A CLASS OF BAZILEVIC TYPE FUNCTIONS DEFINED BY CONVOLUTION OPERATOR

Mohsan Raza and Khalida Inayat Noor

Abstract. The aim of this paper is to define and study a class of analytic functions related to Bazilevic type functions in the open unit disc.This class is defined by using a convolution operator and the concept of bounded radius rotation of order ρ. A necessary condition, inclusion result, arc length and some other interesting properties of this class of functions are investigated.

1. Introduction

Let A denote the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} b_{n} z^{n} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z:|z|<1\}$. Also let $S^{*}(\rho)$ and $C(\rho)$ denote the well known classes of starlike and convex functions of order ρ respectively.

Let $P_{k}(\rho)$ be the class of analytic functions $p(z)$ defined in E satisfying the properties $p(0)=1$ and

$$
\begin{equation*}
\int_{0}^{2 \pi}\left|\frac{\operatorname{Re} p(z)-\rho}{1-\rho}\right| d \theta \leqslant k \pi \tag{1.2}
\end{equation*}
$$

where $z=r e^{i \theta}, k \geqslant 2$ and $0 \leqslant \rho<1$. When $\rho=0$, we obtain the class P_{k} defined in [10] and for $k=2, \rho=0$, we have the class P of functions with positive real part. We can write (1.2) as

$$
p(z)=\frac{1}{2} \int_{0}^{2 \pi} \frac{1+(1-2 \rho) z e^{-i \theta}}{1-z e^{-i \theta}} d \mu(\theta)
$$

where $\mu(\theta)$ is a function with bounded variation on $[0,2 \pi]$ such that

$$
\int_{0}^{2 \pi} d \mu(\theta)=2 \pi \text { and } \int_{0}^{2 \pi}|d \mu(\theta)| \leqslant k \pi
$$

Also, for $p(z) \in P_{k}(\rho)$, we can write from (1.2)

$$
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z), \quad z \in E
$$

Keywords and phrases: Bazilevic functions, bounded radius rotations, convolution.
where $p_{1}(z), p_{2}(z) \in P(\rho), P(\rho)$ is the class of functions with positive real part greater than ρ.

A function $f(z)$ analytic in E belongs to the class $R_{k}(\rho), k \geqslant 2,0 \leqslant \rho<1$, if and only if,

$$
\frac{z f^{\prime}(z)}{f(z)} \in P_{k}(\rho), z \in E
$$

This class of functions is known as functions of bounded radius rotation of order ρ and introduced by Padmanabhan and Parvatham [8].

The class of Bazilevic functions in the open unit disc E was first introduced by Bazilevic [1] in 1955. He defined Bazilevic function by the relation

$$
f(z)=\left\{\frac{\eta}{1+\beta^{2}} \int_{0}^{z}(p(t)-\beta i) t^{\frac{-\eta \beta i}{2}-1} g^{\frac{\eta}{1+\beta^{2}}}(t) d t\right\}^{\frac{1+\beta^{2}}{\eta}}
$$

where $p(z) \in P, g(z) \in S^{*}, \beta$ is real and $\eta>0$. For $\beta=0$, we have the class of Bazilevic functions of type η and is given by

$$
f(z)=\left\{\eta \int_{0}^{z} p(t) t^{-1} g^{\eta}(t) d t\right\}^{\frac{1}{\eta}}
$$

For any two analytic functions $f(z)$ and $g(z)$ with

$$
f(z)=\sum_{n=0}^{\infty} b_{n} z^{n+1} \text { and } g(z)=\sum_{n=0}^{\infty} c_{n} z^{n+1}, z \in E
$$

the convolution (Hadamard product) is given by

$$
(f * g)(z)=\sum_{n=0}^{\infty} b_{n} c_{n} z^{n+1}, z \in E
$$

Let $K_{a}(z)=\frac{z}{(1-z)^{a}}, \operatorname{Re} a>0$. Then

$$
\begin{align*}
\left(K_{a} * f\right)(z) & =z+\sum_{n=2}^{\infty} \frac{(a+n-2)!}{(a-1)!(n-1)!} b_{n} z^{n} \\
& =z+\sum_{n=2}^{\infty} b(a, n) b_{n} z^{n} \tag{1.3}
\end{align*}
$$

where $b(a, n)=\binom{a+n-2}{a-1}$.
It is also noted that

$$
\begin{equation*}
z\left(K_{a} * f\right)^{\prime}(z)=a\left(K_{a+1} * f\right)(z)-(a-1)\left(K_{a} * f\right)(z) \tag{1.4}
\end{equation*}
$$

Using the concept of this convolution operator and the class of functions of bounded radius rotation of order ρ, we define the following class of Bazilevic type functions.

DEFINITION 1.1. A function $f \in A$ is said to be from the class $B_{k}(a, \eta, \rho, \beta)$, if and only if, there exists a function $\left(K_{a} * g\right)(z) \in R_{k}(\rho)$ such that

$$
\begin{equation*}
\left|\arg \frac{\left(K_{a+1} * f\right)^{\eta}(z)\left(K_{a} * f\right)^{1-\eta}(z)}{\left(K_{a} * g\right)(z)}\right| \leqslant \frac{\beta \pi}{2}, \quad z \in E . \tag{1.5}
\end{equation*}
$$

where $a>0, \eta \geqslant 0,0<\beta \leqslant 1$. For $a=\eta=1, \rho=0$ and $k=2, B_{2}(1,1,0, \beta)=B_{2}(\beta)$ reduces to the subclass of close-to-convex functions defined by Pommerenke [11] with $0 \leqslant \beta \leqslant 1$ and considered by Goodman [3] for $\beta \geqslant 0$. The class $B_{2}(1)$ coincides with the class of close-to-convex univalent functions introduced by Kaplan [5] in 1952.

2. Preliminary Lemmas

Lemma 2.1. [7]. Let $f(z)$ is in $R_{k}(\rho)$ for $k \geqslant 2$ and $0 \leqslant \rho<1$. Then

$$
\begin{equation*}
f(z)=z\left(\frac{h(z)}{z}\right)^{(1-\rho)} \tag{2.1}
\end{equation*}
$$

where $h(z) \in R_{k}$.
Lemma 2.2. [7]. Let $f(z)$ is in $R_{k}(\rho)$ for $k \geqslant 2$ and $0 \leqslant \rho<1$. Then with $z=r e^{i \theta}, r<1$ and $0 \leqslant \theta_{1}<\theta_{2} \leqslant 2 \pi$

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} d \theta>-\left(\frac{k}{2}-1\right)(1-\rho) \pi \tag{2.2}
\end{equation*}
$$

LEMMA 2.3. [9]. Let $q(z)=1+d_{1} z+d_{2} z^{2}+\ldots$ be analytic in $E, \delta \geqslant 1, \operatorname{Re} c \geqslant 0$ and $0 \leqslant \theta_{1}<\theta_{2} \leqslant 2 \pi$. If

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left\{q(z)+\frac{\delta z q^{\prime}(z)}{c \delta+q(z)}\right\} d \theta>-\pi
$$

then

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} q(z) d \theta>-\pi, \quad z=r e^{i \theta} \tag{2.3}
\end{equation*}
$$

3. Main Results

THEOREM 3.1. A function $f(z) \in B_{k}(a, \eta, \rho, \beta)$, if and only if,

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} J(a, \eta, f(z)) d \theta>-\left[\beta+\left(\frac{k}{2}-1\right)(1-\rho)\right] \pi \tag{3.1}
\end{equation*}
$$

where $k \geqslant 2,0 \leqslant \theta_{1}<\theta_{2} \leqslant 2 \pi, z=r e^{i \theta}, r<1, \eta \geqslant 0,0<\beta \leqslant 1$ and
$J(a, \eta, f(z))=\eta(a+1)\left\{\frac{\left(K_{a+2} * f\right)(z)}{\left(K_{a+1} * f\right)(z)}-\frac{a}{a+1}\right\}+a(1-\eta)\left\{\frac{\left(K_{a+1} * f\right)(z)}{\left(K_{a} * f\right)(z)}-\frac{a-1}{a}\right\}$,
with $\left(K_{a+1} * f\right)(z) / z \neq 0$ and $\left(K_{a} * f\right)(z) / z \neq 0$.
Proof. We define, for $z=r e^{i \theta}, r \in(0,1), \theta$ real, the following classes of functions:

$$
\begin{align*}
S(r, \theta) & =\arg \left[\left(\left(K_{a+1} * f\right)\right)^{\eta}(z)\left(\left(K_{a} * f\right)\right)^{1-\eta}(z)\right] . \tag{3.3}\\
V(r, \theta) & =\arg \left[\left(K_{a} * g\right)(z)\right] . \tag{3.4}
\end{align*}
$$

It can be shown that the functions $S(z), V(z)$ are periodic and continuous with period 2π. Since $f(z) \in B_{k}(a, \eta, \rho, \beta)$, therefore from (1.5), it follows that we can choose the branches of argument of $S(z)$ and $V(z)$ such that

$$
|S(r, \theta)-V(r, \theta)| \leqslant \frac{\beta \pi}{2}, \beta \in(0,1]
$$

Since $\left(K_{a} * g\right)(z) \in R_{k}(\rho)$, therefore by using Lemma 2.2, we have

$$
\begin{equation*}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} \frac{z\left(\left(k_{a} * g\right)(z)\right)^{\prime}}{\left(k_{a} * g\right)(z)} d \theta>-\left(\frac{k}{2}-1\right)(1-\rho) \pi \tag{3.5}
\end{equation*}
$$

From (3.3), (3.4) and (3.5), we have

$$
\begin{aligned}
S\left(r, \theta_{2}\right)-S\left(r, \theta_{1}\right) & =S\left(r, \theta_{2}\right)+V\left(r, \theta_{2}\right)-V\left(r, \theta_{2}\right)+V\left(r, \theta_{1}\right)-V\left(r, \theta_{1}\right)-S\left(r, \theta_{1}\right) \\
& =\left[S\left(r, \theta_{2}\right)-V\left(r, \theta_{2}\right)\right]-\left[S\left(r, \theta_{1}\right)-V\left(r, \theta_{1}\right)\right]+\left[V\left(r, \theta_{2}\right)-V\left(r, \theta_{1}\right)\right] \\
& >-\beta \pi-\left(\frac{k}{2}-1\right)(1-\rho) \pi \\
& =-\pi\left[\beta+\left(\frac{k}{2}-1\right)(1-\rho)\right]
\end{aligned}
$$

Moreover, from (3.3)

$$
\begin{aligned}
\frac{d}{d \theta} S(r, \theta)= & \operatorname{Re}\left\{\eta(a+1)\left(\frac{\left(K_{a+2} * f\right)\left(r e^{i \theta}\right)}{\left(K_{a+1} * f\right)\left(r e^{i \theta}\right)}-\frac{a}{a+1}\right)\right. \\
& \left.+a(1-\eta)\left(\frac{\left(K_{a+1} * f\right)\left(r e^{i \theta}\right)}{\left(K_{a} * f\right)\left(r e^{i \theta}\right)}-\frac{a-1}{a}\right)\right\}
\end{aligned}
$$

Therefore

$$
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} J(a, \eta, f(z)) d \theta>-\left[\beta+\left(\frac{k}{2}-1\right)(1-\rho)\right] \pi
$$

THEOREM 3.2. A function $f(z) \in B_{k}(a, \eta, \rho, \beta), \eta \geqslant 0, a>0, k \geqslant 2,0<\beta \leqslant$ 1, if and only if,

$$
\begin{equation*}
\left(K_{a} * f\right)(z)=\left\{\frac{a}{\eta z^{\left(\frac{a-1}{\eta}\right)}} \int_{0}^{z} t^{\frac{a+\rho-1}{\eta}-1} h^{\frac{1-\rho}{\eta}}(t) p^{\frac{\beta}{\eta}}(t) d t\right\}^{\eta}, z \in E \tag{3.6}
\end{equation*}
$$

where $h(z) \in R_{k}$ and $p(z) \in P$, for $z \in E$.
Proof. From (1.5), we have

$$
\left(K_{a+1} * f\right)^{\eta}(z)\left(K_{a} * f\right)^{1-\eta}(z)=H_{1}(z) p^{\beta}(z)
$$

where $H_{1}(z)=\left(K_{a} * g\right)(z) \in R_{k}(\rho)$. By (1.4), we obtain

$$
z\left(K_{a} * f\right)^{\prime}(z)\left(K_{a} * f\right)^{\frac{1}{\eta}-1}(z)+(a-1)\left(K_{a} * f\right)^{\frac{1}{\eta}}(z)=a H_{1}^{\frac{1}{\eta}}(z) p^{\frac{\beta}{\eta}}(z)
$$

Multiplying by $z^{\frac{a-1}{\eta}-1}$ and using Lemma 2.1, we have

$$
\left[z^{\frac{a-1}{\eta}}\left(K_{a} * f\right)^{\frac{1}{\eta}}(z)\right]^{\prime}=\frac{a}{\eta} z^{\frac{a+\rho-1}{\eta}-1} h^{\frac{1-\rho}{\eta}}(z) p^{\frac{\beta}{\eta}}(z)
$$

where $h(z) \in R_{k}$. Integrating from 0 to z, we obtain the required result.
THEOREM 3.3. Let $f(z) \in B_{k}(a, \eta, \rho, \beta)$ and $J(a, \eta, f(z))$ is defined by (3.2). Then $J(a, \eta, f(z)) \in P_{k}$ for

$$
\begin{equation*}
|z|<r_{\beta, \rho}=\frac{1}{(1-2 \rho)}\left[(1+\beta-\rho)-\sqrt{(1+\beta-\rho)^{2}-(1-2 \rho)}\right] \tag{3.7}
\end{equation*}
$$

Proof. From (1.5), it follows that

$$
\begin{equation*}
\left(K_{a+1} * f\right)^{\eta}(z)\left(K_{a} * f\right)^{1-\eta}(z)=\left(K_{a} * g\right)(z) p^{\beta}(z) \tag{3.8}
\end{equation*}
$$

Differentiating logrithmically (3.8), we have

$$
\begin{align*}
J(a, \eta, f(z)) & =\frac{z\left(K_{a} * g\right)^{\prime}}{\left(K_{a} * g\right)}+\beta \frac{z p^{\prime}(z)}{p(z)} \\
& =H(z)+\beta \frac{z p^{\prime}(z)}{p(z)} \tag{3.9}
\end{align*}
$$

where $H(z) \in P_{k}(\rho)$ and $p(z) \in P$.
Now we can write

$$
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) H_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) H_{2}(z), \quad H_{1}(z), H_{2}(z) \in P(\rho) \text { in } E .
$$

Using the well-known results for the classes P and $P(\rho)$, we obtain,

$$
\begin{aligned}
\operatorname{Re}\left[H_{i}(z)+\beta \frac{z p^{\prime}(z)}{p(z)}\right] & \geqslant \frac{1-(1-2 \rho) r}{1+r}-\beta \frac{2 r}{1-r^{2}} \\
& =\frac{(1-2 \rho) r^{2}-2(1+\beta-\rho) r+1}{1-r^{2}}
\end{aligned}
$$

Solving for r, we obtain the required result.
THEOREM 3.4. Let $f(z) \in B_{k}(a, \eta, \rho, \beta), \eta \geqslant 1,0<\beta<1,0 \leqslant \rho<1, a \geqslant$ 1 and $2<k<4$. Then

$$
B_{k}(a, \eta, \rho, \beta) \subset B_{k}(a, 0, \rho, 1)
$$

Proof. Let

$$
\begin{equation*}
\frac{z\left(K_{a} * f\right)^{\prime}}{\left(K_{a} * f\right)}=H(z) \tag{3.10}
\end{equation*}
$$

where $H(z)$ is analytic in E and $H(0)=1$ and let $f(z) \in B_{k}(a, \eta, \rho, \beta)$. Differentiating logrithmically (3.10) and using (3.2), we obtain

$$
\begin{aligned}
\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re} J(a, \eta, f(z)) d \theta & =\int_{\theta_{1}}^{\theta_{2}} \operatorname{Re}\left\{H(z)+\frac{\eta z H^{\prime}(z)}{(a-1)+H(z)}\right\} d \theta \\
& >-\left[\beta+\left(\frac{k}{2}-1\right)(1-\rho)\right] \pi
\end{aligned}
$$

for $0 \leqslant \theta_{1}<\theta_{2} \leqslant 2 \pi, z=r e^{i \theta} \in E$. Now using Lemma 2.3 with $2 \beta+(k-2)(1-\rho) \leqslant$ 2 , we obtain the required result.

THEOREM 3.5. Let $f(z) \in B_{k}(a, \eta, \rho, \beta), \eta>0, M(r)=\max _{|z|=r}\left|\left(K_{a} * f\right)(z)\right|, 0 \leqslant$ $\theta \leqslant 2 \pi$. Then

$$
\begin{equation*}
M^{\frac{1}{\eta}}(r) \leqslant 2^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} r^{\frac{1}{\eta}}{ }_{2} F_{1}\left(\frac{a}{\eta} ; \frac{(k-2)(1-\rho)+2 \beta}{2 \eta} ; \frac{a}{\eta}+1 ; r\right) \tag{3.11}
\end{equation*}
$$

where ${ }_{2} F_{1}$ is thehypergeometric function.
Proof. From the Theorem 3.2, we have

$$
\left(K_{a} * f\right)^{\frac{1}{\eta}}(z)=\left\{\frac{a}{\eta z^{\left(\frac{a-1}{\eta}\right)}} \int_{0}^{z} t^{\frac{a+\rho-1}{\eta}-1} h^{\frac{1-\rho}{\eta}}(t) p^{\frac{\beta}{\eta}}(t) d t\right\}, z \in E
$$

Now for $h(z) \in R_{k}$, it is well known [2] that for $s_{1}(z), s_{2}(z) \in S^{*}$

$$
\begin{equation*}
h(z)=\frac{\left(s_{1}(z)\right)^{\frac{k}{4}+\frac{1}{2}}}{\left(s_{2}(z)\right)^{\frac{k}{4}-\frac{1}{2}}} \tag{3.12}
\end{equation*}
$$

Using the well-known distortion results for the claases S^{*} and P, we have

$$
\left|\left(K_{a} * f\right)(z)\right|^{\frac{1}{\eta}} \leqslant \frac{a}{\eta r^{\frac{a-1}{\eta}}} 2^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} \int_{0}^{r} t^{\frac{a}{\eta}-1}(1-t)^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} d t .
$$

Now for $t=r u$, we obtain

$$
\begin{aligned}
\left|\left(K_{a} * f\right)(z)\right|^{\frac{1}{\eta}} & \leqslant \frac{a}{\eta} 2^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} r^{\frac{1}{\eta}} \int_{0}^{1} u^{\frac{a}{\eta}-1}(1-r u)^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} d u \\
& =2^{\frac{(k-2)(1-\rho)+2 \beta}{2 \eta}} r^{\frac{1}{\eta}}{ }_{2} F_{1}\left(\frac{a}{\eta} ; \frac{(k-2)(1-\rho)+2 \beta}{2 \eta} ; \frac{a}{\eta}+1 ; r\right)
\end{aligned}
$$

Hence the proof.
THEOREM 3.6. Let $f(z) \in B_{k}(a, \eta, \rho, \beta), 1 \leqslant \eta<\left(\frac{k}{2}+1\right)(1-\rho)+\beta, 0<\beta \leqslant$ $1,0 \leqslant \rho<1$ and $k \geqslant 2$. Then, for $F(z)=\left(K_{a} * f\right)(z)$ and $M(r)=\max _{|z|=r}\left|\left(K_{a} * f\right)(z)\right|$
$L_{r} F(z) \leqslant C_{1}(a) M(r)+C_{2}(a, \eta, \beta, \rho, k) M^{1-\frac{1}{\eta}}(r)\left(\frac{1}{1-r}\right)^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-1}, \quad(r \rightarrow 1)$,
where $C_{1}(a)$ and $C_{2}(a, \eta, \beta, \rho, k)$ are constants depending upon a and a, η, β, ρ, k respectively.

Proof. We know that

$$
L_{r} F(z)=\int_{0}^{2 \pi}\left|z\left(K_{a} * f\right)^{\prime}(z)\right| d \theta, \quad z=r e^{i \theta}, 0<r<1,0 \leqslant \theta \leqslant 2 \pi
$$

Now from Theorem 3.2, we have

$$
z\left(K_{a} * f\right)^{\prime}(z)=(1-a)\left(K_{a} * f\right)(z)+a z^{\frac{\rho}{\eta}}\left(K_{a} * f\right)^{1-\frac{1}{\eta}}(z) h^{\frac{1-\rho}{\eta}}(z) p^{\frac{\beta}{\eta}}(z)
$$

where $h(z) \in R_{k}$ and $p(z) \in P$. From (3.12), we have

$$
\begin{aligned}
L_{r} F(z) \leqslant & 2 \pi|1-a| M(r)+a M^{1-\frac{1}{\eta}}(r) 2^{\left(\frac{1-\rho}{\eta}\right)\left(\frac{k}{2}-1\right)} r^{\frac{\rho}{\eta}-\left(\frac{1-\rho}{\eta}\right)\left(\frac{k}{4}-\frac{1}{2}\right)} \\
& \times \int_{0}^{2 \pi}\left|s_{1}(z)\right|^{\left(\frac{1-\rho}{\eta}\right)\left(\frac{k}{4}+\frac{1}{2}\right)}|p(z)|^{\frac{\beta}{\eta}} d \theta
\end{aligned}
$$

Using the Schwarz inequality, subordination for starlike functions and a result for class P due to Hayman [4], we have

$$
\begin{aligned}
L_{r} F(z) & \leqslant 2 \pi|1-a| M(r)+a C(\eta, \beta) M^{1-\frac{1}{\eta}}(r) 2^{\left(\frac{1-\rho}{\eta}\right)\left(\frac{k}{2}-1\right)} r^{\frac{1}{\eta}}\left(\frac{1}{1-r}\right)^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-1} \\
& =C_{1}(a) M(r)+C_{2}(a, \eta, \beta, \rho, k) M^{1-\frac{1}{\eta}}(r)\left(\frac{1}{1-r}\right)^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-1}, \quad(r \rightarrow 1)
\end{aligned}
$$

This completes the proof.
COROLLARY 3.7. Let $f(z) \in B_{2}(1,1,0, \beta)$ Then $f(z)$ is strongly close-to-convex function and

$$
L_{r} F(z)=O(1)\left(\frac{1}{1-r}\right)^{\beta+1}
$$

where $O(1)$ is the constant.
Corollary 3.8. Let $f(z) \in B_{k}(1,1,0,1)=T_{k}$. Then

$$
L_{r} F(z)=O(1)\left(\frac{1}{1-r}\right)^{\frac{k}{2}+1}
$$

THEOREM 3.9. Let $f(z) \in B_{k}(a, \eta, \rho, \beta)$ and given by (1.1). Then, for $n \geqslant$ $2,1 \leqslant \eta<\left(\frac{k}{2}+1\right)(1-\rho)+\beta$

$$
\left|b_{n}\right| \leqslant C_{3}(a, \eta, \beta, \rho, k) M^{1-\frac{1}{\eta}}(n) n^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-a-1},
$$

where $C_{3}(a, \eta, \beta, \rho, k)$ is constant depending upon a, η, β, ρ, k respectively.
Proof. Since with $z=r e^{i \theta}$, Cauchy theorem gives

$$
n b(a, n) b_{n}=\frac{1}{2 \pi r^{n}} L_{r} F(z)
$$

Using Theorem 3.6, we obtain
$n b(a, n)\left|b_{n}\right| \leqslant \frac{1}{2 \pi r^{n}}\left(C_{1}(a) M(r)+C_{2}(a, \eta, \beta, \rho, k) M^{1-\frac{1}{\eta}}(r)\left(\frac{1}{1-r}\right)^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-1}\right)$.
Taking $r=1-\frac{1}{n}$, we have

$$
\left|b_{n}\right| \leqslant C_{3}(a, \eta, \beta, \rho, k) M^{1-\frac{1}{\eta}}(n) n^{\frac{(k+2)(1-\rho)+2 \beta}{2 \eta}-a-1}, \quad(n \rightarrow \infty) .
$$

which is the required result.
Corollary 3.10. Let $f(z) \in B_{k}(1,1,0,1)=T_{k}$. Then

$$
b_{n}=O(1) n^{\frac{k}{2}}
$$

This result is proved in [6].
Corollary 3.11. Let $f(z) \in B_{2}(1,1,0,1)$ be close-to-convex functions. Then

$$
b_{n}=O(1) n
$$

Acknowledgement. We thank the referee for suggesting changes which improved the presentation of the paper.

REFERENCES

[1] I. E. BaZILEVIC, On a class of integrability in quadratures of the Löewner-Kufarev equation, Math. Sb. 37 (1955), 471-476.
[2] D. A. BRannan, On functions of bounded boundary rotation, Proc. Edin. Math. Soc. 2 (1968-1969), 339-347.
[3] A. W. Goodman, On close-to-convex functions of higher order, Ann. univ. Sci. Budapest. Eötvös. Sect. Math. 15 (1972), 17-30.
[4] W. K. Hayman, On functions with positive real part, J. London Math. Soc. 36 (1961), 34-48.
[5] W. Kaplan, Close-to-convex Schlicht functions, Mich. Math. J. 1 (1952), 169-185.
[6] K. I Noor, Hankel determinant problem for functions of bounded boundary rotation, Rev. Roum. Math. Pures Appl. 28 (1983), 731-739.
[7] K. I. Noor, On subclasses of close-to-convex functions of higher order, Int. J. Math. and Math. Sci. 6, 2 (1983), 327-334.
[8] K. S. Padmanabhan and R. Parvatham, Properties of a class of functions with bounded boundary rotation, Ann. Polon. Math. 31 (1975), 311-323.
[9] R. Parvatham and S. Radha, On certain classes of analytic functions, Ann. Polon. Math. 49 (1988), 31-34.
[10] B. Pinchuk, Functions of bounded boundary rotation, Isr. J. Math. 10 (1971), 6-16.
[11] Ch. Pommerenke, On starlike and close-to-convex analytic functions, Proc. Lond. Math. Soc. 13 (1963), 290-304.

Khalida Inayat Noor
Department of Mathematics
COMSATS Institute of Information Technology
Islamabad, Pakistan
e-mail: khalidanoor@hotmail.com

