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ON EXPONENTIAL CONVEXITY, JENSEN–STEFFENSEN–BOAS

INEQUALITY, AND CAUCHY’S MEANS

FOR SUPERQUADRATIC FUNCTIONS

S. ABRAMOVICH, G. FARID, S. IVELIĆ AND J. PEČARIĆ

Abstract. In this paper we define new means of Cauchy’s type using some recently obtained
results that refine the Jensen-Steffensen-Boas inequality for convex and superquadratic functions
[4],[5]. Applying so called exp-convex method established in [8],[9], we interpret results in the
form of exponentially convex or (as a special case) logarithmically convex functions. We also
present some related results which generalize results in [2].

1. Introduction

It is well known that for a convex function ϕ : I → R , where I is an interval in R ,
xxxx = (x1, ...,xn) ∈ In is any n -tuple and aaaa = (a1, ...,an) any nonnegative n -tuple such
that An = ∑n

i=1ai > 0, the Jensen inequality

ϕ
(

1
An

n
∑
i=1

aixi

)
� 1

An

n
∑
i=1

aiϕ (xi) (1.1)

holds (see [12, p. 43]).
The assumption “a non-negative n -tuple aaaa” can be relaxed at the expense of more

restrictions on the n -tuple xxxx .
If aaaa is a real n -tuple that satisfies

0 � Aj = ∑ j
i=1ai � An, j = 1, ...,n, An > 0, (1.2)

and xxxx ∈ In is any monotonic n -tuple , then (1.1) is still valid. Inequality (1.1) consid-
ered under conditions (1.2) is known as the Jensen-Steffensen inequality (see [12, p.
57]). In this case n -tuple aaaa is called the Jensen-Steffensen coefficients.

The next integral variant of the Jensen-Steffensen inequality is given by R. P. Boas
[11]. In the following we allways assume that −∞< α < β < +∞.

THEOREM 1. (Jensen-Steffensen-Boas) Let f : [α,β ] → (a,b) be a continuous
and monotonic function, where −∞� a < b � +∞, and let ϕ : (a,b)→ R be a convex
function. If λ : [α,β ] → R is either continuous or of bounded variation satisfying

λ (α) � λ (x) � λ (β ) for all x ∈ [α,β ], λ (β )−λ (α) > 0, (1.3)
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then

ϕ

⎛⎜⎜⎜⎝
β∫
α

f (t)dλ (t)

β∫
α
dλ (t)

⎞⎟⎟⎟⎠�

β∫
α
ϕ ( f (t))dλ (t)

β∫
α
dλ (t)

.

We deal in this paper with inequalities related to superquadracity. Here is it’s
definition and some theorems related to it.

DEFINITION 1. [6, Definition 2.1] A function ϕ : [0,b) → R is superquadratic
provided that for all 0 � x < b there exist a constant C(x) ∈ R such that

ϕ(y)−ϕ(x)−ϕ(|y− x|) � C(x)(y− x)

for all 0 � y < b.

THEOREM 2. [6, Theorem 2.3] The inequality∫
ϕ(g(s))dμ � ϕ

(∫
gdμ

)
+
∫
ϕ
(∣∣∣∣g(s)−

∫
gdμ

∣∣∣∣)dμ (1.4)

holds for all probability measures μ and all non-negative μ -integrable functions g if
and only if ϕ is superquadratic.

The same inequality holds for the Jensen-Steffensen coefficients when ϕ ′ is su-
peradditive, as proved in [5, Theorem 1] and [4, Theorem 1]. We quote the part of [5,
Theorem 1] and [4, Theorem 1] that we use in the sequel.

THEOREM 3. [5, Theorem 1] Let f : [α,β ]→ [0,b) be continuous and monotonic
and λ : [α,β ] → R be either continuous or of bounded variation satisfying (1.3). Let
ϕ : [0,b) → R be continuously differentiable and ϕ ′ : [0,b) → R be superadditive. If
ϕ(0) � 0, then ϕ is superquadratic and

1
λ (β )−λ (α)

β∫
α
ϕ ( f (t))dλ (t) � ϕ

(
f
)

+ 1
λ (β )−λ (α)

β∫
α
ϕ
(∣∣∣ f (t)− f

∣∣∣)dλ (t), (1.5)

where f = 1
λ (β )−λ (α)

∫ β
α f (t)dλ (t).

THEOREM 4. [4, Theorem 1] Let ϕ : [0,b) → R be a continuously differentiable
function and ϕ ′ : [0,b)→ R be superadditive . Let aaaa be a real n-tuple satisfying (1.2)
and xxxx ∈ [0,b)n be any monotonic n-tuple . If ϕ(0) � 0, then ϕ is superquadratic and

1
An

n
∑
i=1

aiϕ (xi) � ϕ (x)+
1
An

n
∑
i=1

aiϕ (|xi − x|) , (1.6)

where x = 1
An
∑n

i=1 aixi.
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REMARK 1. In the case when ϕ is strictly superquadratic and xi �= 0, i = 1, ..,n ,
the inequality in (1.6) is strict unless one of the following two cases occurs:

(1) either x = x1 or x = xn, (1.7)

(2) there exists k ∈ {3, ...,n−2} such that x = xk and{
(∀ j ∈ {1, ...,k−1}) (

Aj = 0∨ x j = x j−1
)

(∀ j ∈ {k+1, ...,n}) (
Aj = ∑n

i= j ai = 0∨ x j = x j−1
)

Specially, when ϕ is strictly superquadratic and aaaa > 0 the equality holds in (1.6) iff

x1 = x2 = . . . = xn (1.8)

(see [7], [1]).

In the last section we use the next theorem together with Theorem 2 to prove some
related results which generalize results in [2].

THEOREM 5. [10, Theorem 1] Let (Ω,A,μ) be a measurable space with 0 <
μ(Ω) <∞ and let ϕ : [0,b)→R be a superquadratic function. If g :Ω→ [a,b]⊆ [0,b)
is such that g,ϕ ◦ g ∈ L1(μ), then with g = 1

μ(Ω)
∫
Ωgdμ we have

1
μ(Ω)

∫
Ω
ϕ(g)dμ � b− g

b−a
ϕ(a)+

g−a
b−a

ϕ(b) (1.9)

− 1
μ(Ω)

1
b−a

∫
Ω

[(b−g)ϕ(g−a)+ (g−a)ϕ(b−g)]dμ .

Now, we quote the definitions of exponential and logarithmic convexity and some
propositions which can be found in [8] and [12], and that we use later.

DEFINITION 2. A function ϕ : (a,b) → R is said to be exponentially convex if it
is continuous and

m
∑

i, j=1
uiu jϕ(xi + x j) � 0

holds for all m ∈N and all choices ui ∈ R, i = 1,2, ...,m and xi ∈ (a,b) such that
xi+x j ∈ (a,b), 1 � i, j � m.

DEFINITION 3. A function ϕ : (a,b) → R+ is said to be logarithmically convex
or log-convex if the function logϕ is convex, or equivalently, if

ϕ ((1−λ )x+λy) � ϕ(x)1−λϕ(y)λ

holds for all x,y ∈ (a,b),λ ∈ [0,1].

LEMMA 1. Let ϕ : (a,b) → R+ be a log-convex function. Then for any x1 , x2 ,
y1 , y2 ∈ (a,b) such that x1 � y1, x2 � y2, x1 �= x2, y1 �= y2 the following is valid(

ϕ (x2)
ϕ (x1)

) 1
x2−x1 �

(
ϕ (y2)
ϕ (y1)

) 1
y2−y1

.
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PROPOSITION 1. Let ϕ : (a,b) → R be a function. The following propositions
are equivalent:

(i) ϕ is exponentially convex.
(ii) ϕ is continuous and

m
∑

i, j=1
uiu jϕ

(
xi+x j

2

)
� 0

holds for all m ∈ N and all choices ui ∈ R and every xi,x j ∈ (a,b), 1 � i, j � m.

COROLLARY 1. If a function ϕ : (a,b) → R+ is exponentially convex then ϕ is
also log-convex.

Although there are some similarities with the results in [3], this paper deals with
the Jensen-Steffensen and the Jensen-Steffensen-Boas type cases and not as in [3] with
the Jensen type cases.

2. Exp-convex method for superquadratic functions

Throughout the paper we denote with e i, i∈N, the function e i : [0,b)→R defined
by e i(t) = ti.

Let L be a linear class of continuous functions ϕ : [0,b) → R . Let f : [α,β ] →
(0,b) be continuous and monotonic and λ : [α,β ] → R be either continuous or of
bounded variation satisfying (1.3) . We define the functional χ on L by

χ(ϕ) = 1
λ (β )−λ (α)

β∫
α

[
ϕ ( f (t))−ϕ

(∣∣∣ f (t)− f
∣∣∣)]dλ (t)−ϕ( f ), (2.1)

where f = 1
λ (β )−λ (α)

∫ β
α f (t)dλ (t).

In the discrete case we define the functional Δ on L by

Δ(ϕ) =
1
An

n
∑
i=1

ai [ϕ(xi)−ϕ(|xi − x |)]−ϕ (x) , (2.2)

where xxxx ∈ (0,b)n is a monotonic n -tuple, aaaa is a real n-tuple satisfying (1.2) and
x = 1

An
∑n

i=1 aixi.

We use the notation χ(ϕ) = χϕ and Δ(ϕ) = Δϕ .

REMARK 2. If ϕ ∈ L is differentiable, ϕ(0) � 0 and ϕ ′ is superadditive, then ϕ
is superquadratic and

(i) by Theorem 3 it follows that χϕ � 0.
(ii) by Theorem 4 it follows that Δϕ � 0.

Similary to the proof of [6, Lemma 3.1] is:

LEMMA 2. Let ϕ : [0,b)→ R be continuously differentiable and ϕ(0) � 0 . If ϕ ′
e1

is increasing, then ϕ ′ is superadditive and ϕ is superquadratic.
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In the next lemma we introduce a new family of superquadratic functions which
we frequently use in the sequel.

LEMMA 3. [3, Lemma 5] Let s ∈ R+. We define the function ψs : [0,b) → R by

ψs(x) =

{
sxesx−esx+1

s3
, s �= 0

x3

3 , s = 0
. (2.3)

Then ψs is superquadratic.

Proof. Since ψs(0) = 0 and
(
ψ ′

s(x)
x

)′
= esx > 0, by Lemma 2 it follows that ψs is

superquadratic.
Applying the functional χ to ψs we have

χψs =

⎧⎨⎩
1
s3

[
1

λ (β )−λ (α)
∫ β
α

(
Rs( f (t))−Rs(| f (t)− f |)

)
dλ (t)−Rs( f )

]
, s �= 0

1
3

[
1

λ (β )−λ (α)
∫ β
α

(
f 3(t)−| f (t)− f |3

)
dλ (t)− f

3
]
, s = 0

,

(2.4)
where we denote

Rs(x) = sxesx − esx +1. (2.5)

Analogously, applying the functional Δ to ψs we have

Δψs =

⎧⎨⎩
1
s3

[
1
An
∑n

i=1ai (Rs(xi)−Rs(|xi− x|))−Rs(x)
]
, s �= 0

1
3

[
1
An
∑n

i=1ai
(
x3
i −|xi− x |3)− x3

]
, s = 0

.

THEOREM 6. Let χψs be defined as in (2.4) . Then
a) the function s 
→ χψs is exponentially convex.
b) if χψs > 0 , the function s 
→ χψs is log-convex.

Proof. a) We can easily prove that lims→0 χψs = χψ0 , i.e. s 
→ χψs is continuous.

Let ui ∈ R, pi ∈ R+, i = 1, ...,m, and pi j = pi+p j
2 , 1 � i, j � m .

We consider the function F : (0,b) → R defined by

F(x) =
m
∑

i, j=1
uiu jψ pi j(x),

where ψpi j is defined as in (2.3) .
Then(

F ′(x)
x

)′
=

m
∑

i, j=1
uiu j

(
ψ ′

pi j
(x)

x

)′
=

m
∑

i, j=1
uiu jepi jx =

(
m
∑
i=1

uie
pi
2 x
)2

� 0

and F(0) = 0. Therefore, by Lemma 2 it follows that F ′ is superadditive and F is
superquadratic.
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Applying inequality (1.5) to F we have that

χF =
m
∑

i, j=1
uiu jχψpi j

� 0 (2.6)

holds for all m ∈ N and all choices of ui ∈ R, pi ∈ R+, 1 � i � m .
Since s 
→ χψs is continuous and (2.6) holds, by Proposition 1 it follows that

s 
→ χψs is exponentially convex function.
b) Since χψs > 0, by Corollary 1 it follows that s 
→ χψs is also log-convex.
We introduce another family of superquadratic functions which we use in the se-

quel.

LEMMA 4. [3, Lemma 3] Let s ∈ R+. We define the function φs : [0,b) → R by

φs(x) =

{ xs

s(s−2) , s �= 2

x2

2 logx, s = 2
(2.7)

with the convention 0log0 := 0 . Then φs is superquadratic.

Applying the functional χ to φs we have

χφs =

⎧⎨⎩
1

s(s−2)

[
1

λ (β )−λ (α)
∫ β
α ( f s(t)−|Q|s)dλ (t)− f

s
]
, s �= 2

1
2

[
1

λ (β )−λ (α)
∫ β
α
(
f 2(t) log f (t)−Q2 log |Q|)dλ (t)− f

2
log f

]
, s = 2

,

(2.8)
where

Q = f (t)− f . (2.9)

Similarily, if we apply the functional Δ to φs we have

Δφs =

⎧⎨⎩
1

s(s−2)

[
1
An
∑n

i=1ai (xs
i −|D |s)− xs

]
, s �= 2

1
2

[
1
An
∑n

i=1ai
(
x2
i logxi−D2 log |D |)− x2 log x

]
, s = 2

,

where
D = xi − x . (2.10)

The next theorem can be proved in a similar way as Theorem 6.

THEOREM 7. Let χφs be defined as in (2.8) . Then
a) the function s 
→ χφs is exponentially convex.
b) if χφs > 0 , the function s 
→ χφs is log-convex.

THEOREM 8. Theorems 6 and 7 are still valid if instead of χψs and χφs we choose
Δψs and Δφs , respectively.
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3. Mean value theorems and Cauchy’s means

In this section we present Lagrange’s and Cauchy’s type of Mean value theorem
and introduce new means of Cauchy’s type. The next two theorems are special cases of
theorems in [3]. We state the proofs as they are somewhat different than those in [3].
We denote I1 =

[
minα�t�β f (t),maxα�t�β f (t)

]⊂ (0,b).

THEOREM 9. Let χ be the functional on L defined by (2.1) and suppose that

χe3 �= 0 . If ϕ ∈ L is such that ϕ(0) = 0 and ϕ ′
e1

∈C1(I1) , then there exists ξ ∈ I1 such
that

χϕ =
1
3
ξϕ ′′(ξ )−ϕ ′(ξ )

ξ 2 χe3 . (3.1)

Proof. Since ϕ ′
e1

∈ C1(I1), there exist m = min
x∈I1

(
ϕ ′(x)

x

)′
and M = max

x∈I1

(
ϕ ′(x)

x

)′
such that m �

(
ϕ ′(x)

x

)′
= xϕ ′′(x)−ϕ ′(x)

x2 � M for each x ∈ I1.

We consider the functions ϕ1,ϕ2 ∈ L defined as ϕ1 = M
3 e3−ϕ and ϕ2 = ϕ− m

3 e3.

Then ϕ1(0) = ϕ2(0) = 0 and
ϕ ′

1
e1

,
ϕ ′

2
e1

∈C1(I1).

Also
(
ϕ ′

1(x)
x

)′
,
(
ϕ ′

2(x)
x

)′
� 0, i.e., the functions ϕ ′

1
e1

,
ϕ ′

2
e1

are increasing on I1 .

Then by Lemma 2, ϕ ′
1,ϕ

′
2 are superadditive and ϕ1,ϕ2 are superquadratic on I1 .

Applying inequality (1.5) to ϕ1 and ϕ2 we have

0 � M
3 χe3 − χϕ and χϕ − m

3 χe3 � 0.

Since χe3 �= 0, by combining the above two inequalities we get

m � 3 χϕ
χe3

� M.

Then there exists ξ ∈ I1 such that
(
ϕ ′(ξ )
ξ

)′
= ξϕ ′′(ξ )−ϕ ′(ξ )

ξ 2 = 3 χϕ
χe3

.

THEOREM 10. Let χ be the functional on L defined by (2.1) and suppose that

χe3 �= 0. If ϕ ,ψ ∈ L are such that ϕ(0) = ψ(0) = 0 and ϕ ′
e1

, ψ
′

e1
∈ C1(I1), then there

exists ξ ∈ I1 such that

χψ
(
ξϕ ′′(ξ )−ϕ ′(ξ )

)
= χϕ

(
ξψ ′′(ξ )−ψ ′(ξ )

)
. (3.2)

Proof. We consider the function k ∈ L defined as k = χψϕ− χϕψ .

Since k(0) = 0 and k′
e1

∈C1(I1), we can apply Theorem 9 and we get

χk = 1
3
ξk′′(ξ )−k′(ξ )

ξ 2 χe3 .
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Therefore, since χk = 0, we have ξk′′(ξ )−k′(ξ )
ξ 2 = 0, i.e.

χψ (ξϕ ′′(ξ )−ϕ ′(ξ ))
ξ 2 − χϕ (ξψ ′′(ξ )−ψ ′(ξ ))

ξ 2 = 0

from which it follows (3.2) .
Theorem 10 enables us to define new means. If we choose ϕ = φs and ψ = φr,

where r,s ∈ R+, r �= s, r,s �= 2, then from (3.2) it follows χφrξ s−3 = χφsξ r−3, i.e.

ξ =
(
χφs
χφr

) 1
s−r

and we have

min
α�t�β

f (t) �
(
χφs

χφr

) 1
s−r

� max
α�t�β

f (t).

We denote

Ms,r( f ;λ ) =
(
χφs

χφr

) 1
s−r

.

For r,s ∈ R+ we can extend this mean to the excluded cases as follows:

Ms,r( f ;λ ) =

⎛⎝ r(r−2)
(

1
λ(β)−λ(α)

∫ β
α ( f s(t)−|Q|s)dλ (t)− f

s
)

s(s−2)
(

1
λ(β)−λ(α)

∫ β
α ( f r(t)−|Q|r)dλ (t)− f

r
)
⎞⎠

1
s−r

, r �= s, r,s �= 2,

Mr,r( f ;λ ) = exp

(
1

λ(β)−λ(α)

∫ β
α ( f r(t) log f (t)−|Q|r log |Q|)dλ (t)− f

r
log f

1
λ (β )−λ (α)

∫ β
α ( f r(t)−|Q|r)dλ (t)− f

r
− 2r−2

r(r−2)

)
,r �= 2,

M2,2( f ;λ ) = exp

⎛⎝ 1
λ(β)−λ(α)

∫ β
α ( f 2(t) log2 f (t)−Q2 log2 |Q|)dλ (t)− f

2
log2 f

2

(
1

λ(β)−λ(α)

∫ β
α ( f 2(t) log f (t)−Q2 log |Q|)dλ (t)− f

2
log f

) − 1
2

⎞⎠ ,

where Q is as in (2.9).
We can easily check that these means are symmetric and the special cases are

limits of the general case, i.e.

Mr,r( f ;λ ) = lim
s→r

Ms,r( f ;λ ),

M2,2( f ;λ ) = lim
r→2

Mr,r( f ;λ ).

Now we prove the monotonicity of these means.

THEOREM 11. Let r,s,u,v ∈ R+ such that r � u, s � v. Then

Ms,r( f ;λ ) � Mv,u( f ;λ ). (3.3)

Proof. By Theorem 7 it follows that the function s 
→ χφs is log-convex. Then by
Lemma 1, for any r,s,u,v ∈ R+, such that r � u, s � v, r �= s, u �= v, we have(

χφs

χφr

) 1
s−r

�
(
χφv

χφu

) 1
v−u
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which is equivalent to (3.3) . For r = s and u = v we consider limiting case.
In the same way we can derive discrete cases of the previous means. For r,s ∈R+,

r �= s, r,s �= 2, we define ξ =
(
Δφs
Δφr

) 1
s−r

and we have

min
i∈{1,...,n}

{xi} �
(
Δφs

Δφr

) 1
s−r

� max
i∈{1,...,n}

{xi}.

We use notation

Ms,r(xxxx;aaaa) =
(
Δφs

Δφr

) 1
s−r

.

We can extend this mean in other cases. For r,s ∈ R+ we define:

Ms,r(xxxx;aaaa) =
(

r(r−2)( 1
An∑

n
i=1ai(xs

i−|D |s)−xs)
s(s−2)( 1

An∑
n
i=1ai(xr

i−|D |r)−xr)

) 1
s−r

,r �= s, r,s �= 2,

Mr,r(xxxx;aaaa) = exp

(
1

An∑
n
i=1ai(xr

i logxi−|D |r log |D |)−xr log x
1

An∑
n
i=1ai(xr

i−|D |r)−xr − 2r−2
r(r−2)

)
,r �= 2,

M2,2(xxxx;aaaa) = exp

(
1

An∑
n
i=1ai(x2

i log2 xi−D2 log2 |D |)−x2 log2 x

2( 1
An∑

n
i=1ai(x2

i logxi−D2 log |D |)−x2 log x) −
1
2

)
,

where D is as in (2.10).
We can easily check that these means are also symmetric and the special cases

are limits of the general case. Similarily as before, in the next theorem we state the
monotonicity of these means without proof.

THEOREM 12. Let r,s,u,v ∈ R+ such that r � u, s � v. Then

Ms,r(xxxx;aaaa) � Mv,u(xxxx;aaaa).

4. Related results

In this section we present some related results which generalize results in [2]. We
use the same technique as used there.

Let g : Ω → [a,b] ⊆ (0,b) be such that g ∈ L1(μ) and g = 1
μ(Ω)

∫
Ωgdμ . Let L̃

be a linear class of functions ϕ : [0,b) → R such that ϕ ◦ g ∈ L1(μ). We define the
functionals Γ and Γ̃ on L̃ by

Γ(ϕ) = 1
μ(Ω)

∫
Ω

(ϕ(g)−ϕ (|g− g|))dμ−ϕ(g) (4.1)

Γ̃(ϕ) = b−g
b−aϕ(a)+ g−a

b−aϕ(b) (4.2)

− 1
μ(Ω)

∫
Ω

[
ϕ(g)+ 1

b−a ((b−g)ϕ(g−a)+ (g−a)ϕ(b−g))
]
dμ .

We use the notation Γ(ϕ) = Γϕ and Γ̃(ϕ) = Γ̃ϕ .
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REMARK 3. If ϕ ∈ L̃ is superquadratic, it is obvious that from (1.4) and (1.9) it
follows that Γϕ , Γ̃ϕ � 0.

If we suppose that ψs ∈ L̃, where ψs is given by (2.3), then applying Γ and Γ̃
we have

Γψs =

⎧⎪⎨⎪⎩
1
s3

[
1

μ(Ω)
∫
Ω (Rs(g)−Rs(|g− g|))dμ−Rs(g)

]
, s �= 0

1
3

[
1

μ(Ω)
∫
Ω

(
g3−|g− g|3

)
dμ− g3

]
, s = 0

Γ̃ψs =

⎧⎪⎨⎪⎩
1
s3

[
BRs(a)+A Rs(b)

b−a − 1
μ(Ω)

∫
Ω
(
Rs(g)+ 1

b−a [BRs(A )+A Rs(B)]
)
dμ
]
, s �= 0

1
3

[
Ba3+A b3

b−a − 1
μ(Ω)

∫
Ω
(
g3 + 1

b−a

[
BA 3 +A B3])dμ] , s = 0

where Rs is defined as in (2.5) and

A = g−a, B = b−g, A = g−a and B = b− g. (4.3)

THEOREM 13. Theorem 6 is still valid if instead of χψs we choose Γψs and Γ̃ψs .

If we suppose that φs ∈ L̃, where φs is given by (2.7), then applying Γ and Γ̃ we
have

Γφs =

⎧⎪⎨⎪⎩
1

s(s−2)

[
1

μ(Ω)
∫
Ω (gs− (|g− g|)s)dμ− gs

]
, s �= 2

1
2

[
1

μ(Ω)
∫
Ω

(
g2 logg− (g− g)2 log |g− g|

)
dμ− g2 log g

]
, s = 2

Γ̃φs =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

s(s−2)

[
Bas+A bs

b−a − 1
μ(Ω)

∫
Ω
(
gs + 1

b−a [BA s +A Bs]
)
dμ
]
,s �= 2

1
2

[
Ba2 loga+A b2 logb

b−a

− 1
μ(Ω)

∫
Ω
(
g2 logg+ 1

b−a

[
BA 2 logA +A B2 logB

])
dμ
]
,s = 2

where A , A , B , B are as in (4.3) .

THEOREM 14. Theorem 7 is still valid if instead of χφs we choose Γφs and Γ̃φs .

In a similar way as in Section 3 we derive new means of Cauchy’s type. For

r,s ∈ R+, r �= s, r,s �= 2, we define ξ =
(
Γφs
Γφr

) 1
s−r

and ξ̃ =
(

Γ̃φs
Γ̃φr

) 1
s−r

, means on the

segment [a,b] . We use the notation

Ms,r(g;μ) =
(
Γφs

Γφr

) 1
s−r
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and

M̃s,r(g;μ) =

(
Γ̃φs

Γ̃φr

) 1
s−r

.

We can extend these means in other cases. For r,s ∈ R+ we define:

Ms,r(g;μ) =

(
r(r−2)

(
1

μ(Ω)
∫
Ω(gs−|g−g|s)dμ−gs

)
s(s−2)

(
1

μ(Ω)
∫
Ω(gr−|g−g|r)dμ−gr

)
) 1

s−r

, r �= s, r,s �= 2,

Mr,r(g;μ) = exp

(
1

μ(Ω)
∫
Ω(gr logg−|g−g|r log|g−g|)dμ−gr logg

1
μ(Ω)

∫
Ω(gr−|g−g|r)dμ−gr

− 2r−2
r(r−2)

)
, r �= 2,

M2,2(g;μ) = exp

(
1

μ(Ω)
∫
Ω(g2 log2 g−(g−g)2 log2|g−g|)dμ−g2 log2 g

2
(

1
μ(Ω)

∫
Ω(g2 logg−(g−g)2 log|g−g|)dμ−g2 logg

) − 1
2

)
,

and

M̃s,r(g;μ) =

(
r(r−2)

(
Bas+A bs

b−a − 1
μ(Ω)

∫
Ω(gs+ 1

b−a [BA s+A Bs])dμ
)

s(s−2)
(

Bar+A br
b−a − 1

μ(Ω)

∫
Ω(gr+ 1

b−a [BA r+A Br ])dμ
)
) 1

s−r

, r �= s, r,s �= 2,

M̃r,r(g;μ) = exp

(
Bar loga+A br logb

b−a − 1
μ(Ω)

∫
Ω(gr logg+ 1

b−a [BA r logA +A Br logB])dμ
Bar+A br

b−a − 1
μ(Ω)

∫
Ω(gr+ 1

b−a [BA r+A Br ])dμ
− 2r−2

r(r−2)

)
,

r �= 2,

M̃2,2(g;μ) = exp

⎛⎝ Ba2 log2 a+A b2 log2 b
b−a − 1

μ(Ω)

∫
Ω(g2 log2 g+ 1

b−a [BA 2 log2 A +A B2 log2 B])dμ

2

(
Ba2 loga+A b2 logb

b−a − 1
μ(Ω)

∫
Ω(g2 logg+ 1

b−a [BA 2 logA +A B2 logB])dμ
) − 1

2

⎞⎠ ,

where A , A , B , B are as in (4.3).
These means are symmetric and the special cases are limits of the general case.

They are also monotonic as we express it in the next theorem.

THEOREM 15. Let r,s,u,v ∈ R+ such that r � u, s � v. Then
(i) Ms,r(g;μ) � Mv,u(g;μ).
(ii) M̃s,r(g;μ) � M̃v,u(g;μ).
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