THE STEIN-WEISS TYPE INEQUALITIES FOR THE B-RIESZ POTENTIALS

A. D. Gadjiev, V. S. Guliyev, A. Serbetci and E. V. Guliyev

(Communicated by J. Pečarić)

Abstract

We establish two inequalities of Stein-Weiss type for the Riesz potential operator $I_{\alpha, \gamma}$ (B-Riesz potential operator) generated by the Laplace-Bessel differential operator Δ_{B} in the weighted Lebesgue spaces $L_{p,|x|^{\beta}, \gamma}$. We obtain necessary and sufficient conditions on the parameters for the boundedness of $I_{\alpha, \gamma}$ from the spaces $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{-\lambda}, \gamma}$, and from the spaces $L_{1,|x|^{\beta}, \gamma}$ to the weak spaces $W L_{q,|x|^{-\lambda}, \gamma}$. In the limiting case $p=Q / \alpha$ we prove that the modified B - Riesz potential operator $\widetilde{I}_{\alpha, \gamma}$ is bounded from the spaces $L_{p,|x|^{\beta}, \gamma}$ to the weighted $B-B M O$ spaces $B M O_{|x|-\lambda, \gamma}$.

As applications, we get the boundedness of $I_{\alpha, \gamma}$ from the weighted B-Besov spaces $B_{p \theta,|x|^{\beta}, \gamma}^{s}$ to the spaces $B_{q \theta,|x|^{-\lambda}, \gamma}^{s}$. Furthermore, we prove two Sobolev embedding theorems on weighted Lebesgue $L_{p,|x|^{\beta}, \gamma}$ and weighted B-Besov spaces $B_{p \theta,|x|^{\beta}, \gamma}^{s}$ by using the fundamental solution of the B-elliptic equation $\Delta_{B}^{\alpha / 2}$.

1. Introduction and main results

Let $\mathbb{R}_{k,+}^{n}=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}>0, \ldots, x_{k}>0\right\}, 1 \leqslant k \leqslant n$. We denote by $L_{p, \gamma} \equiv L_{p, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ the set of all classes of measurable functions f with finite norm

$$
\|f\|_{L_{p, \gamma}}=\left(\int_{\mathbb{R}_{k,+}^{n}}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p}, 1 \leqslant p<\infty
$$

where $x^{\prime}=\left(x_{1}, \ldots, x_{k}\right)$, and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{k}\right)$ is a multi-index consisting of fixed positive numbers such that $|\gamma|=\gamma_{1}+\ldots+\gamma_{k}$ and $\left(x^{\prime}\right)^{\gamma}=x_{1}^{\gamma_{1}} \ldots . x_{k}^{\gamma_{k}}$. If $p=\infty$, we assume

$$
L_{\infty, \gamma} \equiv L_{\infty}=\left\{f:\|f\|_{L_{\infty}, \gamma}=\underset{x \in \mathbb{R}_{k,+}^{n}}{\operatorname{ess} \sup }|f(x)|<\infty\right\} .
$$

For any measurable set $E \subset \mathbb{R}_{k,+}^{n}$, let $|E|_{\gamma}=\int_{E}\left(x^{\prime}\right)^{\gamma} d x$. The weak $L_{p, \gamma}$ space $W L_{p, \gamma} \equiv$ $W L_{p, \gamma}\left(\mathbb{R}_{k,+}^{n}\right), 1 \leqslant p<\infty$, is defined as the set of locally integrable functions f, with

Mathematics subject classification (2010): 42B20, 42B25, 42B35.
Keywords and phrases: Laplace-Bessel differential operator, B-Riesz potential, Stein-Weiss type inequalities, weighted Lebesgue space, weighted B-Besov space.
A. D. Gadjiev was partially supported by the grant of INTAS (project 06-1000017-8792). V. S. Guliyev was partially supported by BGP II (project ANSF/AZM1-3110-BA-08).
finite norm

$$
\|f\|_{W L_{p, \gamma}}=\sup _{r>0} r\left|\left\{x \in \mathbb{R}_{k,+}^{n}:|f(x)|>r\right\}\right|_{\gamma}^{1 / p}
$$

Let w be a weight function on $\mathbb{R}_{k,+}^{n}$, i.e., w is a non-negative and measurable function on $\mathbb{R}_{k,+}^{n}$, then for all measurable functions f on $\mathbb{R}_{k,+}^{n}$ the weighted Lebesgue space $L_{p, w, \gamma} \equiv L_{p, w, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ and the weak weighted Lebesgue space $W L_{p, w, \gamma} \equiv W L_{p, w, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$ are defined by

$$
L_{p, w, \gamma}=\left\{f:\|f\|_{L_{p, w, \gamma}}=\|w f\|_{L_{p, \gamma}}<\infty\right\}
$$

and

$$
W L_{p, w, \gamma}=\left\{f:\|f\|_{W L_{p, w, \gamma}}=\|w f\|_{W L_{p, \gamma}}<\infty\right\}
$$

respectively.
The classical Riesz potential is an important technical tool in harmonic analysis, theory of functions and partial differential equations. The potential and related topics associated with the Laplace-Bessel differential operator

$$
\Delta_{B}=\sum_{i=1}^{k} B_{i}+\sum_{i=k+1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}}, \quad B_{i}=\frac{\partial^{2}}{\partial x_{i}^{2}}+\frac{\gamma_{i}}{x_{i}} \frac{\partial}{\partial x_{i}}, \quad i=1, \ldots, k
$$

have been the research interests of many mathematicians such as B. Muckenhoupt and E. Stein [26], K. Stempak [28], K. Trimèche [30], I. Kipriyanov [17], A. D. Gadjiev and I. A. Aliev [8], L. Lyakhov [23], I. A. Aliev and B. Rubin [1], V. S. Guliyev [12]-[14], and others.

In this paper we study the Riesz potential associated with Δ_{B} (B-Riesz potential) defined by

$$
I_{\alpha, \gamma} f(x)=\int_{\mathbb{R}_{k,+}^{n}} T^{y}|x|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

and the modified B-Riesz potential by

$$
\widetilde{I}_{\alpha, \gamma} f(x)=\int_{\mathbb{R}_{k,+}^{n}}\left(T^{y}|x|^{\alpha-Q}-|y|^{\alpha-Q} \chi_{\mathrm{C}_{B_{1}}}(y)\right) f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

in weighted Lebesgue spaces $L_{p,|x|^{\beta}, \gamma}$, where T^{y} is B-shift operators is defined below, $B(x, r)=\left\{y \in \mathbb{R}_{k,+}^{n}:|x-y|<r\right\}$ is the open ball centered at x with radius r in $\mathbb{R}_{k,+}^{n}$ and $B_{r}=B(0, r),{ }^{\complement} B_{r}=\mathbb{R}_{k,+}^{n} \backslash B_{r}$, and $0<\alpha<Q, Q=n+|\gamma|$.
V. Kokilashvili and A. Meskhi [21] proved the Stein-Weiss inequality for the fractional integral operator defined on nonhomogeneous spaces. In this paper we establish two inequalities of Stein-Weiss type (see [27]) for the B-Riesz potential $I_{\alpha, \gamma} f$. We give the Stein-Weiss type inequality in Theorem 1, and a weak version of the Stein-Weiss inequality in Theorem 2 for $I_{\alpha, \gamma} f$.

THEOREM 1. Let $0<\alpha<Q, 1<p \leqslant q<\infty, \beta<Q / p^{\prime}, \lambda<Q / q, \beta+\lambda \geqslant 0$ $(\beta+\lambda>0$, if $p=q), 1 / p-1 / q=(\alpha-\beta-\lambda) / Q$ and $f \in L_{p,|x|^{\beta}, \gamma}$. Then $I_{\alpha, \gamma} f \in$ $L_{q,|x|^{-\lambda}, \gamma}$ and the following inequality holds

$$
\begin{equation*}
\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left|I_{\alpha, \gamma} f(x)\right|^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \leqslant C\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta p}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p} \tag{1}
\end{equation*}
$$

where C is independent of f.

THEOREM 2. Let $0<\alpha<Q, 1<q<\infty, \beta \leqslant 0, \lambda<Q / q, \beta+\lambda \geqslant 0,1-1 / q=$ $(\alpha-\beta-\lambda) / Q$ and $f \in L_{1,\left.|x|\right|^{\beta}, \gamma}$. Then $I_{\alpha, \gamma} f \in W L_{q,|x|^{-\lambda}, \gamma}$ and the following inequality holds

$$
\begin{equation*}
\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}:|x|^{-\lambda}\left|I_{\alpha, \gamma} f(x)\right|>\tau\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \leqslant \frac{C}{\tau} \int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|\left(x^{\prime}\right)^{\gamma} d x \tag{2}
\end{equation*}
$$

where C is independent of f.
In the following, by using Stein-Weiss type Theorems 1 and 2 , we obtain necessary and sufficient conditions on the parameters for the boundedness of the B-Riesz potential operator $I_{\alpha, \gamma}$ from the spaces $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{\lambda}, \gamma}$, and from the spaces $L_{1,|x|^{\beta}, \gamma}$ to the weak spaces $W L_{q,|x|^{\lambda}, \gamma}$. In the limiting case $p=Q / \alpha$ we prove that the modified B-Riesz potential operator \widetilde{I}_{α} is bounded from the space $L_{p,|x|^{\beta}, \gamma}$ to the weighted B-BMO space $B M O_{|x|^{-\lambda}, \gamma}$.

THEOREM 3. Let $0<\alpha<Q, 1 \leqslant p \leqslant q<\infty, \beta<Q / p^{\prime}(\beta \leqslant 0$, if $p=1)$, $\lambda<Q / q(\lambda \leqslant 0$, if $q=\infty), \alpha \geqslant \beta+\lambda \geqslant 0(\beta+\lambda>0$, if $p=q)$.

1) If $1<p<Q /(\alpha-\beta-\lambda)$, then the condition $1 / p-1 / q=(\alpha-\beta-\lambda) / Q$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{-\lambda}, \gamma}$.
2) If $p=1$, then the condition $1-1 / q=(\alpha-\beta-\lambda) / Q$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{1,|x| \beta, \gamma}$ to $W L_{q,|x|^{-\lambda}, \gamma}$.
3) If $1<p=Q /(\alpha-\beta-\lambda)$, then the operator $\widetilde{I}_{\alpha, \gamma}$ is bounded from $L_{p,|x|}{ }^{\beta}, \gamma$ to $B M O_{|x|^{-\lambda}, \gamma}$.

Moreover, if the integral $I_{\alpha, \gamma} f$ exists almost everywhere for $f \in L_{p,|x| \beta, \gamma}$, then $I_{\alpha, \gamma} f \in B M O_{|x|^{-\lambda}, \gamma}$ and the following inequality holds

$$
\left\|I_{\alpha, \gamma} f\right\|_{B M O_{|x|-\lambda, \gamma}} \leqslant C\|f\|_{L_{p,|x| \beta}, \gamma}
$$

where $C>0$ is independent of f.

REmARK 1. Note that in the case of $k=1$ the statements 1) and 2) in Theorem 3 were proved in [9], and the statement 3) in [10].

Here the weighted $B-B M O$ space $B M O_{w, \gamma}$ is defined as the set of locally integrable functions f with finite norm

$$
\|f\|_{*, w, \gamma}=\sup _{x \in \mathbb{R}_{k,+}^{n}, r>0} w\left(B_{r}\right)^{-1} \int_{B_{r}}\left|T^{y} f(x)-f_{B_{r}}(x)\right|\left(y^{\prime}\right)^{\gamma} d y<\infty
$$

and $B-B M O$ space (see [13]) $B M O_{\gamma}\left(\mathbb{R}_{k,+}^{n}\right) \equiv B M O_{1, \gamma}\left(\mathbb{R}_{k,+}^{n}\right)$, where

$$
f_{B_{r}}(x)=\left|B_{r}\right|_{\gamma}^{-1} \int_{B_{r}} T^{y} f(x)\left(y^{\prime}\right)^{\gamma} d y
$$

$\left|B_{r}\right|_{\gamma}=\omega(n, k, \gamma) r^{Q}$ and

$$
\omega(n, k, \gamma)=\int_{B_{1}}\left(x^{\prime}\right)^{\gamma} d x=\pi^{(n-k) / 2} 2^{-k} \prod_{i=1}^{k} \Gamma\left(\left(\gamma_{i}+1\right) / 2\right)\left[\Gamma\left(\gamma_{i} / 2\right)\right]^{-1} .
$$

Besov spaces in the setting of the Bessel differential operator on $(0, \infty)$ is studied by G. Altenburg [2], D. I. Cruz-Baez and J. Rodriguez, [5], M. Assal and H. Ben Abdallah [3], and the setting of the Laplace-Bessel differential operator on $\mathbb{R}_{k,+}^{n}$ studied by V. S. Guliyev, A. Serbetci and Z. V. Safarov [16].

In Theorem 4 we prove the boundedness of $I_{\alpha, \gamma}$ in the weighted Besov spaces associated with the Laplace-Bessel differential operator on $\mathbb{R}_{k,+}^{n}$ (weighted B-Besov spaces)

$$
\begin{equation*}
B_{p \theta, w, \gamma}^{s}=\left\{f:\|f\|_{B_{p \theta, w, \gamma}^{s}}=\|f\|_{L_{p, w, \gamma}}+\left(\int_{\mathbb{R}_{k,+}^{n}} \frac{\left\|T^{x} f(\cdot)-f(\cdot)\right\|_{L_{p, w, \gamma}}^{\theta}}{|x|^{Q+s \theta}}\left(x^{\prime}\right)^{\gamma} d x\right)^{\frac{1}{\theta}}<\infty\right\} \tag{3}
\end{equation*}
$$

for a power weight $w, 1 \leqslant p, \theta \leqslant \infty$ and $0<s<1$.
THEOREM 4. Let $0<\alpha<Q, 1<p \leqslant q<\infty, \beta<Q / p^{\prime}, \lambda<Q / q, \alpha \geqslant \beta+\lambda \geqslant$ $0(\beta+\lambda>0$, if $p=q)$.

If $1<p<Q /(\alpha-\beta-\lambda), 1 / p-1 / q=(\alpha-\beta-\lambda) / Q, 1 \leqslant \theta \leqslant \infty$ and $0<s<1$, then the operator $I_{\alpha, \gamma}$ is bounded from $B_{p \theta,|x|^{\beta}, \gamma}^{s}$ to $B_{q \theta,|x|^{-\lambda}, \gamma}^{s}$. More precisely, there is a constant $C>0$ such that

$$
\left\|I_{\alpha, \gamma} f\right\|_{B_{q \theta,|x|-\lambda, \gamma}^{s}} \leqslant C\|f\|_{\left.B_{p \theta,|x|}^{s}\right|^{\beta}, \gamma}
$$

holds for all $f \in B_{p \theta,|x|^{\beta}, \gamma}^{s}$.
It is known that (see [18], [19]) there exists a positive constant C_{0} such that $G(x)=$ $C_{0}|x|^{2-Q}$ is the fundamental solution of the Laplace-Bessel differential operator Δ_{B}.

THEOREM 5. [19] Let α is an even positive integer such that $0<\alpha<Q$. If the function f is finite, even with respect to the variables x_{1}, \ldots, x_{k} having α continuous
derivatives by the variables x_{1}, \ldots, x_{k} and $\alpha / 2$ continuous derivatives by x_{k+1}, \ldots, x_{n}, then the potential $I_{\alpha, \gamma} f$ is a solution of the B-elliptic equation

$$
\Delta_{B}^{\alpha / 2} u(x)=f(x)
$$

In the following we prove two Sobolev embedding theorems on weighted Lebesgue $L_{p,|x|^{\beta}, \gamma}$ and weighted B-Besov spaces $B_{p \theta,|x|^{\beta}, \gamma}^{s}$ by using the fundamental solution of the B-elliptic equation $\Delta_{B}^{\alpha / 2}$. We expect that these results will be useful to investigate the regularity properties of B-elliptic differential equations.

From Theorems 3 and 5 we have
THEOREM 6. Let f be defined as in Theorem 5 and α be an even positive integer, $0<\alpha<Q, 1 \leqslant p \leqslant q<\infty, \beta<Q / p^{\prime}(\beta \leqslant 0$, if $p=1)$, $\lambda<Q / q(\lambda \leqslant 0$, if $q=\infty)$, $\alpha \geqslant \beta+\lambda \geqslant 0(\beta+\lambda>0$, if $p=q)$.

1) If $f \in L_{p,|x|}{ }^{\beta}, \gamma, 1<p<Q /(\alpha-\beta-\lambda), 1 / p-1 / q=(\alpha-\beta-\lambda) / Q$, then the following estimation holds:

$$
\|u\|_{L_{q,|x|}-\lambda, \gamma} \leqslant C\left\|\Delta_{B}^{\alpha / 2} u\right\|_{L_{p, x \mid} \beta, \gamma}
$$

where $C>0$ is independent of u.
2) If $f \in L_{1,|x|^{\beta}, \gamma}, 1-1 / q=(\alpha-\beta-\lambda) / Q$, then the following estimation holds:

$$
\|u\|_{W L_{q,|x|-\lambda, \gamma}} \leqslant C\left\|\Delta_{B}^{\alpha / 2} u\right\|_{L_{1,|x|} \beta_{, \gamma}}
$$

where $C>0$ is independent of u.

From Theorems 4 and 5 we have
THEOREM 7. Let α be an even positive integer, $0<\alpha<Q, 1<p \leqslant q<\infty$, $\beta<Q / p^{\prime}, \lambda<Q / q, \alpha \geqslant \beta+\lambda \geqslant 0(\beta+\lambda>0$, if $p=q)$.

If $f \in B_{p \theta,|x|}^{s}, \gamma, 1<p<Q /(\alpha-\beta-\lambda), 1 / p-1 / q=(\alpha-\beta-\lambda) / Q, 1 \leqslant \theta \leqslant \infty$ and $0<s<1$, then the following estimation holds:
where $C>0$ is independent of u.

2. Preliminaries

Denote the generalized shift operator (B-shift operator) by T^{y}, acting according to the law

$$
T^{y} f(x)=C_{\gamma, k} \int_{0}^{\pi} \cdots \int_{0}^{\pi} f\left(\left(x^{\prime}, y^{\prime}\right)_{\beta}, x^{\prime \prime}-y^{\prime \prime}\right) d v(\beta)
$$

where $\left(x^{\prime}, y^{\prime}\right)_{\beta}=\left(\left(x_{1}, y_{1}\right)_{\beta_{1}}, \ldots,\left(x_{k}, y_{k}\right)_{\beta_{k}}\right),\left(x_{i}, y_{i}\right)_{\beta_{i}}=\left(x_{i}^{2}-2 x_{i} y_{i} \cos \beta_{i}+y_{i}^{2}\right)^{\frac{1}{2}}, 1 \leqslant$ $i \leqslant k,, d v(\beta)=\prod_{i=1}^{k} \sin ^{\gamma_{i}-1} \beta_{i} d \beta_{1} \ldots d \beta_{k}, \quad 1 \leqslant k \leqslant n$ and

$$
C_{\gamma, k}=\pi^{-k / 2} \prod_{i=1}^{k} \Gamma\left(\left(\gamma_{i}+1\right) / 2\right)\left[\Gamma\left(\gamma_{i} / 2\right)\right]^{-1}=2^{k} \pi^{-k} \omega(2 k, k, \gamma)
$$

We remark that the generalized shift operator T^{y} is closely connected with the Laplace-Bessel differential operator Δ_{B} (see [17, 22, 23] for details). Furthermore, T^{y} generates the corresponding B-convolution

$$
(f \otimes g)(x)=\int_{\mathbb{R}_{k,+}^{n}} f(y)\left[T^{y} g(x)\right]\left(y^{\prime}\right)^{\gamma} d y
$$

Lemma 1. [9] Let $0<\alpha<Q$. Then for $2|x| \leqslant|y|, x, y \in \mathbb{R}_{k,+}^{n}$, the following inequality holds

$$
\begin{equation*}
\left.\left|T^{y}\right| x\right|^{\alpha-Q}-\left.|y|^{\alpha-Q}\left|\leqslant 2^{Q-\alpha+1}\right| y\right|^{\alpha-Q-1}|x| . \tag{4}
\end{equation*}
$$

We will need the following Hardy-type transforms defined on $\mathbb{R}_{k,+}^{n}$:

$$
H_{\gamma} f(x)=\int_{B_{|x|}} f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

and

$$
H_{\gamma}^{\prime} f(x)=\int_{\mathrm{C}_{B_{|x|}}} f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

The following two theorems related to the boundedness of these transforms were proved in [6] (see also [7], Section 1.1).

ThEOREM A. Let $1<q<\infty$. Suppose that v and w are a.e. positive functions on $\mathbb{R}_{k,+}^{n}$. Then
(a) The operator H_{γ} is bounded from $L_{1, w, \gamma}$ to $W L_{q, v, \gamma}$ if and only if

$$
A_{1} \equiv \sup _{t>0}\left(\int_{C_{B_{t}}} v^{q}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \sup _{B_{t}} w^{-1}(x)<\infty ;
$$

(b) The operator H_{γ}^{\prime} is bounded from $L_{1, w, \gamma}$ to $W L_{q, v, \gamma}$ if and only if

$$
A_{2} \equiv \sup _{t>0}\left(\int_{B_{t}} v^{q}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \sup _{\complement_{B_{t}}} w^{-1}(x)<\infty .
$$

Moreover, there exist positive constants $a_{j}, j=1, \ldots, 4$, depending only on q such that $a_{1} A_{1} \leqslant\|H\| \leqslant a_{2} A_{1}$ and $a_{3} A_{2} \leqslant\left\|H^{\prime}\right\| \leqslant a_{4} A_{2}$.

THEOREM B. Let $1<p \leqslant q<\infty$. Suppose that v and w are a.e. positive functions on $\mathbb{R}_{k,+}^{n}$. Then
(a) The operator H_{γ} is bounded from $L_{p, w, \gamma}$ to $L_{q, v, \gamma}$ if and only if

$$
A_{3} \equiv \sup _{t>0}\left(\int_{\mathbb{C}_{B_{t}}} v^{q}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}\left(\int_{B_{t}} w^{-p^{\prime}}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}}<\infty,
$$

$p^{\prime}=p /(p-1) ;$
(b) The operator H_{γ}^{\prime} is bounded from $L_{p, w, \gamma}$ to $L_{q, v, \gamma}$ if and only if

$$
A_{4} \equiv \sup _{t>0}\left(\int_{B_{t}} v^{q}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}\left(\int_{\mathrm{C}_{B_{t}}} w^{-p^{\prime}}(x)\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}}<\infty .
$$

Moreover, there exist positive constants $b_{j}, j=1, \ldots, 4$, depending only on p and q such that $b_{1} A_{3} \leqslant\|H\| \leqslant b_{2} A_{3}$ and $b_{3} A_{4} \leqslant\left\|H^{\prime}\right\| \leqslant b_{4} A_{4}$.

We will need the case that we substitute $L_{p, v, \gamma}$ with the homogeneous space (X, ρ, μ) in Theorems A and B in which $X=\mathbb{R}_{k,+}^{n}, \rho(x, y)=|x-y|$ and $d \mu(x)=$ $\left(x^{\prime}\right)^{\gamma} d x$.

DEFINITION 1. The weight function w belongs to the class $A_{p, \gamma}$ for $1<p, q<\infty$, if

$$
\sup _{x, r}\left(|B(x, r)|_{\gamma}^{-1} \int_{B(x, r)} w(y)\left(y^{\prime}\right)^{\gamma} d y\right)\left(|B(x, r)|_{\gamma}^{-1} \int_{B(x, r)} w^{-\frac{1}{p-1}}(y)\left(y^{\prime}\right)^{\gamma} d y\right)^{p-1}<\infty
$$

and w belongs to $A_{1, \gamma}$, if there exists a positive constant C such that for any $x \in \mathbb{R}_{k,+}^{n}$ and $r>0$

$$
|B(x, r)|_{\gamma}^{-1} \int_{B(x, r)} w(y)\left(y^{\prime}\right)^{\gamma} d y \leqslant C \underset{y \in B(x, r)}{\operatorname{ess} \inf } w(y)
$$

The properties of the class $A_{p, \gamma}$ are analogous to those of the Muckenhoupt classes. In particular, if $w \in A_{p, \gamma}$, then $w \in A_{p-\varepsilon, \gamma}$ for a certain sufficiently small $\varepsilon>0$ and $w \in A_{p_{1}, \gamma}$ for any $p_{1}>p$.

Note that, $|x|^{\alpha} \in A_{p, \gamma}, 1<p<\infty$, if and only if $-\frac{Q}{p}<\alpha<\frac{Q}{p^{\prime}}$; and $|x|^{\alpha} \in A_{1, \gamma}$, if and only if $-Q<\alpha \leqslant 0$.

For the B-maximal function (see $[12,13]$)

$$
M_{\gamma} f(x)=\sup _{r>0}\left|B_{r}\right|_{\gamma}^{-1} \int_{B_{r}} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y
$$

the following analogue of Muckenhoupt theorem (see [25]) is valid.
THEOREM C. 1. If $f \in L_{1, w, \gamma}$ and $w \in A_{1, \gamma}$, then $M_{\gamma} f \in W L_{1, w, \gamma}$ and

$$
\begin{equation*}
\left\|M_{\gamma} f\right\|_{W L_{1, w, \gamma}} \leqslant C_{1, w, \gamma}\|f\|_{L_{1, w, \gamma}}, \tag{5}
\end{equation*}
$$

where $C_{1, w, \gamma}$ depends only on γ, k and n.
2. If $f \in L_{p, w, \gamma}$ and $w \in A_{p, \gamma}, 1<p<\infty$, then $M_{\gamma} f \in L_{p, w, \gamma}$ and

$$
\begin{equation*}
\left\|M_{\gamma} f\right\|_{L_{p, w, \gamma}} \leqslant C_{p, w, \gamma}\|f\|_{L_{p, w, \gamma}} \tag{6}
\end{equation*}
$$

where $C_{p, w, \gamma}$ depends only on w, p, γ, k and n.
Proof. Following [13] and [29], we define a maximal function on a space of homogeneous type (see [4]). By this we mean a topological space X equipped with a continuous pseudometric ρ and a positive measure μ satisfying the doubling condition

$$
\begin{equation*}
\mu(E(x, 2 r)) \leqslant c \mu(E(x, r)) \tag{7}
\end{equation*}
$$

where c does not depend on x and $r>0$. Here $E(x, r)=\{y \in X: \rho(x, y)<r\}$. Denote

$$
M_{\mu} f(x)=\sup _{r>0} \mu(E(x, r))^{-1} \int_{E(x, r)}|f(y)| d \mu(y)
$$

Let (X, ρ, μ) be a homogeneous type space. It is known that the maximal function M_{μ} is weighted weak $(1,1)$ type, $w \in A_{1, \gamma}$, that is

$$
\begin{equation*}
\int_{\left\{x \in X: M_{\mu} f(x)>\tau\right\}} w(x) d \mu(x) \leqslant\left(\frac{C_{1, w, \gamma}}{\tau} \int_{X}|f(x)| w(x) d \mu(x)\right) \tag{8}
\end{equation*}
$$

and is weighted (p, p) type, $1<p \leqslant \infty$ and $w \in A_{p, \gamma}$ (see [20], [24]), that is

$$
\begin{equation*}
\int_{X}\left|M_{\mu} f(x)\right|^{p} w(x)^{p} d \mu(x) \leqslant C_{p, w, \gamma} \int_{X}|f(x)|^{p} w(x)^{p} d \mu(x) \tag{9}
\end{equation*}
$$

In [13] and [29] it is proved that the following inequality

$$
M_{\gamma} f(x) \leqslant C M_{\mu} f(x)
$$

holds, where constant $C>0$ does not depend on f and x.
In (8) and (9) if we take $X=\mathbb{R}_{k,+}^{n}, \rho(x, y)=|x-y|$ and $d \mu(x)=\left(x^{\prime}\right)^{\gamma} d x$, then we have

$$
\left\|M_{\gamma} f\right\|_{p, w, \gamma} \leqslant C\left\|M_{\mu} f\right\|_{p, w, \gamma} \leqslant C_{p, w, \gamma}\|f\|_{p, w, \gamma}, \quad 1<p \leqslant \infty
$$

and for $p=1$

$$
\begin{aligned}
\int_{\left\{x \in \mathbb{R}_{k,+}^{n}: M_{\gamma} f(x)>\tau\right\}} w(x)\left(x^{\prime}\right)^{\gamma} d x & \leqslant \int_{\left\{x \in X: M_{\mu} f(x)>\frac{\tau}{C}\right\}} w(x) d \mu(x) \\
& \leqslant \frac{C_{1, w, \gamma}}{\tau} \int_{\mathbb{R}_{k,+}^{n}}|f(x)| w(x) d \mu(x)
\end{aligned}
$$

Remark 2. Note that in the case $k=1$ Theorem C was proved in [11].
We will need the following Hardy-Littlewood-Sobolev theorem for $I_{\alpha, \gamma}$.

Theorem D. Let $0<\alpha<Q$ and $1 \leqslant p<Q / \alpha$. Then

1) If $1<p<Q / \alpha$, then the condition $1 / p-1 / q=\alpha / Q$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{p, \gamma}$ to $L_{q, \gamma}$.
2) If $p=1$, then the condition $1-1 / q=\alpha / Q$ is necessary and sufficient for the boundedness of $I_{\alpha, \gamma}$ from $L_{1, \gamma}$ to $W L_{q, \gamma}$.
3) If $1<p=Q / \alpha$, then the operator $\widetilde{I}_{\alpha, \gamma}$ is bounded from $L_{p, \gamma}$ to $B M O_{\gamma}$. Moreover, if the integral $I_{\alpha, \gamma} f$ exists almost everywhere for $f \in L_{p, \gamma}$, then $I_{\alpha, \gamma} f \in B M O_{\gamma}$ and the following inequality is valid

$$
\left\|I_{\alpha, \gamma} f\right\|_{B M O_{\gamma}} \leqslant C\|f\|_{L_{p, \gamma}},
$$

where $C>0$ is independent of f.
REMARK 3. Note that statements 1) and 2) in Theorem D was proved in [8] in the case $k=1$ and $[12,13]$ in the case $k=n$ and $[14,23]$ in the case $1 \leqslant k \leqslant n$, and statement 3) in [13] in the case $k=1$.

3. Proof of the theorems

Proof of Theorem 1. We write

$$
\begin{aligned}
&\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left|I_{\alpha, \gamma} f(x)\right|^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \leqslant I_{1}+I_{2}+I_{3} \\
& \equiv\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(\int_{B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
&+\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(\int_{B_{2|x|} \mid B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
&+\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(\int_{C_{B_{2|x|}}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}
\end{aligned}
$$

It is easy to check that if $|y|<|x| / 2$, then $|x| \leqslant|y|+|x-y|<|x| / 2+|x-y|$. Hence $|x| / 2<|x-y|$ and $T^{y}|x|^{\alpha-Q} \leqslant(|x| / 2)^{\alpha-Q}$. Indeed,

$$
\begin{align*}
T^{y}|x|^{\alpha-Q} & =C_{\gamma, k} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left|\left(\left(x^{\prime}, y^{\prime}\right)_{\beta}, x^{\prime \prime}-y^{\prime \prime}\right)\right|^{\alpha-Q} d v(\beta) \\
& \geqslant C_{\gamma, k} \int_{0}^{\pi} \cdots \int_{0}^{\pi}\left|\left(x^{\prime}-y^{\prime}, x^{\prime \prime}-y^{\prime \prime}\right)\right|^{\alpha-Q} d v(\beta) \tag{10}\\
& =|x-y|^{\alpha-Q} \geqslant(|x| / 2)^{\alpha-Q}
\end{align*}
$$

Then we get

$$
I_{1} \leqslant 2^{Q-\alpha}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{(\alpha-Q-\lambda) q}\left(H_{\gamma} f(x)\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q<(Q-\alpha) q-Q$ (i.e., $\alpha<Q / q^{\prime}+\lambda$) we obtain

$$
\left(\int_{\complement_{B_{t}}}|x|^{(-\lambda+\alpha-Q) q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}=C_{1} t^{\alpha-\lambda-Q / q^{\prime}}
$$

where $C_{1}=\left(\frac{\omega(n, k, \gamma)}{q / q^{\prime}+(\lambda-\alpha) q / Q}\right)^{1 / q}$. Similarly, by virtue of the condition $\beta p<Q(p-1)$ (i.e., $\beta<Q / p^{\prime}$) it follows that

$$
\left(\int_{B_{t}}|x|^{-\beta p^{\prime}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}}=C_{2} t^{Q / p^{\prime}-\beta}
$$

where $C_{2}=\left(\frac{\omega(n, k, \gamma)}{1-\beta p^{\prime} / Q}\right)^{1 / p^{\prime}}$.
Summarizing these estimates we find that

$$
\begin{aligned}
& \sup _{t>0}\left(\int_{C_{B_{t}}}|x|^{(-\lambda+\alpha-Q) q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}\left(\int_{B_{t}}|x|^{-\beta p^{\prime}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}} \\
& =C_{1} C_{2} \sup _{t>0} t^{\alpha-\beta-\lambda+Q / q-Q / p}<\infty \\
& \Longleftrightarrow \alpha-\beta-\lambda=Q / p-Q / q .
\end{aligned}
$$

Now the first part of Theorem B gives us the inequality

$$
I_{1} \leqslant b_{2} C_{1} C_{2} 2^{Q-\alpha}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p}
$$

If $|y|>2|x|$, then $|y| \leqslant|x|+|x-y|<|y| / 2+|x-y|$. Hence $|y| / 2<|x-y|$ and the inequality $T^{y}|x|^{\alpha-Q} \leqslant(|y| / 2)^{\alpha-Q}$ can be shown immediately by similar method that of the inequality (10). Consequently, we get

$$
I_{3} \leqslant 2^{Q-\alpha}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(H_{\gamma}^{\prime}\left(|f(y)||y|^{\alpha-Q}\right)(x)\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q>-Q$ (i.e., $\lambda<Q / q$) we have

$$
\left(\int_{B_{t}}|x|^{-\lambda q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}=C_{3} t^{Q / q-\lambda},
$$

where $C_{3}=\left(\frac{\omega(n, k, \gamma)}{1-\lambda q / Q}\right)^{1 / q}$. By the condition $\beta p>\alpha p-Q$ (i.e., $\alpha<Q / p+\beta$) it follows that

$$
\left(\int_{B_{t}}|x|^{-(\beta+Q-\alpha) p^{\prime}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}}=C_{4} t^{Q / p^{\prime}-(Q+\beta-\alpha)}
$$

where $C_{4}=\left(\frac{\omega(n, k, \gamma)}{(1+(\beta-\alpha) / Q) p^{\prime}-1}\right)^{1 / p^{\prime}}$.

Thus we find

$$
\begin{aligned}
\sup _{t>0}\left(\int_{B_{t}}|x|^{-\lambda q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} & \left(\int_{\mathrm{C}_{B_{t}}}|x|^{-(\beta+Q-\alpha) p^{\prime}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{\prime}} \\
& =C_{3} C_{4} \sup _{t>0} t^{\alpha-\beta-\lambda+Q / q-Q / p}
\end{aligned}
$$

Now the second part of Theorem B gives us the inequality

$$
I_{3} \leqslant b_{4} C_{3} C_{4} 2^{Q-\alpha}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p}
$$

To estimate I_{2} we consider the cases $\alpha<Q / p$ and $\alpha>Q / p$, separately. If $\alpha<Q / p$, then the condition

$$
\alpha=\beta+\lambda+Q / p-Q / q \geqslant Q / p-Q / q
$$

implies $q \leqslant p^{*}$, where $p^{*}=Q p /(Q-\alpha p)$. Assume that $q<p^{*}$. In the sequel we use the notation

$$
D_{k} \equiv\left\{x \in \mathbb{R}_{k,+}^{n}: 2^{k} \leqslant|x|<2^{k+1}\right\}
$$

and

$$
\widetilde{D_{k}} \equiv\left\{x \in \mathbb{R}_{k,+}^{n}: 2^{k-2} \leqslant|x|<2^{k+2}\right\}
$$

By Hölder's inequality with respect to the exponent p^{*} / q and Theorem D we get

$$
\begin{aligned}
I_{2} & =\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& =\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}|x|^{-\lambda q}\left(\int_{B_{2|x| \mid} \backslash B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \leqslant\left(\sum_{k \in \mathbb{Z}}\left(\int_{D_{k}}\left(\int_{B_{2|x|} \mid B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y\right)^{p^{*}}\left(x^{\prime}\right)^{\gamma} d x\right)^{q / p^{*}}\right. \\
& \left.\times\left(\int_{D_{k}}|x|^{\frac{-\lambda q p^{*}}{p^{*}-q}}\left(x^{\prime}\right)^{\gamma} d x\right)^{\frac{p^{*}-q}{p^{*}}}\right)^{1 / q} \\
& \leqslant C_{5}\left(\sum_{k \in \mathbb{Z}} 2^{k\left[-\lambda q+\frac{p^{*}-q}{p^{*}} Q\right]}\left(\int_{D_{k}}\left|I_{\alpha, \gamma}\left(f \chi_{\widetilde{D_{k}}}\right)(x)\right|^{p^{*}}\left(x^{\prime}\right)^{\gamma} d x\right)^{q / p^{*}}\right)^{1 / q} \\
& \leqslant C_{6}\left(\sum_{k \in \mathbb{Z}} 2^{k\left[-\lambda q+\frac{p^{*}-q}{p^{*}} Q\right]}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{q / p}\right)^{1 / q} \\
& \leqslant C_{7}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p} \cdot
\end{aligned}
$$

If $q=p^{*}$, then $\beta+\lambda=0$. By using directly Theorem D we get

$$
\begin{aligned}
I_{2} & \leqslant C_{8}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta p^{*}} \int_{D_{k}}\left|I_{\alpha, \gamma}\left(f \chi_{\widetilde{D_{k}}}\right)(x)\right|^{p^{*}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p^{*}} \\
& \leqslant C_{9}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta p^{*}}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{p^{*} / p}\right)^{1 / p^{*}} \\
& \leqslant C_{10}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta p}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / p}
\end{aligned}
$$

For $\alpha>Q / p$ by Hölder's inequality with respect to the exponent p we get the following inequality

$$
\begin{aligned}
& I_{2} \leqslant\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{-\lambda q}\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)|^{p}\left(y^{\prime}\right)^{\gamma} d y\right)^{q / p}\right. \\
&\left.\times\left(\int_{B_{2|x|} \mid B_{|x| / 2}}\left(T^{y}|x|^{\alpha-Q}\right)^{p^{\prime}}\left(y^{\prime}\right)^{\gamma} d y\right)^{q / p^{\prime}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}
\end{aligned}
$$

On the other hand by using (2) and the inequality $\alpha>Q / p$, we obtain

$$
\begin{aligned}
\int_{B_{2|x| \mid} \mid B_{|x| / 2}}\left(T^{y}|x|^{\alpha-Q}\right)^{p^{\prime}}\left(y^{\prime}\right)^{\gamma} d y & \leqslant \int_{B_{2|x|} \mid B_{|x| / 2}}|x-y|^{(\alpha-Q) p^{\prime}}\left(y^{\prime}\right)^{\gamma} d y \\
& \leqslant \int_{0}^{\infty}\left|B_{2|x|} \cap B\left(x, \tau^{\frac{1}{(\alpha-Q) p^{\prime}}}\right)\right|_{\gamma} d \tau \\
& \leqslant \int_{0}^{|x|^{(\alpha-Q) p^{\prime}}}\left|B_{2|x|}\right|_{\gamma} d \tau+\int_{|x|(\alpha-Q) p^{\prime}}^{\infty}\left|B\left(x, \tau^{\frac{1}{(\alpha-Q) p^{\prime}}}\right)\right|_{\gamma} d \tau \\
& \leqslant C_{11}|x|^{(\alpha-Q) p^{\prime}+Q}+C_{12} \int_{|x|^{(\alpha-Q) p^{\prime}}}^{\infty} \tau^{\frac{Q}{(\alpha-Q) p^{\prime}}} d \tau \\
& =C_{13}|x|^{(\alpha-Q) p^{\prime}+Q}
\end{aligned}
$$

where the positive constant C_{13} does not depend on x. The latter estimate yields

$$
\begin{aligned}
I_{2} & \leqslant C_{14}\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}|x|^{-\lambda q+\left[(\alpha-Q) p^{\prime}+Q\right] q / p^{\prime}}\left(\int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)|^{p}\left(y^{\prime}\right)^{\gamma} d y\right)^{q / p}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \leqslant C_{14}\left(\sum_{k \in \mathbb{Z}} \int_{D_{k}}\left(\int_{\widetilde{D_{k}}}|f(y)|^{p}\left(y^{\prime}\right)^{\gamma} d y\right)^{q / p}|x|^{\left.-\lambda q+\left[(\alpha-Q) p^{\prime}+Q\right] q / p^{\prime}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}}\right. \\
& \leqslant C_{14}\left(\sum_{k \in \mathbb{Z}} 2^{k\left(-\lambda+\alpha-Q+Q / p^{\prime}+Q / q\right) q}\left(\int_{\widetilde{D_{k}}}|f(y)|^{p}\left(y^{\prime}\right)^{\gamma} d y\right)^{q / p}\right)^{1 / q}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant C_{14}\left(\sum_{k \in \mathbb{Z}} 2^{k \beta q}\left(\int_{\widetilde{D_{k}}}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{q / p}\right)^{1 / q} \\
& \leqslant C_{15}\left(\int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta p}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x\right)^{q / p}
\end{aligned}
$$

Thus Theorem 1 is proved.
Proof of Theorem 2. We write

$$
\begin{aligned}
& \left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}:|x|^{-\lambda}\left|I_{\alpha, \gamma} f(x)\right|>\tau\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \leqslant J_{1}+J_{2}+J_{3} \\
& \equiv \\
& \quad\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}:|x|^{-\lambda} \int_{B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y>\tau / 3\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \\
& \quad+\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}:|x|^{-\lambda} \int_{B_{2|x|} \mid B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q} Q_{\left.\left(y^{\prime}\right)^{\gamma} d y>\tau / 3\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}} \quad+\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}:\left.|x|^{-\lambda} \int_{C_{B_{2|x|}}}|f(y)| T^{y}|x|\right|^{\alpha-Q} Q_{\left.\left(y^{\prime}\right)^{\gamma} d y>\tau / 3\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}}\right.\right.
\end{aligned}
$$

Then it is clear that

$$
J_{1} \leqslant\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}: 2 Q-\alpha|x|^{\alpha-Q-\lambda} H_{\gamma} f(x)>\tau / 3\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q}
$$

Further, taking into account the inequality $-\lambda q<(Q-\alpha) q-Q$ (i.e., $\alpha<Q-Q / q+$ λ) we have

$$
\int_{\mathrm{C}_{B_{t}}}|x|^{(-\lambda+\alpha-Q) q}\left(x^{\prime}\right)^{\gamma} d x=C_{1}^{q} t^{(-\lambda+\alpha-Q) q+Q} .
$$

By the condition $\beta \leqslant 0$ it follows that $\sup _{B}|x|^{-\beta}=t^{-\beta}$.
Summarizing these estimates we find that

$$
\begin{aligned}
\sup _{t>0}\left(\int_{\mathrm{c}_{B_{t}}}|x|^{(-\lambda+\alpha-Q) q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \sup _{B_{t}}|x|^{-\beta} & =C_{1} \sup _{t>0} t^{Q / q-\lambda+\alpha-Q-\beta}<\infty \\
& \Leftrightarrow \alpha-\beta-\lambda=Q-Q / q
\end{aligned}
$$

Now in the case $p=1$ the first part of Theorem A gives us the inequality

$$
J_{1} \leqslant \frac{C_{16}}{\tau} \int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|^{p}\left(x^{\prime}\right)^{\gamma} d x
$$

where the positive constant C_{16} does not depend on f.
Further, we have

$$
J_{3} \leqslant\left(\int_{\left\{x \in \mathbb{R}_{k,+}^{n}: 2 Q-\alpha|x|^{-\lambda} H_{\gamma}^{\prime}(|f(y)| y \mid(\alpha-Q)(x)>\tau / 3\}\right.}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} .
$$

Taking into account the inequality $-\lambda q>-Q$ (i.e., $\lambda<Q / q$) we get

$$
\int_{B_{t}}|x|^{-\lambda q}\left(x^{\prime}\right)^{\gamma} d x=C_{17}^{q} t^{-\lambda q+Q}
$$

where the positive constant C_{17} depends only on α and λ. Analogously, by virtue of the condition $\beta \geqslant \alpha-Q$ it follows that

$$
\sup _{\mathrm{C}_{B_{t}}}|x|^{-\beta+\alpha-Q}=t^{-\beta+\alpha-Q} .
$$

Then we obtain

$$
\begin{aligned}
\sup _{t>0}\left(\int_{B_{t}}|x|^{-\lambda q}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \sup _{\complement_{B_{t}}}|x|^{-\beta+\alpha-Q} & =C_{17} \sup _{t>0} t^{Q / q-\lambda+\alpha-Q-\beta}<\infty \\
& \Leftrightarrow \alpha-\beta-\lambda=Q-Q / q
\end{aligned}
$$

Now in the case $p=1$, from the second part of Theorem A we get the inequality

$$
J_{3} \leqslant \frac{C_{18}}{\tau} \int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|\left(x^{\prime}\right)^{\gamma} d x
$$

where the positive constant C_{18} does not depend on f.
We now estimate J_{2}. From $\beta+\lambda \geqslant 0$ and Theorem D, we get

$$
\begin{aligned}
J_{2} & =\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}:|x|^{-\lambda} \int_{B_{2|x|} \mid B_{|x| / 2}}|f(y)| T^{y}|x|^{\alpha-Q}\left(y^{\prime}\right)^{\gamma} d y>\tau / 3\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \leqslant\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}: \int_{B_{2|x|} \backslash B_{|x| / 2}}|f(y)||y|^{\beta}\right.} T_{\left.T^{y}|x|^{\alpha-\beta-\lambda-Q}\left(y^{\prime}\right)^{\gamma} d y>c \tau\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \leqslant\left(\sum_{k \in \mathbb{Z}} \int_{\left\{x \in D_{k}:\left|I_{\alpha-\beta-\lambda, \gamma}\left(f(\cdot)|\cdot| \beta \chi_{\widetilde{D_{k}}}\right)(x)\right|>c \tau\right\}}\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} \\
& \leqslant\left(\sum_{k \in \mathbb{Z}}\left(\frac{C_{19}}{\tau} \int_{\widetilde{D_{k}}}|f(x)||x|^{\beta}\left(x^{\prime}\right)^{\gamma} d x\right)^{q}\right)^{1 / q} \\
& \leqslant\left(\frac{C_{20}}{\tau} \int_{\mathbb{R}_{k,+}^{n}}|x|^{\beta}|f(x)|\left(x^{\prime}\right)^{\gamma} d x\right)^{1 / q} .
\end{aligned}
$$

Thus the proof of the theorem is completed.
Proof of Theorem 3. Sufficiency part of Theorem 3 follows from Theorems 1 and 2.

Necessity. 1) Suppose that the operator $I_{\alpha, \gamma}$ is bounded from $L_{p,|x|^{\beta}, \gamma}$ to $L_{q,|x|^{-\lambda}, \gamma}$ and $1<p<Q /(\alpha-\beta-\lambda)$.

Define $f_{t}(x)=: f(t x)$ for $t>0$. Then it can be easily shown that

$$
\begin{gathered}
\left\|f_{t}\right\|_{L_{p,|x|} \beta^{\beta}, \gamma}=t^{-\frac{Q}{p}-\beta}\|f\|_{L_{p,|x|} \beta_{, \gamma}} \\
\left(I_{\alpha, \gamma} f_{t}\right)(x)=t^{-\alpha} I_{\alpha, \gamma} f(t x)
\end{gathered}
$$

and

$$
\left\|I_{\alpha, \gamma} f_{t}\right\|_{L_{q,|x|-\lambda, \gamma}}=t^{-\alpha-\frac{Q}{q}+\lambda}\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}
$$

From the boundedness of $I_{\alpha, \gamma}$, we have

$$
\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}} \leqslant C\|f\|_{\left.L_{p, x \mid}\right|^{\beta}, \gamma}
$$

where C does not depend on f. Then we get

$$
\begin{aligned}
\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}} & =t^{\alpha+Q / q-\lambda}\left\|I_{\alpha, \gamma} f_{t}\right\|_{L_{q,|x|}-\lambda, \gamma} \\
& \leqslant C t^{\alpha+Q / q-\lambda}\left\|f_{t}\right\|_{L_{p,|x|} \beta, \gamma} \\
& =C t^{\alpha+Q / q-\lambda-Q / p-\beta}\|f\|_{L_{p,|x|} \beta_{, \gamma}}
\end{aligned}
$$

If $1 / p-1 / q<(\alpha-\beta-\lambda) / Q$, then for all $f \in L_{p,|x|^{\beta}, \gamma}$ we have $\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}=$ 0 as $t \rightarrow 0$.

If $1 / p-1 / q>(\alpha-\beta-\lambda) / Q$, then for all $f \in L_{p,|x|^{\beta}, \gamma}$ we have $\left\|I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda, \gamma}}=$ 0 as $t \rightarrow \infty$.

Therefore we obtain the equality $1 / p-1 / q=(\alpha-\beta-\lambda) / Q$.
2) The proof of necessity for the case 2) is similar to that of the case 1); therefore we omit it.
3) Let $f \in L_{p,|x|^{\beta}, \gamma}, 1<p=Q /(\alpha-\beta-\lambda)$. For given $t>0$ we denote

$$
\begin{equation*}
f_{1}(x)=f(x) \chi_{B_{2 t}}(x), \quad f_{2}(x)=f(x)-f_{1}(x) \tag{11}
\end{equation*}
$$

where $\chi_{B_{2 t}}$ is the characteristic function of the set $B_{2 t}$. Then

$$
\widetilde{I}_{\alpha, \gamma} f(x)=\widetilde{I}_{\alpha, \gamma} f_{1}(x)+\widetilde{I}_{\alpha, \gamma} f_{2}(x)=F_{1}(x)+F_{2}(x)
$$

where

$$
F_{1}(x)=\int_{B_{2 t}}\left(T^{y}|x|^{\alpha-Q}-|y|^{\alpha-Q} \chi_{\mathrm{C}_{B_{1}}}(y)\right) f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

and

$$
F_{2}(x)=\int_{\mathrm{C}_{B_{2 t}}}\left(T^{y}|x|^{\alpha-Q}-|y|^{\alpha-Q} \chi_{\mathrm{C}_{B_{1}}}(y)\right) f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

Note that the function f_{1} has compact (bounded) support and thus

$$
a_{1}=-\int_{B_{2 t} \backslash B_{\min \{1,2 t\}}}|y|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

is finite.
Note also that

$$
\begin{aligned}
F_{1}(x)-a_{1}= & \int_{B_{2 t}} T^{y}|x|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y-\int_{B_{2 t} \backslash B_{\min \{1,2 t\}}}|y|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y \\
& +\int_{B_{2 t} \backslash B_{\min \{1,2 t\}}}|y|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y \\
= & \int_{\mathbb{R}_{k,+}^{n}} T^{y}|x|^{\alpha-Q} f_{1}(y)\left(y^{\prime}\right)^{\gamma} d y=I_{\alpha, \gamma} f_{1}(x)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left|F_{1}(x)-a_{1}\right| & \leqslant \int_{\mathbb{R}_{k,+}^{n}}|y|^{\alpha-Q}\left|T^{y} f_{1}(x)\right|\left(y^{\prime}\right)^{\gamma} d y \\
& =\int_{B(x, 2 t)}|y|^{\alpha-Q}\left|T^{y} f(x)\right|\left(y^{\prime}\right)^{\gamma} d y
\end{aligned}
$$

Further, for $x \in B_{t}, y \in B(x, 2 t)$ we have

$$
|y| \leqslant|x|+|x-y|<3 t
$$

Consequently, for all $x \in B_{t}$ we have

$$
\begin{equation*}
\left|F_{1}(x)-a_{1}\right| \leqslant \int_{B_{3 t}}|y|^{\alpha-Q}\left|T^{y} f(x)\right|\left(y^{\prime}\right)^{\gamma} d y \tag{12}
\end{equation*}
$$

By Theorem C and inequality (12), for $(\alpha-\beta-\lambda) p=Q$ we have

$$
\begin{aligned}
t^{-Q-\lambda} \int_{B_{t}} & \left|T^{z} F_{1}(x)-a_{1}\right|\left(z^{\prime}\right)^{\gamma} d z \\
& \leqslant C t^{-Q-\lambda} \int_{B_{t}} T^{z}\left(\int_{B_{3 t}}|y|^{\alpha-Q} T^{y}|f(x)|\left(y^{\prime}\right)^{\gamma} d y\right)\left(z^{\prime}\right)^{\gamma} d z \\
& \leqslant C t^{\alpha-Q-\lambda} \cdot t^{Q / p^{\prime}}\left(\int_{B_{t}} T^{z}\left(M_{\gamma}(f(x))\right)^{p}\left(z^{\prime}\right)^{\gamma} d z\right)^{1 / p} \\
& \leqslant C t^{\beta}\left(\int_{B_{t}} T^{z}\left(M_{\gamma}(f(x))\right)^{p}\left(z^{\prime}\right)^{\gamma} d z\right)^{1 / p}
\end{aligned}
$$

$$
\begin{align*}
& \leqslant C\left(\int_{B_{t}}|z|^{\beta p} T^{z}\left(M_{\gamma}(f(x))\right)^{p}\left(z^{\prime}\right)^{\gamma} d z\right)^{1 / p} \\
& =C\left(\int_{\mathbb{R}_{k,+}^{n}} T^{z}\left(\chi_{B_{t}}|x|^{\beta p}\right)\left(M_{\gamma}(f(x))\right)^{p}\left(z^{\prime}\right)^{\gamma} d z\right)^{1 / p} \\
& =C\left(\int_{\mathbb{R}_{k,+}^{n}}|z|^{\beta p}\left(M_{\gamma}(f(x))\right)^{p}\left(z^{\prime}\right)^{\gamma} d z\right)^{1 / p} \\
& \leqslant C\|f\|_{\left.L_{p,|x|}\right|^{\beta}, \gamma} \tag{13}
\end{align*}
$$

Denote
and estimate $\left|F_{2}(x)-a_{2}\right|$ for $x \in B_{t}$:

$$
\left|F_{2}(x)-a_{2}\right| \leqslant\left.\int_{\mathrm{c}_{B_{2 t}}}|f(y)|\left|T^{y}\right| x\right|^{\alpha-Q}-|y|^{\alpha-Q} \mid y_{n}^{\gamma} d y
$$

Applying Lemma 1 and Hölder's inequality we get

$$
\begin{aligned}
\left|F_{2}(x)-a_{2}\right| & \leqslant 2^{Q-\alpha+1}|x| \int_{C_{B_{2 t}}}|f(y) \| y|^{\alpha-Q-1} y_{n}{ }^{\gamma} d y \\
& \leqslant 2^{Q-\alpha+1}|x|\left(\int_{c_{B_{t}}}|y|^{\beta p}|f(y)|^{p} y_{n}{ }^{\gamma} d y\right)^{1 / p}\left(\int_{c_{B_{t}}}|y|^{(-\beta+\alpha-Q-1) p^{\prime}} y_{n}{ }^{\gamma} d y\right)^{1 / p^{\prime}} \\
& \leqslant C|x| t^{\alpha-\beta-1-Q / p}\|f\|_{\left.L_{p,|x|}\right|^{\beta}, \gamma} \\
& \leqslant C|x| t^{\lambda-1}\|f\|_{\left.L_{p,|x|}\right|^{\beta}, \gamma} \\
& \leqslant C|x|^{\lambda}\|f\|_{L_{p,|x|} \beta_{, \gamma}}
\end{aligned}
$$

Note that if $|x| \leqslant t$ and $|z| \leqslant 2 t$, then $T^{z}|x| \leqslant|x|+|z| \leqslant 3 t$. Thus for $(\alpha-\beta-$ خ) $p=Q$ we obtain

$$
\begin{equation*}
\left|T^{z} F_{2}(x)-a_{2}\right| \leqslant T^{z}\left|F_{2}(x)-a_{2}\right| \leqslant C|x|^{\lambda}\|f\|_{L_{p,|x|^{\beta}, \gamma}} \tag{14}
\end{equation*}
$$

Denote

$$
a_{f}=a_{1}+a_{2}=\int_{B_{\max \{1,2 t\}}}|y|^{\alpha-Q} f(y)\left(y^{\prime}\right)^{\gamma} d y
$$

Finally, from (13) and (14) we have

$$
\sup _{x, t} t^{-Q-\lambda} \int_{B_{t}}\left|T^{y} \widetilde{I}_{\alpha, \gamma} f(x)-a_{f}\right|\left(y^{\prime}\right)^{\gamma} d y \leqslant C\|f\|_{L_{p,|x|} \beta, \gamma}
$$

Thus

$$
\left\|\widetilde{I}_{\alpha, \gamma} f\right\|_{B M O_{|x|-\lambda}, \gamma} \leqslant 2 C \sup _{x, t} t^{-Q-\lambda} \int_{B_{t}}\left|T^{\gamma} \widetilde{I}_{\alpha, \gamma} f(x)-a_{f}\right|\left(y^{\prime}\right)^{\gamma} d y \leqslant C\|f\|_{L_{p,|x|}, \gamma}
$$

Thus Theorem 3 is proved.
If we take $p=q, \beta=0$ or $p=q, \lambda=0$ in Theorem 3 , then we get the following
Corollary 1. 1) Let $0<\alpha<Q / p, 1<p<\infty$, then $I_{\alpha, \gamma}$ is bounded from $L_{p, \gamma}$ to $L_{p,|x|^{-\alpha}, \gamma}$.
2) Let $0<\alpha<Q / p^{\prime}, 1<p<\infty$, then $I_{\alpha, \gamma}$ is bounded from $L_{p,|x|^{\alpha}, \gamma}$ to $L_{p, \gamma}$.

Proof of Theorem 4. By the definition of the weighted B-Besov spaces it suffices to show that

$$
\left\|T^{y} I_{\alpha, \gamma} f-I_{\alpha, \gamma} f\right\|_{L_{q,|x|-\lambda}, \gamma} \leqslant C\left\|T^{y} f-f\right\|_{L_{p,|x|}, \gamma}
$$

It is easy to see that T^{y} commutes with $I_{\alpha, \gamma}$, i.e., $T^{y} I_{\alpha, \gamma} f=I_{\alpha, \gamma}\left(T^{y} f\right)$. Hence we obtain

$$
\left|T^{y} I_{\alpha, \gamma} f-I_{\alpha, \gamma} f\right|=\left|I_{\alpha, \gamma}\left(T^{y} f\right)-I_{\alpha, \gamma} f\right| \leqslant I_{\alpha, \gamma}\left(\left|T^{y} f-f\right|\right)
$$

Taking $L_{q,|x|^{-\lambda}, \gamma}$-norm on both sides of the last inequality, we obtain the desired result by using the boundedness of $I_{\alpha, \gamma}$ from $L_{p,|x| \beta, \gamma}$ to $L_{q,|x|^{-\lambda}, \gamma}$.

From Theorem 4 we get the following result on the boundedness of $I_{\alpha, \gamma}$ on the B-Besov spaces $B_{p \theta, \gamma}^{s} \equiv B_{p \theta, 1, \gamma}^{s}$.

COROLLARY 2. Let $0<\alpha<Q, 1<p<Q / \alpha, 1 / p-1 / q=\alpha / Q, 1 \leqslant \theta \leqslant \infty$ and $0<s<1$. Then the operator $I_{\alpha, \gamma}$ is bounded from $B_{p \theta, \gamma}^{s}$ to $B_{q \theta, \gamma}^{s}$. More precisely, there is a constant $C>0$ such that

$$
\left\|I_{\alpha, \gamma} f\right\|_{B_{q \theta, \gamma}^{s}} \leqslant C\|f\|_{B_{p \theta, \gamma}^{s}}
$$

holds for all $f \in B_{p \theta, \gamma}^{s}$.

Acknowledgements

The authors are thankful to the referee for his/her valuable comments and suggestions.

REFERENCES

[1] I.A. Allev, B. Rubin, Wavelet-like transforms for admissible semi-groups; inversion formulas for potentials and Radon transforms, J. Fourier Anal. Appl., 11, 3 (2005), 333-352.
[2] G. Altenburg, Eine Realisierung der Theorie der abstrakten Besov-Raume $B_{q}^{s}(A) s>0,(1 \leqslant q \leqslant \infty)$ und der Lebesgue-Raume $H_{p, \gamma}^{s}$ auf der Grundlage Besselscher Differential-operatoren, Z. Anal. Anwendungen, 3, 1 (1984), 43-63.
[3] M. Assal, H. Ben Abdallah, Generalized weighted Besov spaces on the Bessel hypergroup, J. Funct. Spaces Appl., 4, 1 (2006), 91-111.
[4] R.R. CoIfman, G. WEISs, Analyse harmonique non commutative sur certains expaces homogenes, Lecture Notes in Math., 242, Springer- Verlag, Berlin, 1971.
[5] D.I. Cruz-BaEz and J. Rodriguez, Spaces of distributions of Besov and Lizorkin-Triebel type for the Fourier-Bessel transform, J. Math. Anal. Appl., 259 (2001), 51-63.
[6] D.E. Edmunds, V.M. Kokilashvili and A. Meskhi, Boundedness and compactness of Hardytype operators on Banach function spaces defined on measure space, Proc. A. Razmadze Math. Inst., 117 (1998), 7-30.
[7] D.E. Edmunds, V.M. Kokilashvili and A. Meskhi, Bounded and Compact Integral Operators, Dordrecht: Kluwer 2002.
[8] A.D. Gadjiev, I.A. Aliev, On classes of operators of potential types, generated by a generalized shift, Reports of enlarged Session of the Seminars of I.N. Vekua Inst. of Applied Mathematics, Tbilisi. 3, 2 (1988), 21-24. (Russian)
[9] A.D. Gadjiev and V.S. Guliyev, The Stein-Weiss type inequality for fractional integrals, associated with the Laplace-Bessel differential operator, Fract. Calc. Appl. Anal., 11, 1 (2008), 77-90.
[10] E.V. Guliyev, On limiting case of the Stein-Weiss type inequality for the B-Riesz potentials, Fract. Calc. Appl. Anal., 12, 1 (2009), 1-10.
[11] E.V. Guliyev, Weighted inequality for fractional maximal functions and fractional integrals, associated with the Laplace-Bessel differential operator, Trans. Natl. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 26, 1 (2006), 71-80.
[12] V.S. Guliyev, Sobolev's theorem for Riesz B-potentials, Dokl. Akad. Nauk, 358, 4 (1998), 450-451 (in Russian).
[13] V.S. GuLiyev, On maximal function and fractional integral, associated the Bessel differential operator, Math. Inequal. Appl., 6, 2 (2003), 317-330.
[14] V. S. Guliyev, A. Serbetci and I. Ekincioglu, Necessary and sufficient conditions for the boundedness of rough B-fractional integral operators in the Lorentz spaces, J. Math. Anal. Appl., 336, 1 (2007), 425-437.
[15] V.S. Guliev, A. Serbetci, and I. Ekincioglu, On boundedness of the generalized B-potential integral operators in the Lorentz spaces, Integral Transforms Spec. Funct., 18, 12 (2007), 885-895.
[16] V.S. Guliyev, A.Serbetci, Z.V. Safarov, Nikolskii-Besov spaces associated with the FourierBessel transforms, Transactions of NAS of Azerbaijan. Embedding theorems, Harmonic analysis, 13 (2007), 194-211.
[17] I.A. KIpriyanov, Fourier-Bessel transformations and imbedding theorems, Trudy Math. Inst. Steklov, 89 (1967), 130-213.
[18] I.A. Kipriyanov, V.I. Kononenko, The fundamental solutions for B-elliptic equations, Differentsialnye Uravneniya, 3, 1 (1967), 114-129.
[19] I.A. KIPRIYANOV, L.A. Ivanov, Obtaining fundamental solutions for homogeneous equations with singularities in several variables, Trudy Sem. Soboleva, Inst. Mat., Novosibirsk, 1 (1983), 55-77.
[20] V.M. Kokilashvili, A. Kufner, Fractional integrals on spaces of homogeneous type, Comment. Math. Univ. Carolinae, 30, 3 (1989), 511-523.
[21] V. Kokilashvili, A. Meskhi, On some weighted inequalities for fractional integrals on nonhomogeneous spaces, Zeitschrift für Analysis und ihre Anwendungen, 24, 4 (2005), 871-885.
[22] B.M. Levitan, Bessel function expansions in series and Fourier integrals, Uspekhi Mat. Nauk 6, 2 (42) (1951), 102-143. (Russian)
[23] L.N. Lyakhov, Multipliers of the Mixed Fourier-Bessel Transformation, Proc. V.A. Steklov Inst. Math., 214 (1997), 234-249.
[24] R.A. Macias, C. Segovia, A Well Behaved Quasi-distance for Spaces of Homogeneous Type, Trabajos de Matematica, Instituto Argentino de Matematica, Buenos Aires, 32 (1981), 1-17.
[25] B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc., 165 (1972), 207-226.
[26] B. Muckenhoupt and E.M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc., 118 (1965), 17-92.
[27] E.M. Stein and G. Weiss, Fractional integrals on n-dimensional Euclidean spaces, J. Math. Mech., 7, 4 (1958), 503-514.
[28] K. Stempak, The Littlewood-Paley theory for the Fourier-Bessel transform, Mathematical Institute of Wroclaw (Poland), Preprint no. 45 (1985).
[29] K. Stempak, Almost everywhere summability of Laguerre series, Studia Math., 100, 2 (1991), 129147.
[30] K. Trimèche, Generalized Harmonic Analysis and Wavelet Packets, Gordon and Breach Science Publishers, Australia, 2001.
(Received May 13, 2010)

A. D. Gadjiev
Institute of Mathematics and Mechanics
Baku
Azerbaijan
e-mail: akif_gadjiev@mail.az
V. S. Guliyev
Ahi Evran University
Department of Mathematics
Kırşehir
Turkey
e-mail: vagif@guliyev.com
A. Serbetci
Ankara University
Department of Mathematics, Ankara
Turkey
e-mail: serbetci@science. ankara.edu.tr
E. V. Guliyev
Institute of Mathematics and Mechanics
Baku
Azerbaijan
e-mail: emin@guliyev.com

