\lambda_i(g)) x_i.
\]

Now we can write

\[
\frac{\sum_{i=1}^{n} p_i x_i - \tilde{A}(g)}{P_n - A(1)} = \frac{1}{P_n - A(1)} \left(\sum_{i=1}^{n} p_i x_i - \sum_{i=1}^{n} A(\lambda_i(g)) x_i \right)
\]

\[
= \frac{1}{P_n - A(1)} \sum_{i=1}^{n} (p_i - A(\lambda_i(g))) x_i.
\]

We have

\[
\frac{1}{P_n - A(1)} \sum_{i=1}^{n} (p_i - A(\lambda_i(g))) = 1
\]
and
\[\frac{1}{P_n - A(1)} (p_i - A(\lambda_i(g))) \geq 0 \quad \text{for all } i = 1, \ldots, n, \]
since
\[p_i \geq A(1) \geq A(\lambda_i(g)) \quad \text{for all } i = 1, \ldots, n. \]
Therefore, expression \(\sum_{i=1}^{n} \frac{p_i x_i - \lambda_i(g)}{P_n - A(1)} \) is convex combination of vectors \(x_1, \ldots, x_n \) and belongs to \(K \).

Since \(f \) is convex on \(K \), we have
\[
\begin{align*}
&f \left(\frac{\sum_{i=1}^{n} p_i x_i - \lambda_i(g)}{P_n - A(1)} \right) = f \left(\frac{1}{P_n - A(1)} \sum_{i=1}^{n} (p_i - A(\lambda_i(g))) x_i \right) \\
&\leq \frac{1}{P_n - A(1)} \sum_{i=1}^{n} (p_i - A(\lambda_i(g))) f(x_i) \\
&= \frac{\sum_{i=1}^{n} p_i f(x_i) - \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i)}{P_n - A(1)} \\
&\leq \frac{\sum_{i=1}^{n} p_i f(x_i) - A(f(g))}{P_n - A(1)}. \quad \square
\end{align*}
\]

Corollary 1. Let \(L \) satisfy properties L1, L2 on nonempty set \(E \) and \(A \) be a positive normalized linear functional on \(L \). Let \(f \) be a convex function on an interval \(I = [m, M] \subset \mathbb{R} \) \((-\infty < m < M < \infty)\). Then for all \(g \in L \) such that \(g(E) \subset I \) and \(f(g) \in L \), we have
\[
\begin{align*}
f(m + M - A(g)) &\leq \frac{A(g) - m}{M - m} f(m) + \frac{M - A(g)}{M - m} f(M) \\
&\leq f(m) + f(M) - A(f(g)). \quad (4.4)
\end{align*}
\]

Proof. For each \(t \in E \) we have \(g(t) \in I = [m, M] \).

Since interval \(I = [m, M] \) is 1-simplex with vertices \(m \) and \(M \), then the barycentric coordinates have the special form:
\[
\lambda_1(g(t)) = \frac{M - g(t)}{M - m} \quad \text{and} \quad \lambda_2(g(t)) = \frac{g(t) - m}{M - m}
\]

Then applying a functional \(A \) we have
\[
\begin{align*}
A(\lambda_1(g)) &= \frac{M - A(g)}{M - m} \quad \text{and} \quad A(\lambda_2(g)) = \frac{A(g) - m}{M - m}. \quad (4.5)
\end{align*}
\]
Choosing \(n = 2, \ p_1 = p_2 = 1, \ x_1 = m, \ x_2 = M \) from (4.2) it follows

\[
f(m + M - A(g)) \leq f(m) + f(M) - \left[\frac{M - A(g)}{M - m} f(m) + \frac{A(g) - m}{M - m} f(M) \right]
\]

\[
= \frac{A(g) - m}{M - m} f(m) + \frac{M - A(g)}{M - m} f(M)
\]

\[
\leq f(m) + f(M) - A(f(g)). \quad \Box
\]

Remark 6. The inequalities in (4.4) are also obtained in [3]. Some related results are obtained in [2].

Theorem 7. Let \(L \) satisfy properties L1, L2 on nonempty set \(E \), \(A = (A,...,A): L^k \to \mathbb{R}^k \) a linear operator. Let \(\mathbf{x}_1,...,\mathbf{x}_n \in \mathbb{R}^k \) and \(K = \text{conv}\{\mathbf{x}_1,...,\mathbf{x}_n\} \). Let \(f \) be a convex function on \(K \) and \(\lambda_1,...,\lambda_n \) barycentric coordinates over \(K \). Then for all \(\mathbf{g} \in L^k \) such that \(\mathbf{g}(E) \subset K \) and \(f(\mathbf{g}), \lambda_i(\mathbf{g}) \in L \) \((i = 1,...,n)\) and positive real numbers \(p_1,...,p_n \) satisfying the conditions \(P_n - A(1) > 0 \), where \(P_n = \sum_{i=1}^n p_i \), and

\[
\frac{\sum_{i=1}^n p_i \mathbf{x}_i - \tilde{A}(\mathbf{g})}{P_n - A(1)} \in K,
\]

we have

\[
f \left(\frac{\sum_{i=1}^n p_i \mathbf{x}_i - \tilde{A}(\mathbf{g})}{P_n - A(1)} \right) \geq \frac{P_nf \left(\frac{1}{P_n} \sum_{i=1}^n p_i \mathbf{x}_i \right) - A(1) f \left(\frac{1}{A(1)} \tilde{A}(\mathbf{g}) \right)}{P_n - A(1)}
\]

\[
\geq \frac{P_n f \left(\frac{1}{P_n} \sum_{i=1}^n p_i \mathbf{x}_i \right) - \sum_{i=1}^n A(\lambda_i(\mathbf{g})) f(\mathbf{x}_i)}{P_n - A(1)}. \quad (4.7)
\]

Proof. For each \(t \in E \) we have \(\mathbf{g}(t) \in K \). Then there exist barycentric coordinates \(\lambda_i(\mathbf{g}(t)) \geq 0 \) \((i = 1,...,n)\) such that \(\sum_{i=1}^n \lambda_i(\mathbf{g}(t)) = 1 \) and

\[
\mathbf{g}(t) = \sum_{i=1}^n \lambda_i(\mathbf{g}(t)) \mathbf{x}_i.
\]

Also we have

\[
\tilde{A}(\mathbf{g}) = \sum_{i=1}^n A(\lambda_i(\mathbf{g})) \mathbf{x}_i.
\]

We can easily see that

\[
\frac{1}{A(1)} \tilde{A}(\mathbf{g}) = \frac{1}{A(1)} \sum_{i=1}^n A(\lambda_i(\mathbf{g})) \mathbf{x}_i \in K,
\]
Since
\[
\frac{1}{A(1)} \sum_{i=1}^{n} A(\lambda_i(g)) = 1 \quad \text{and} \quad \frac{1}{A(1)} A(\lambda_i(g)) \geq 0, \quad i = 1, \ldots, n.
\]
Since \(f \) is convex on \(K \), then
\[
f \left(\frac{1}{A(1)} \tilde{A}(g) \right) \leq \frac{1}{A(1)} \sum_{i=1}^{n} A(\lambda_i(g)) f(x_i). \tag{4.8}
\]
Using first (1.2) and then (4.8) we have
\[
\frac{P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right)}{P_n - A(1)} \geq \frac{P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right)}{P_n - A(1)}
\]
and then
\[
P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right) \geq \frac{P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right)}{P_n - A(1)}. \tag{4.9}
\]

Remark 7. If positive real numbers \(p_1, \ldots, p_n \) satisfy the condition (4.1), then the condition (4.6) is also satisfied since \(K \) is convex set. Then (4.2) can be extended as follows
\[
P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right) \leq \frac{P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right)}{P_n - A(1)}
\]
and
\[
P_n f \left(\frac{1}{n} \sum_{i=1}^{n} p_i x_i \right) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right) \leq \frac{\sum_{i=1}^{n} p_i f(x_i) - A(1) \left(\frac{1}{A(1)} \tilde{A}(g) \right)}{P_n - A(1)}.
\]

Corollary 2. Let \(L \) satisfy properties L1, L2 on nonempty set \(E \) and \(A \) be a positive normalized linear functional on \(L \). Let \(f \) be a convex function on an interval \(I = [m, M] \subset \mathbb{R} \ (\infty < m < M < \infty) \). Then for all \(g \in L \) such that \(g(E) \subset I \) and \(f(g) \in L \), we have
\[
f(m+M-A(g)) \geq 2f \left(\frac{m+M}{2} \right) - f(A(g)) \]
\[
\geq 2f \left(\frac{m+M}{2} \right) - \left[\frac{M-A(g)}{M-m} f(m) + \frac{A(g)-m}{M-m} f(M) \right]. \tag{4.10}
\]
Proof. Choosing $n = 2$, $x_1 = m$, $x_2 = M$, $p_1 = p_2 = 1$ and using (4.5), the inequalities in (4.10) easily follows from (4.7). □

Next we give generalizations of Corollary 1 and Corollary 2 for convex functions defined on k-simplices in \mathbb{R}^k.

COROLLARY 3. Let L satisfy properties L1, L2 on nonempty set E, A be a positive normalized linear functional on L and $\tilde{A} = (A_1, ... , A_k) : L^k \to \mathbb{R}^k$ a linear operator. Let f be a convex function on k-simplex $S = [v_1, v_2, ..., v_{k+1}]$ in \mathbb{R}^k and $\lambda_1, ..., \lambda_{k+1}$ barycentric coordinates over S. Then for all $g \in L^k$ such that $g(E) \subset S$ and $f(g) \in L$ we have

\[
(k + 1)f \left(\frac{1}{k+1} \sum_{i=1}^{k+1} v_i \right) - \frac{1}{k} \sum_{i=1}^{k+1} \tilde{A}(g) f(v_i) \leq \frac{(k + 1)f \left(\frac{1}{k+1} \sum_{i=1}^{k+1} v_i \right) - f(\tilde{A}(g))}{k} \leq f \left(\frac{\sum_{i=1}^{k+1} v_i - \tilde{A}(g)}{k} \right) \leq \frac{\sum_{i=1}^{k+1} f(v_i) - \frac{1}{k} \sum_{i=1}^{k+1} \lambda_i(\tilde{A}(g)) f(v_i)}{k} \leq \frac{\sum_{i=1}^{k+1} f(v_i) - A(f(g))}{k}. \tag{4.11}
\]

Proof. Since barycentric coordinates $\lambda_1, ..., \lambda_{k+1}$ over k-simplex S in \mathbb{R}^k are nonnegative linear polynomials, then $A(\lambda_i(g)) = \lambda_i(A(g))$ for all $i = 1, ..., k+1$.

Choosing $x_i = v_i$ for all $i = 1, ..., k+1$ and $p_1 = p_2 = ... = p_{k+1} = 1$, the inequalities in (4.11) easily follow from (4.2) and (4.7). □

REFERENCES

(Received July 19, 2010)

S. Ivelić
Faculty of Civil Engineering and Architecture
University of Split
Matice hrvatske 15
21000 Split
Croatia
e-mail: sivelic@gradst.hr

J. Pečarić
Faculty of Textile Technology
University of Zagreb
Prilaz Baruna Filipovića 30
10000 Zagreb
Croatia
e-mail: pecaric@hazu.hr