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Abstract. In this paper, we consider the general variant variational inequality of the type: Find a
vector u∗ ∈ R

n , such that

Q(u∗) ∈Ω, 〈v−Q(u∗),Tu∗〉 � 0, ∀v ∈Ω,

where T,Q are operators. We suggest and analyze a very simple self-adaptive iterative method
for solving this class of general variational inequalities. Under certain conditions, the global con-
vergence of the proposed method is proved. An example is given to illustrate the efficiency and
implementation of the proposed method. Preliminary numerical results show that the proposed
method is applicable.

1. Introduction

The classical variational inequality, denoted by VI(Ω,F) , is to determine a vector
u∗ in a nonempty closed convex subset Ω of the n -dimensional Euclidean space R

n,
such that

〈v−u∗,F(u∗)〉 � 0, ∀v ∈Ω,

where F is an operator from R
n into itself. Variational inequality problems are of fun-

damental importance for a wide range of problems in science and technology, such as
mathematical programming, traffic engineering, economics and equilibrium problems,
see [1–35].

It is well-known that VI(Ω,F) is equivalent to the projection equation

u = PΩ[u−βkF(u)],

where PΩ(·) denotes the orthogonal projection map on Ω and βk is a judiciously cho-
sen positive step size. Thus the solution of the VI(Ω,F) is equivalent to finding a zer
of the residue function

e(u,β ) := u−PΩ[u−βkF(u)].

We now have a variety of techniques to suggest and analyze various iterative algorithms
for solving variational inequalities [1–30]. The simplest is the Goldstein’s projection
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method [6] which, starting with any u0 ∈ R
n , iteratively updates uk+1 according to the

formula
uk+1 = PΩ[uk −βkF(uk)], (1.1)

where βk is a chosen positive step-size. In contrast with Douglas-Rachford operator
splitting method [9, 17] for VI(Ω,F), this projection method can be viewed as a simple
explicit method.

In this paper, we consider a class of general variational inequalities of finding
u ∈ R

n such that

Q(u) ∈Ω, 〈v−Q(u),Tu〉� 0, ∀v ∈Ω, (1.2)

where Q,T : R
n → R

n are given nonlinear operators and Ω⊂ R
n is a nonempty closed

convex set. Problem of the type (1.2) was introduced and considered by Noor [19].
For the formulation, applications, numerical methods and other aspects of the general
variational inequalities (1.2), see [9–29] and the references therein. In this paper, our
main aim is to develop a simple method for solving problem (1.2). In order to obtain the
new iterate of the proposed method, we do not need to compute additionally the value
of function Q. This is very important especially in practical problems in which the cost
of computing or approximating the value of function Q is very expensive. Furthermore,
numerical experiments show that the proposed method may be efficient for some large
scale problems, which clearly illustrates its simplicity and its efficiency.

Throughout this paper, we assume that the operator Q is strongly monotone with
respect to the operator T with a positive modulus α > 0 such that

〈Tx−Ty,Q(x)−Q(y)〉� α‖x− y‖2, ∀x,y ∈ R
�

and Lipschitz continuous with a positive constant L > 0 such that

‖Q(x)−Q(y)‖� L‖x− y‖, ∀x,y ∈ R
�.

Note that, for L = 1, the operator Q is called nonexpansive. Without loss of generality,
we assume that the operator T is nonexpansive, unless otherwise specified. We would
like to mention that we need neither the Lipschitz constant L nor the strong monotone
α to design the algorithm. We assume that the solution set of (1.2), denoted by S∗, is
nonempty.

2. Preliminaries

In this section, we summarize some preliminary results which are useful in the
following analysis. At first, we give some basic properties of the projection mapping.
In the next step, we present an useful equivalent expression of the variational inequality
problem.

LEMMA 2.1. For a given u ∈Ω and z ∈ R
n, the inequality

〈u− z,v−u〉� 0, ∀v ∈Ω

holds if and only if u = PΩ(z), where PΩ is the projection operator.
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It follows from Lemma 2.1 that

〈z−PΩ(z),PΩ(z)− v〉 � 0, ∀z ∈ R
n, v ∈Ω. (2.1)

LEMMA 2.2. Let Ω be a closed convex set in R
n, then we have

‖(v−PΩ(v))− (w−PΩ(w))‖ � ‖v−w‖ ∀v,w ∈ R
n. (2.2)

Proof. Using (2.1), we can prove that

〈v−w,PΩ(v)−PΩ(w)〉 � ‖PΩ(v)−PΩ(w)‖2 ∀v,w ∈ R
n,

by using the above inequality, we obtain

‖(v−PΩ(v))− (w−PΩ(w))‖2

= ‖v−w‖2−2〈v−w,PΩ(w)−PΩ(w)〉+‖PΩ(v)−PΩ(w)‖2

� ‖v−w‖2−‖PΩ(v)−PΩ(w)‖2.

This implies that
‖(v−PΩ(v))− (w−PΩ(w))‖ � ‖v−w‖.

We obtain the desired result. �

LEMMA 2.3. [32] Denote Rγ (u) = Q(u)−PΩ[Q(u)− 1
γ Tu], then for all u ∈ R

n

and γ ′ � γ > 0, it holds that

‖Rγ ′(u)‖ � ‖Rγ(u)‖. (2.3)

LEMMA 2.4. [19] u∗ ∈ R
n is solution of problem (1.2) if and only if u∗ ∈ R

n

satisfies the relation:
Q(u∗) = PK [Q(u∗)−βTu∗], (2.4)

From Lemma 2.4, it is clear that u is solution of (1.2) if and only if u is a zero
point of the function

r(u,β ) :=
1
β
{Q(u)−PΩ[Q(u)−βTu]}. (2.5)

It is clear that
u ∈ S∗ ⇔ r(u,β ) = 0.

For a given γ > 0, the equation (2.5) can be written as

u = u− γr(u,β ) (2.6)

which plays an important part in the whole analysis of the proposed method.
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3. Self-adaptive Method

In this section, we describe the proposed method and we prove some lemmas,
which are used in the next section. Note that the Goldstein’s projection scheme (1.1)
can be viewed as

uk+1 = uk − e(uk,βk). (3.1)

By analogy, based on r(u,β ) we can construct a similar method for solving problem
(1.2). Then, we consider the following iterative scheme:

ALGORITHM 3.1.

Step 0. Given a non negative sequence ηk > 0 with
+∞
∑

k=1
ηk < +∞,β0 > 0,ε > 0,

μ ∈ [0.5,1),δ ∈ (0,1),δ0 ∈ (0,1),ε > 0, and u0 ∈ R
n, set γ0 := β0 and k = 0.

Step 1. If ‖r(uk,1)‖ � ε then stop. Otherwise go to Step 2.
Step 2. If uk /∈ S∗ , then find the smallest non negative integer lk, such that

βk+1 :=
γk
μ lk

and uk+1 := uk − r(uk,βk+1),

satisfies

1
βk+1

‖Q(uk)−Q(uk+1)‖2 � (2− δ )〈Tuk −Tuk+1,Q(uk)−Q(uk+1)〉.

Step 3. Selection of γk+1, if

1
βk+1

‖Q(uk)−Q(uk+1)‖ � δ0(〈Tuk −Tuk+1,Q(uk)−Q(uk+1)〉,

then

γk+1 :=
βk+1

1+ηk+1
,

otherwise
γk+1 := βk+1.

Set k := k+1, and go to Step 1.

REMARK 3.1. For the given uk, the new iterate of Li and Yuan’s algorithm in
[15] is generated by

uk+1 = uk −αkd(uk, ũk,βk)

where
ũk = uk − r(uk,βk)

d(uk, ũk,βk) =
1
βk

{Q(ũk)−PΩ[Q(uk)−βkTuk]}

and

αk =
γk〈r(uk,βk),d(uk, ũk,βk)〉

‖d(uk, ũk,βk)‖2 , γk ∈ (0,2).
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From Step 2, we have

uk+1 = − 1
βk+1

{(Q(uk)−βk+1Tuk)−PΩ[Q(uk)−βk+1Tuk]}. (3.2)

The main amount of computational effort when computing the new iterate is to obtain
or approximate the value of the function Q at a given vector. The algorithm of Li
and Yuan from [15] needs the value of Q both at ũk as well as at uk. In contrast,
our algorithm computes (or approximates) Q(uk) and computes the next iterate by an
additional post processing step which solely involves the application of PΩ. The cost of
this post processing step is relatively minor in comparison with the cost of evaluating
Q(ũk). This is the main advantage of our method.

REMARK 3.2. The numerical performance of the method depends significantly
on the initial step-size parameter β0 . The method converges quite quickly when a
proper fixed step-size parameter is chosen. However, this proper step-size parameter is
unknown beforehand. If the step-size parameter is too large or too small, the number
of iterations can increase significantly. To overcome this difficulty, in the case of our
present work, we have used a self-adaptive technique to adjust the step-size parameter
at each iteration. The main advantage of this technique is that it can adjust the step-size
parameter automatically.

In the following lemma, we show that the sequence βk is bounded both from above
as well as from below.

LEMMA 3.1. In each iteration of Algorithm 3.1, the procedure of searching βk+1
will terminate in finite steps. Furthermore, there is a constant M > 0 and there are two
positive real numbers denoted by βmin := β0M and βmax := L2

(2−δ )αμ such that:

βmax � βk+1 � βmin > 0, ∀k > 0.

Proof. By Step 2 in the proposed method, we derive that

βk+1 � βk

1+ηk
, ∀k > 0.

Since
+∞

∑
k=1

ηk < +∞,

it follows that there is a constant M > 0 such that

1

∏+∞
k=1(1+ηk)

� M.

Then
βk+1 � βmin := β0M, ∀k > 0.
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Since the mapping Q is Lipschitz continuous with a constant L on the feasible set Ω,
we have

1
βk+1

‖Q(uk)−Q(uk+1)‖2 � 1
βk+1

L2‖uk −uk+1‖2. (3.3)

Because Q is strongly monotone with respect to the operator T with a constant modu-
lus α > 0, it yields

(2− δ )α‖uk−uk+1‖2 � (2− δ )〈Tuk−Tuk+1,Q(uk)−Q(uk+1)〉. (3.4)

From (3.3) and (3.4), it follows that the inequality of Step 2 is satisfied if

βk+1 � L2

(2− δ )α
.

The parameter lk in the algorithm is the minimum non negative integer fulfilling the
condition of Step 2, this means that

βk+1 � βmax :=
L2

(2− δ )αμ
, ∀k > 0.

The proof is completed. �
In the next lemma we prove that ‖r(u,β )‖ is a non increasing function for β > 0.

Note that the proof of this Lemma is different from that in [15, Lemma 2].

LEMMA 3.2. For a given u ∈ R
n, let 0 < β < β ′ . Then it holds

‖r(u,β ′)‖ � ‖r(u,β )‖ � β ′

β
‖r(u,β ′)‖.

Proof. First, for all v,w∈R
n and for any nonempty closed convex set Ω , we have

〈PΩ(v)−PΩ(w),v−PΩ(v)〉 � 0.

Setting v = Q(u)−βTu, w = Q(u)−β ′Tu and respectively , we obtain

〈PΩ[Q(u)−βTu]−PΩ[Q(u)−β ′Tu],β ′{Q(u)−βTu−PΩ[Q(u)−βTu]〉}� 0, (3.5)

and

〈PΩ[Q(u)−β ′Tu]−PΩ[Q(u)−βTu],β{Q(u)−β ′Tu−PΩ[Q(u)−β ′Tu]〉}� 0. (3.6)

Using (2.5), adding (3.5) and (3.6), we get

〈β ′r(u,β ′)−β r(u,β ),β ′β r(u,β )−β ′β r(u,β ′)〉 � 0.

Thus, we have

〈β ′ +β )r(u,β ′),r(u,β )〉 � β ′‖r(u,β ′)‖2 +β‖r(u,β )‖2.
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It’s easily to show that

(β ′ +β )‖r(u,β ′)‖2 +(β ′+β )‖r(u,β )‖2 � 2β ′‖r(u,β ′)‖2 +2β‖r(u,β )‖2.

And
‖r(u,β )‖2 � ‖r(u,β ′)‖2,

i.e.
‖r(u,β )‖ � ‖r(u,β ′)‖.

For the proof of the right-hand inequalities. Note that

α‖r(u,α)‖ = ‖R 1
α
(u)‖,

and from Lemma 2.3, we have

β‖r(u,β )‖ = ‖R 1
β
(u)‖ � ‖R 1

β ′
(u)‖ = β ′‖r(u,β ′)‖, (3.7)

from which, we have

‖r(u,β )‖ � β ′

β
‖r(u,β ′)‖.

Therefore, the assertion of this lemma is proved. �

4. Convergence Analysis

In this section, we consider the global convergence of the proposed method. For
this purpose, we need the following result.

THEOREM 4.1. The sequence {uk} generated by the proposed method satisfies

‖r(uk+1,βk+1)‖ �
(

1− δα
βmax

) 1
2

(1+ηk)‖r(uk,βk)‖. (4.1)

Proof. It follows from (2.5) and (3.2) that

r(uk+1,βk+1) =
1

βk+1
{(Q(uk+1)−βk+1Tuk+1)−PΩ[Q(uk+1)−βk+1Tuk+1]}

− 1
βk+1

{(Q(uk)−βk+1Tuk)−PΩ[Q(uk)−βk+1Tuk]}, (4.2)

substituting v = Q(uk+1)−βk+1Tuk+1 and w = Q(uk)−βk+1Tuk in (2.2), we obtain

‖r(uk+1,βk+1)‖2 � ‖(Tuk+1−Tuk)− 1
βk+1

(Q(uk+1)−Q(uk))‖2

� ‖Tuk+1−Tuk‖2− 2
βk+1

〈Tuk+1 −Tuk,Q(uk+1)−Q(uk)〉

+
1

β 2
k+1

‖Q(uk+1)−Q(uk)‖2. (4.3)
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From Step 2, we have

1

β 2
k+1

‖Q(uk)−Q(uk+1)‖2 � 2− δ
βk+1

〈Tuk −Tuk+1,Q(uk)−Q(uk+1)〉. (4.4)

Substituting (4.4) in (4.3) and using the strongly monotone of Q with respect to the
operator T, we obtain

‖r(uk+1,βk+1)‖2 �
(

1− δα
βmax

)
‖uk+1−uk‖2

=
(

1− δα
βmax

)
‖r(uk,βk+1)‖2. (4.5)

Because βk+1 � βk
1+ηk

and βk � βk
1+ηk

, based on Lemma 3.2, we get

‖r(uk,βk+1)‖ �
∥∥∥∥r

(
uk,

βk

1+ηk

)∥∥∥∥ � βk
βk

1+ηk

‖r(uk,βk)‖,

then
‖r(uk,βk+1)‖ � (1+ηk)‖r(uk,βk)‖. (4.6)

Combining (4.5) and (4.6), we have

‖r(uk+1,βk+1)‖ �
(

1− δα
βmax

) 1
2

(1+ηk)‖r(uk,βk)‖.

Then (4.1) holds and the theorem is proved. �

From the above theorem, we get the convergence of the proposed method as fol-
lows.

THEOREM 4.2. The proposed method for solving (1.2) is globally convergent.

Proof. From (4.1), we obtain

‖r(uk+1,βk+1)‖ �
(

1− δα
βmax

) k+1
2 k

∏
i=0

(1+ηi)‖r(u0,β0)‖.

Since 0 � 1− δα
βmax

< 1 and ∏k
i=0(1+ηi) < +∞ , it follows that

‖r(uk,βk)‖→ 0,

and by using Lemma 3.2, we have

‖r(uk,βmax)‖→ 0.
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From limk→∞ ηk = 0, we know that there exist k0 > 0 and c0 < 1 such that

(
1− δα

βmax

) 1
2 (1+ηk) � c0, ∀k � k0, (4.7)

which combined with (4.1) gives

‖r(uk+1,βk+2)‖ � (1+ηk+1)
(

1− δα
βmax

) 1
2

‖r(uk,βk+1)‖

� c0‖r(uk,βk+1)‖ ∀k � k0. (4.8)

Note that r(uk,βk+1) = uk −uk+1 , and from (4.8) we get

‖uk+2−uk+1‖ � c0‖uk+1−uk‖, ∀k � k0.

Therefore, {uk} is a Cauchy sequence and converges to its cluster point, say u′. Be-
cause limk→∞ uk = u′ and r(u,βmax) is continuous on Ω , it follows that

r(u′,βmax) = lim
k→∞

r(uk,βmax) = 0,

and u′ is a solution of (1.2). Since the problem has unique solution, then we have
u′ = u∗. Therefore, the generated sequence converges to the unique solution u∗. �

5. Numerical Results

To verify the theoretical assertions, we consider the following least distance prob-
lem:

min
1
2
‖x− c‖2

s.t. Ax ∈Ω

where A ∈ R
n×n,c ∈ R

n and Ω ⊂ R
n is a closed convex set. This problem can be

written as

min
1
2
‖x− c‖2

s.t. Ax− ξ = 0, ξ ∈Ω. (5.1)

The Lagrangian function of problem (5.1) is

L(x,ξ ,y) =
1
2
〈x,x〉− 〈c,x〉− 〈y,Ax− ξ 〉.

Thus, we have
L(x∗,ξ ∗,y) � L(x∗,ξ ∗,y∗) � L(x,ξ ,y∗),
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where (x∗,ξ ∗,y∗) ∈ R
n×Ω×R

n is saddle point of the Lagrangian function. From the
above inequalities for all ξ ∈Ω we can obtain

⎧⎨
⎩

x∗ = 〈A,y∗〉+ c
〈ξ − ξ ∗,y∗〉 � 0

Ax∗ = ξ ∗
(5.2)

Substituting the first and the third equation in the second of system (5.2), we get

(AAT y∗ +Ac) ∈Ω, 〈ξ − (AATy∗ +Ac)),y∗〉 � 0 ∀ξ ∈Ω, (5.3)

which is exactly the general variational inequality (1.2) with

Q(u) = AAT u+Ac and Ty = y.

We form the test problem as follows: The matrix A is n×n matrix whose entries
are randomly generated in the interval (-5,+5), the vector c is generated from a uniform
distribution in the interval (-500,500) and the closed convex set Ω is defined as

Ω := {u ∈ R
n| ‖u‖ � a}.

Then the projection on Ω in the sense of Euclidean-norm is very easy to carry out,
for example,

∀u ∈ R
n,PΩ[u] =

{
u, if ‖u‖ � a;
a

‖u‖u, if ‖u‖ > a.

Note that in the case ‖Ac‖ > a,‖AATu∗ + Ac‖ = a (otherwise u∗ = 0 is the trivial
solution). Therefore, we test the problem with a = ρ‖Ac‖ and ρ ∈ (0,1).

In all tests we take δ0 = 0.5;δ = 0.2 and μ = 0.5. All iterations start with u0 =
(1, ...,1)T , β0 = 1 and stopped whenever ‖r(u,1)‖

a � 10−5. The adjustment factor ηk

for these test problems is adopted based in the criterion below,

ηk+1 =
{

1 if uk+1 satisfies condition of Step 2;
0 otherwise,

All codes were written in Matlab. The test results for problems (5.3) are reported in
tables 1-2, k is the number of iterations and l denotes the number of evaluations of
mapping Q.

Table 1. Numerical results for problem (5.3) with n = 100

Method [15] Algorithm 3.1
ρ k l k l
0.1 58 185 51 79
0.3 13 53 13 26
0.5 8 45 7 19
0.7 5 33 5 16
0.9 3 27 4 15



A SELF-ADAPTIVE PROJECTION METHOD. . . 127

Table 2. Numerical results for problem (5.3) with n = 500

Method [15] Algorithm 3.1
ρ k l k l
0.1 39 103 39 52
0.3 9 43 9 22
0.5 5 35 5 18
0.7 4 33 4 17
0.9 3 31 3 16

6. Remarks

It is interesting to observe the difference of the convergent between Goldstein’s
projection method [6] and our method. We remark that the Goldestein’s projection
method updates uk+1 according to the formula

uk+1 = PΩ[uk −βF(uk)].

We note that if F is Lipschitz continuous (with a Lipschitz L > 0) and uniformly strong
monotone (with a constant modulus α )

(u− v)T (F(u)−F(v)) � α‖u− v‖2,

and β satisfies

0 < β <
2α
L2 ,

then this method is convergent. However, the estimation of α and L may lead to a slow
convergence. The performance of our method for T = I, the identity operator, needs
neither the Lipshchitz L nor the strong monotone modulus α to design the algorithm,
but only depends on the choice of scaling parameter β . Our preliminary numerical
results show that the method may be efficient for some large scale problems. Moreover,
it demonstrates computationally that the new method needs less evaluations of mapping
Q. It is evident that the smaller the ratio a/‖AC‖ is, the more iterations it takes to meet
the stopping criterion. On the other hand, it seems that the number of evaluations of
mapping Q as well as the overall number of iterations is not very sensitive to the size
of the problem, that is the dimension of the space R

n .
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