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NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS

OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES
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(Communicated by A. Kufner)

Abstract. We prove that the fractional maximal operator Mα and the Riesz potential operator
Iα , 0 < α < n are bounded from the modified Morrey space L̃1,λ (Rn) to the weak modified

Morrey space WL̃q,λ (Rn) if and only if, α/n � 1− 1/q � α/(n− λ) and from L̃p,λ (Rn) to

L̃q,λ (Rn) if and only if, α/n � 1/p−1/q � α/(n−λ) .
As applications, we establish the boundedness of some Schödinger type operators on mod-

ified Morrey spaces related to certain nonnegative potentials belonging to the reverse Hölder
class. As an another application, we prove the boundedness of various operators on modified
Morrey spaces which are estimated by Riesz potentials.

Introduction

For x ∈ Rn and t > 0, let B(x,t) denote the open ball centered at x of radius t

and
�
B(x, t) = Rn \B(x,t) .
One of the most important variants of the Hardy-Littlewood maximal function is

the so-called fractional maximal function defined by the formula

Mα f (x) = sup
t>0

|B(x,t)|−1+α/n
∫

B(x,t)
| f (y)|dy, 0 � α < n,

where |B(x, t)| is the Lebesgue measure of the ball B(x,t) .
The fractional maximal function Mα f coincides for α = 0 with the Hardy-Little-

wood maximal function M f ≡ M0 f and is intimately related to the Riesz potential
operator

Iα f (x) =
∫

Rn

f (y)dy
|x− y|n−α , 0 < α < n

(see, for example, [1] and [23]).
The operators Mα and Iα play important role in real and harmonic analysis (see,

for example [26, 29, 34, 35]).
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In the theory of partial differential equations, together with weighted Lp,w(Rn)
spaces, Morrey spaces Lp,λ (Rn) play an important role. Morrey spaces were intro-
duced by C. B. Morrey in 1938 in connection with certain problems in elliptic partial
differential equations and calculus of variations (see [24]). Later, Morrey spaces found
important applications to Navier-Stokes ([21], [37]) and Schrödinger ([25], [27], [28],
[31], [32]) equations, elliptic problems with discontinuous coefficients ([7], [13]), and
potential theory ([1], [2]). An exposition of the Morrey spaces can be found in the book
[16].

DEFINITION 1. Let 1 � p < ∞ , 0 � λ � n , [t]1 = min{1,t} . We denote by
Lp,λ (Rn) the Morrey space, and by L̃p,λ (Rn) the modified Morrey space, as the set of
locally integrable functions f (x) , x ∈ R

n, with the finite norms

‖ f‖Lp,λ
= sup

x∈Rn,t>0

(
t−λ

∫
B(x,t)

| f (y)|pdy

)1/p

,

‖ f‖L̃p,λ
= sup

x∈Rn,t>0

(
[t]−λ1

∫
B(x,t)

| f (y)|pdy

)1/p

respectively.

Note that
L̃p,0(Rn) = Lp,0(Rn) = Lp(Rn),

L̃p,λ (Rn) ⊂� Lp,λ (Rn)∩Lp(Rn) and max{‖ f‖Lp,λ ,‖ f‖Lp} � ‖ f‖L̃p,λ

and if λ < 0 or λ > n , then Lp,λ (Rn) = L̃p,λ (Rn) = Θ, where Θ is the set of all
functions equivalent to 0 on R

n .

DEFINITION 2. [5, 9, 10, 11] Let 1 � p <∞ ,0 � λ � n . We denote by WLp,λ (Rn)
the weak Morrey space and by WL̃p,λ (Rn) the modified weak Morrey space as the set
of locally integrable functions f (x), x ∈ Rn with finite norms

‖ f‖WLp,λ
= sup

r>0
r sup

x∈Rn,t>0

(
t−λ |{y ∈ B(x,t) : | f (y)| > r}|

)1/p
,

‖ f‖WL̃p,λ
= sup

r>0
r sup

x∈Rn,t>0

(
[t]−λ1 |{y ∈ B(x,t) : | f (y)| > r}|

)1/p

respectively.

Note that

WLp(Rn) = WLp,0(Rn) = WL̃p,0(Rn),
Lp,λ (Rn) ⊂WLp,λ (Rn) and ‖ f‖WLp,λ

� ‖ f‖Lp,λ
,

L̃p,λ (Rn) ⊂WL̃p,λ (Rn) and ‖ f‖WL̃p,λ
� ‖ f‖L̃p,λ

.
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The classical result by Hardy-Littlewood-Sobolev states that if 1 < p < q < ∞,

then Iα is bounded from Lp(Rn) to Lq(Rn) if and only if α = n
(

1
p − 1

q

)
and for

p = 1 < q <∞, Iα is bounded from L1(Rn) to WLq(Rn) if and only if α = n
(
1− 1

q

)
.

D. R. Adams [1] studied the boundedness of the Riesz potential in Morrey spaces and
proved the follows statement

THEOREM A. Let 0 < α < n and 0 � λ < n−α , 1 � p < n−λ
α .

1) If 1 < p < n−λ
α , then condition 1

p − 1
q = α

n−λ is necessary and sufficient for the
boundedness of the operator Iα from Lp,λ (Rn) to Lq,λ (Rn) .

2) If p = 1 , then condition 1− 1
q = α

n−λ is necessary and sufficient for the bound-
edness of the operator Iα from L1,λ (Rn) to WLq,λ (Rn) .

If α = n
p − n

q , then λ = 0 and the statement of Theorem A reduces to the afore-
mentioned result by Hardy-Littlewood-Sobolev.

Recall that, for 0 < α < n ,

Mα f (x) � v
α
n −1
n Iα(| f |)(x), (1)

hence Theorem A also implies the boundedness of the fractional maximal operator Mα ,
where vn is the volume of the unit ball in Rn . F. Chiarenza and M. Frasca [8] proved
that the maximal operator M is also bounded from Lp,λ to Lp,λ for all 1 < p < ∞ and
0 < λ < n.

In this paper we study the fractional maximal integral and the Riesz potential in
the modified Morrey space. In the case p = 1 we prove that the operator Iα is bounded
from L̃1,λ (Rn) to WL̃q,λ (Rn) if and only if, α/n � 1− 1/q � α/(n− λ ) . In the

case 1 < p < (n−λ )/α we prove that the operator Iα is bounded from L̃p,λ (Rn) to

L̃q,λ (Rn) if and only if, α/n � 1/p−1/q � α/(n−λ ) .
The structure of the paper is as follows. In section 1 the boundedness of the max-

imal operator in modified Morrey space L̃p,λ is proved. The main result of the paper
is the Hardy-Littlewood-Sobolev inequality in modified Morrey space for the Riesz po-
tential, established in section 2. In section 3 by using the

(
L̃p,λ , L̃q,λ

)
boundedness

of the fractional maximal operators we establish the boundedness of some Schödinger
type operators on modified Morrey spaces related to certain nonnegative potentials be-
longing to the reverse Hölder class. In section 4 we give some applications of the results
obtained in section 2 to certain operators which are majorized by the Riesz potential.

1. L̃p,λ -boundedness of the maximal operator

In this section we study the L̃p,λ -boundedness of the maximal operator M .

THEOREM 1. 1. If f ∈ L̃1,λ (Rn) , 0 � λ < n, then M f ∈WL̃1,λ (Rn) and

‖M f‖WL̃1,λ
� C1,λ‖ f‖L̃1,λ

,
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where C1,λ depends only on λ and n.

2. If f ∈ L̃p,λ (Rn) , 1 < p < ∞ ,0 � λ < n, then M f ∈ L̃p,λ (Rn) and

‖M f‖L̃p,λ
� Cp,λ‖ f‖L̃p,λ

,

where Cp,λ depends only on p,λ and n.

Proof. By the Fefferman-Stein inequality∫
Rn

(M f (y))p g(y)dy � C1

∫
Rn

| f (y)|pMg(y)dy

valid for all non-negative functions g ∈ Lloc
1 (Rn) (see [15]), we get∫

B(x,t)
(M f (y))p dy =

∫
Rn

(M f (y))p χB(x,t)(y)dy

� C1

∫
Rn

| f (y)|pMχB(x,t)(y)dy.

As is known (see, [5], Lemma 2, p. 160), for all t > 0 and x,y ∈ Rn(
t

|x− y|+ t

)n

� MχB(x,t)(y) �
(

4t
|x− y|+ t

)n

.

Therefore, we have the following inequalities∫
B(x,t)

(M f (y))p dy

� C1

(∫
B(x,t)

| f (y)|pdy+
∞

∑
j=0

∫
B(x,2 j+1t)\B(x,2 jt)

tn| f (y)|pdy
(|x− y|+ t)n

)

� C1

(
[t]λ1 ‖ f‖p

L̃p,λ
+ ‖ f‖p

L̃p,λ

∞

∑
j=0

[2 j+1t]λ1
(2 j +1)n

)

� C1 ‖ f‖p
L̃p,λ

⎛⎜⎜⎜⎝[t]λ1 +

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
2λ tλ

[log2
1
2t ]

∑
j=0

2(λ−n) j +
∞
∑

j=[log2
1
2t ]+1

2−n j
)1/p

, 0 < t < 1
2 ,( ∞

∑
j=0

2−n j
)1/p

, t � 1
2

⎞⎟⎟⎟⎠
� C1 ‖ f‖p

L̃p,λ

⎛⎝[t]λ1 +

⎧⎨⎩
(
C2tλ +C3tn

)1/p
, 0 < t < 1

2 ,

C1/p
3 , t � 1

2

⎞⎠
� C4 [t]λ1 ‖ f‖p

L̃p,λ
. �
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2. Hardy-Littlewood-Sobolev inequality in modified Morrey spaces

The following Hardy-Littlewood-Sobolev inequality in modified Morrey spaces is
valid.

THEOREM 2. Let 0 < α < n, 0 � λ < n−α and 1 � p < n−λ
α .

1) If 1 < p < n−λ
α , then condition α

n � 1
p − 1

q � α
n−λ is necessary and sufficient

for the boundedness of the operator Iα from L̃p,λ (Rn) to L̃q,λ (Rn) .
2) If p = 1 < n−λ

α , then condition α
n � 1− 1

q � α
n−λ is necessary and sufficient

for the boundedness of the operator Iα from L̃1,λ (Rn) to WL̃q,λ (Rn) .

Proof. 1) Sufficiency. Let 0 < α < n , 0 < λ < n−α , f ∈ L̃p,λ (Rn) and 1 < p <
n−λ
α . Then

Iα f (x) =
(∫

B(x,t)
+
∫

�B(x,t)

)
f (y)|x− y|α−ndy ≡ A(x,t)+C(x,t).

For A(x, t) we have

|A(x,t)| �
∫

B(x,t)
| f (y)||x− y|α−ndy

�
∞

∑
j=1

(
2− jt

)α−n
∫

B(x,2− j+1t)\B(x,2− jt)
| f (y)|dy.

Hence

|A(x,t)| � C5t
αM f (x) with C5 =

vn2n

2α −1
. (2)

In the second integral by the Hölder’s inequality we have

|C(x, t)| �
(∫

�B(x,t)
|x− y|−β | f (y)|pdy

)1/p

×
(∫

�B(x,t)
|x− y|

(
β
p +α−n

)
p′
dy

)1/p′

= J1 · J2.

Let λ < β < n−α p . For J1 we get

J1 =
( ∞

∑
j=0

∫
B(x,2 j+1t)\B(x,2 jt)

| f (y)|p|x− y|−βdy
)1/p

� t−
β
p ‖ f‖L̃p,λ

( ∞

∑
j=0

2−β j[2 j+1t]λ1
)1/p

= t−
β
p ‖ f‖L̃p,λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(
2λ tλ

[log2
1
2t ]

∑
j=0

2(λ−β ) j +
∞
∑

j=[log2
1
2t ]+1

2−β j
)1/p

, 0 < t < 1
2 ,( ∞

∑
j=0

2−β j
)1/p

, t � 1
2
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= t−
β
p ‖ f‖L̃p,λ

⎧⎨⎩
(
C6tλ +C7tβ

)1/p
, 0 < t < 1

2 ,

C1/p
7 , t � 1

2

= ‖ f‖L̃p,λ

⎧⎨⎩ (C6 +C7)
1
p t

λ−β
p , 0 < t < 1

2 ,

C
1
p
7 t−

β
p , t � 1

2

= C8[2t]
λ
p
1 t−

β
p ‖ f‖L̃p,λ

, (3)

where C6 = 2β

2β−λ−1
, C7 = 22β

2β−1
and

C8 =

⎧⎨⎩2−
λ
p (C2 +C3)

1
p , 0 < t < 1

2 ,

C
1
p
6 , t � 1

2 .

For J2 we obtain

J2 =
(∫

Sn−1
dξ
∫ ∞

t
r
n−1+

(
β
p +α−n

)
p′
dr

) 1
p′

= C9t
β
p +α− n

p . (4)

From (3) and (4) we have

|C(x,t)| � C10[t]
λ
p
1 tα−

n
p ‖ f‖L̃p,λ

. (5)

Thus

|Iα f (x)| � C11

(
tαM f (x)+ [t]

λ
p
1 tα−

n
p ‖ f‖L̃p,λ

)
� C11 min

{
tαM f (x)+ tα−

n
p ‖ f‖L̃p,λ

, tαM f (x)+ tα−
n−λ

p ‖ f‖L̃p,λ

}
, t > 0.

Minimizing with respect to t, at

t =
[
(M f (x))−1 ‖ f‖L̃p,λ

]p/(n−λ )

and

t =
[
(M f (x))−1 ‖ f‖L̃p,λ

]p/n

we have

|Iα f (x)| � C11 min

⎧⎨⎩
(

M f (x)
‖ f‖L̃p,λ

)1− pα
n−λ

,

(
M f (x)
‖ f‖L̃p,λ

)1− pα
n

⎫⎬⎭ ‖ f‖L̃p,λ
.

Then
|Iα f (x)| � C11 (M f (x))p/q‖ f‖1−p/q

L̃p,λ
.
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Hence, by Theorem 1, we have∫
B(x,t)

|Iα f (y)|q dy � C12 ‖ f‖q−p
L̃p,λ

∫
B(x,t)

(M f (y))p dy

� C13[t]λ1 ‖ f‖q
L̃p,λ

,

which implies that Iα is bounded from L̃p,λ (Rn) to L̃q,λ (Rn) .
Necessity. Let 1 < p < n−λ

α , f ∈ L̃p,λ (Rn) and Iα bounded from L̃p,λ (Rn) to

L̃q,λ (Rn) .
Define ft (x) =: f (tx) , [t]1,+ = max{1,t} . Then

‖ ft‖L̃p,λ
= sup

r>0,x∈Rn

(
[r]−λ1

∫
B(x,r)

| ft (y)|p dy

)1/p

= t−
n
p sup

x∈Rn,r>0

(
[r]−λ1

∫
B(x,tr)

| f (y)|pdy

)1/p

= t−
n
p sup

r>0

(
[tr]1
[r]1

)λ/p

sup
r>0,x∈Rn

(
[tr]−λ1

∫
B(x,tr)

| f (y)|p dy

)1/p

= t−
n
p [t]

λ
p
1,+‖ f‖L̃p,λ

,

and
Iα ft (x) = t−α Iα f (tx),

‖Iα ft‖L̃q,λ
= t−α sup

x∈Rn,r>0

(
[r]−λ1

∫
B(x,r)

|Iα f (ty)|q dy

)1/q

= t−α−
n
q sup

r>0

(
[tr]1
[r]1

)λ/q

sup
r>0,x∈Rn

(
[tr]−λ1

∫
B(tx,tr)

|Iα f (y)|q dy

)1/q

= t−α−
n
q [t]

λ
q
1,+ ‖Iα f‖L̃q,λ

.

By the boundedness of Iα from L̃p,λ (Rn) to L̃q,λ (Rn)

‖Iα f‖L̃q,λ
= tα+ n

q [t]
− λ

q
1,+ ‖Iα ft‖L̃q,λ

� tα+ n
q [t]

− λ
q

1,+ ‖ ft‖L̃p,λ

� Cp,q,λ tα+ n
q− n

p [t]
λ
p − λ

q
1,+ ‖ f‖L̃p,λ

,

where Cp,q,λ depends only on p ,q ,λ and n .

If 1
p < 1

q + α
n , then in the case t → 0 we have ‖Iα f‖L̃q,λ

= 0 for all f ∈ L̃p,λ (Rn) .
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As well as if 1
p > 1

q + α
n−λ , then at t → ∞ we obtain ‖Iα f‖L̃q,λ

= 0 for all f ∈
L̃p,λ (Rn) .

Therefore α
n � 1

p − 1
q � α

n−λ .

2) Sufficiency. Let f ∈ L̃1,λ (Rn). We have

|{y ∈ B(x, t) : |Iα f (y)| > 2β}| � |{y ∈ B(x, t) : |A(y, t)| > β}|
+ |{y ∈ B(x,t) : |C(y,t)| > β}| .

Then

C(y, t) =
∞

∑
j=0

∫
B(y,2 j+1t)\B(y,2 jt)

| f (z)||y− z|α−ndz

� tα−n‖ f‖L̃1,λ

∞

∑
j=0

2−(n−α) j[2 j+1t]λ1

= tα−n‖ f‖L̃1,λ

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2λ tλ

[log2
1
2t ]

∑
j=0

2(λ−n+α) j +
∞
∑

j=[log2
1
2t ]+1

2−(n−α) j, 0 < t < 1
2 ,

∞
∑
j=0

2−(n−α) j, t � 1
2

= tα−n‖ f‖L̃1,λ

{
C14tλ +C15tn−α , 0 < t < 1

2 ,

C15, t � 1
2

= ‖ f‖L̃1,λ

{
(C14 +C15)tλ+α−n, 0 < t < 1

2 ,

C15tα−n, t � 1
2

= C16[2t]λ1 tα−n ‖ f‖L̃1,λ
,

where C14 = 2n−α
2n−α−λ−1

, C15 = 22(n−α)

2n−α−1 and

C16 =
{

2−λ (C14 +C15), 0 < t < 1
2 ,

C15, t � 1
2 .

Taking into account inequality (2) and Theorem 2, we have

|{y ∈ B(x, t) : |A(y,t)| > β}| �
∣∣∣∣{y ∈ B(x,t) : M f (y) >

β
C5tα

}∣∣∣∣
� C17tα

β
· [t]λ1 ‖ f‖L̃1,λ

,

where C17 = C5 ·C1,λ and thus if C16[2t]λ1 tα−n ‖ f‖L̃1,λ
= β , then |C(y,t)| � β and

consequently, |{y ∈ B(x,t) : |C(y,t)| > β}| = 0.
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Then

|{y ∈ B(x, t) : |Iα f (y)| > 2β}| � C17

β
[t]λ1 tα ‖ f‖L̃1,λ

� C18[t]λ1

(‖ f‖L̃1,λ

β

) n−λ
n−λ−α

, if 2t < 1

and

|{y ∈ B(x, t) : |Iα f (y)| > 2β}| � C17

β
[t]λ1 tα ‖ f‖L̃1,λ

� C19[t]λ1

(‖ f‖L̃1,λ

β

) n
n−α

, if 2t � 1,

where C18 = C17 ·C
α

n−λ−α
16 and C19 = C17 ·C

α
n−α
16 .

Finally we have

|{y ∈ B(x, t) : |Iα f (y)| > 2β}| � C20[t]λ1 min

⎧⎪⎨⎪⎩
(‖ f‖L̃1,λ

β

) n−λ
n−λ−α

,

(‖ f‖L̃1,λ

β

) n
n−α
⎫⎪⎬⎪⎭

� C20[t]λ1

(
1
β
‖ f‖L̃1,λ

)q

,

where C20 = max{C18,C19} .
Necessity. Let Iα is bounded from L̃1,λ (Rn) to WL̃q,λ (Rn) . We have

‖Iα ft‖WL̃q,λ
= sup

r>0
r sup

x∈Rn,τ>0

(
[τ]−λ1

∫
{y∈B(x,τ) : |Iα ft(y)|>r}

dy

)1/q

= sup
r>0

r sup
x∈Rn,τ>0

(
[τ]−λ1

∫
{y∈B(tx,τ) : |Iα f (ty)|>rtα }

dy

)1/q

= t−α−
n
q sup
τ>0

(
[tτ]1
[τ]1

)λ/q

sup
r>0

rtα

× sup
x∈Rn,τ>0

(
[tτ]−λ1

∫
{y∈B(x,tτ) : |Iα f (y)|>rtα }

dy

)1/q

= t−α−
n
q [t]

λ
q
1,+ ‖Iα f‖WL̃q,λ

.

By the boundedness of Iα from L̃1,λ (Rn) to WL̃q,λ (Rn)

‖Iα f‖WL̃q,λ
� C1,q,λ tα+ n

q −n[t]
λ− λ

q
1,+ ‖ f‖L̃1,λ

,
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where C1,q,λ depends only on q ,λ and n .

If 1 < 1
q + α

n , then in the case t → 0 we have ‖Iα f‖WL̃q,λ
= 0 for all f ∈ L̃1,λ (Rn) .

Similarly, if 1 > 1
q + α

n−λ , then for t → ∞ we obtain ‖Iα f‖WL̃q,λ
= 0 for all f ∈

L̃1,λ (Rn) .
Therefore α

n � 1− 1
q � α

n−λ . �

COROLLARY 1. Let 0 < α < n, 0 � λ < n−α and 1 � p � n−λ
α .

1) If 1 < p < n−λ
α , then condition α

n � 1
p − 1

q � α
n−λ is necessary and sufficient

for the boundedness of the operator Mα from L̃p,λ (Rn) to L̃q,λ (Rn) .
2) If p = 1 < n−λ

α , then condition α
n � 1− 1

q � α
n−λ is necessary and sufficient

for the boundedness of the operator Mα from L̃1,λ (Rn) to WL̃q,λ (Rn) .

Proof. Sufficiency of Corollary 1 follows from Theorem 2 and inequality (1).
Necessity. (1) Let Mα be bounded from L̃p,λ (Rn) to L̃q,λ (Rn) for 1 < p < n−λ

α .
Then we have

Mα ft (x) = t−αMα f (tx),

and

‖Mα ft‖L̃q,λ
= t−α−

n
q [t]

λ
q
1,+ ‖Mα f‖L̃q,λ

.

By the same argument in Theorem 2 we obtain α
n � 1

p − 1
q � α

n−λ .

(2) Let Mα be bounded from L̃1,λ (Rn) to WL̃q,λ (Rn) . Then we have

Mα ft (x) = t−αMα f (tx),

and

‖Mα ft‖WL̃q,λ
= t−α−

n
q [t]

λ
q
1,+ ‖Mα f‖WL̃q,λ

.

Hence we obtain α
n � 1− 1

q � α
n−λ . �

3. The modified Morrey estimates for the operators V γ (−Δ+V)−β and
V γ∇(−Δ+V)−β

In this section we consider the Schrödinger operator −Δ+V on R
n , where the

nonnegative potential V belongs to the reverse Hölder class Bq(Rn) for some q1 �
n . The modified Morrey L̃p,λ (Rn) estimates for the operators V γ(−Δ+V )−β and
V γ∇(−Δ+V)−β are obtained.

The investigation of Schrödinger operators on the Euclidean space Rn with non-
negative potentials which belong to the reverse Hölder class has attracted attention of
a number of authors (cf. [14, 30, 38]). Shen [30] studied the Schrödinger operator
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−Δ+V , assuming the nonnegative potential V belongs to the reverse Hölder class
Bq(Rn) for q � n/2 and he proved the Lp boundedness of the operators (−Δ+V)iγ ,

∇2(−Δ+V )−1 , ∇(−Δ+V )−
1
2 and ∇(−Δ+V )−1 . Kurata and Sugano generalized

Shen’s results to uniformly elliptic operators in [17]. Sugano [36] also extended some
results of Shen to the operator V γ (−Δ+V)−β , 0 � γ � β � 1 and V γ∇(−Δ+V )−β ,
0 � γ � 1

2 � β � 1 and β − γ � 1
2 . Later, Lu [20] and Li [18] investigated the

Schrödinger operators in a more general setting.
We investigate the modified Morrey L̃p,λ − L̃q,λ boundedness of the operators

T1 = V γ (−Δ+V)−β , 0 � γ � β � 1,

T2 = V γ∇(−Δ+V)−β , 0 � γ � 1
2

� β � 1, β − γ � 1
2
.

Note that the operators V (−Δ+V )−1 and V
1
2∇(−Δ+V )−1 in [18] are the special case

of T1 and T2 , respectively.
It is worth pointing out that we need to establish pointwise estimates for T1 ,

T2 and their adjoint operators by using the estimates of fundamental solution for the
Schrödinger operator on Rn in [18]. And we prove the modified Morrey estimates by
using

(
L̃p,λ , L̃q,λ

)
boundedness of the fractional maximal operators.

DEFINITION 3. 1) A nonnegative locally Lq integrable function V on Rn is said
to belong to the reverse Hölder class Bq (1 < q < ∞) if there exists C > 0 such that
the reverse Hölder inequality(

1
|B|
∫

B
V (x)qdx

) 1
q

� C
|B|
∫

B
V (x)dx

holds for every ball B in Rn .
2) Let V � 0. We say V ∈ B∞ , if there exists a constant C > 0 such that

‖V‖L∞(B) � C
|B|
∫

B
V (x)dx

holds for every ball B in Rn .

Clearly, B∞ ⊂ Bq for 1 < q < ∞ . But it is important that the Bq class has a
property of ”self-improvement”; that is, if V ∈ Bq , then V ∈ Bq+ε for some ε > 0 (see
[18]).

The following two pointwise estimates for T1 and T2 which proven in [38], Lemma
3.2 with the potential V ∈ B∞ .

THEOREM B. Suppose V ∈ B∞ and 0 � γ � β � 1 . Then there exists a constant
C > 0 such that

|T1 f (x)| � CMα f (x), f ∈C∞
0 (Rn),

where α = 2(β − γ) .
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THEOREM C. Suppose V ∈ B∞ , 0 � γ � 1
2 � β � 1 and β − γ � 1

2 . Then there
exists a constant C > 0 such that

|T2 f (x)| � CMα f (x), f ∈C∞
0 (Rn),

where α = 2(β − γ)−1 .

Note that the similar estimates for the adjoint operators T ∗
1 and T ∗

2 with the po-
tential V ∈ Bq1 for some q1 > n

2 also valid (see [19]).

THEOREM D. Suppose V ∈ Bq1 for some q1 > n
2 , 0 � γ � β � 1 and let 1

q2
=

1− α
q1

. Then there exists a constant C > 0 such that

|T ∗
1 f (x)| � C

(
Mαq2

(| f |q2
)
(x)
) 1

q2 , f ∈C∞
0 (Rn),

where α = 2(β − γ) .

THEOREM E. Suppose V ∈ Bq1 for some q1 > n
2 , 0 � γ � 1

2 � β � 1 and β−γ �
1
2 . And let

1
q1

=

{
1− γ

q1
, if q1 > n,

1− α+1
q1

+ 1
n , if n

2 < q1 < n.

Then there exists a constant C > 0 such that

|T ∗
2 f (x)| � C

(
Mαq2

(| f |q2
)
(x)
) 1

q2 , f ∈C∞
0 (Rn),

where α = 2(β − γ)−1 .

The above theorems will yield the modified Morrey estimates for T1 and T2 .

COROLLARY 2. Assume that V ∈ B∞ , and 0 � γ � β � 1 . Let 1 � p � n
γ , α

n �
1
p − 1

q � α
n−λ and 0 � λ < n, where α = 2(β − γ) < n.

1) Let p = 1 < n−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T1 f‖WL̃q,λ
� C‖ f‖L̃1,λ

.

2) Let 1 < p < n−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T1 f‖L̃q,λ
� C‖ f‖L̃p,λ

.

COROLLARY 3. Assume that V ∈ B∞ , 0 � γ � 1
2 � β � 1 and β − γ � 1

2 . Let
1 � p � n

α , α
n � 1

p − 1
q � α

n−λ and 0 � λ < n, where α = 2(β − γ)−1 < n.

1) Let p = 1 < n−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T2 f‖WL̃q,λ
� C‖ f‖L̃1,λ

.
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2) Let 1 < p < n−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T2 f‖L̃q,λ
� C‖ f‖L̃p,λ

.

COROLLARY 4. Assume that V ∈ Bq1 for q1 > n
2 , and 0 � γ � β � 1 .

Let 1
q2

= 1− α
q1

, 1 � p < 1
α
q1

+ α
n

, α
n � 1

p − 1
q � α

n
q2

−λ and 0 � λ < nq2 , where

α = 2(β − γ) < n.

1) Let p = 1 <
n
q2

−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T1 f‖WL̃q,λ
� C‖ f‖L̃1,λ

.

2) Let 1 < p <
n
q2

−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T1 f‖L̃q,λ
� C‖ f‖L̃p,λ

.

COROLLARY 5. Assume that V ∈ Bq1 for q1 > n
2 , and{

0 � γ � 1
2 � β � 1, if q1 > n,

0 � γ � 1
2 < β � 1, if n

2 < q1 < n.

Let α = 2(β − γ)−1 < n and β − γ � 1
2 , and let 1 � p < 1

α
q1

+ α
n

, α
n � 1

p − 1
q �

α
n
q2

−λ , 1
q2

= 1− α
q1

, and 0 � λ < nq2 , where

1
p1

=

{
α
q1

, if q1 > n,
α+1
q1

+ 1
n , if n

2 < q1 < n.

1) Let p = 1 < n−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T2 f‖WL̃q,λ
� C‖ f‖L̃1,λ

.

2) Let 1 < p <
n
q2

−λ
α . Then there exists a positive constant C such that for any

f ∈C∞
0 (Rn)

‖T2 f‖L̃q,λ
� C‖ f‖L̃p,λ

.

4. Some applications

The theorems of the section 2 can be applied to various operators which are esti-
mated from above by Riesz potentials. We give some examples.
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Suppose that L is a linear operator on L2 which generates an analytic semigroup
e−tL with the kernel pt(x,y) satisfying a Gaussian upper bound, that is,

|pt(x,y)| � c1

tn/2
e−c2

|x−y|2
t (6)

for x,y ∈ Rn and all t > 0, where c1, c2 > 0 are independent of x , y and t .
For 0 < α < n, the fractional powers L−α/2 of the operator L are defined by

L−α/2 f (x) =
1

Γ(α/2)

∫ ∞

0
e−tL f (x)

dt

t−α/2+1
.

Note that if L = −� is the Laplacian on R
n , then L−α/2 is the Riesz potential

Iα . See, for example, Chapter 5 in [34].

THEOREM 3. Let 0 < α < n, 0 � λ < n and condition (6) be satisfied.
1) If 1 < p < n−λ

α , then condition α
n � 1

p − 1
q � α

n−λ is sufficient for the bounded-

ness of L−α/2 from L̃p,λ (Rn) to L̃q,λ (Rn) .
2) If p = 1 < n−λ

α , then condition α
n � 1− 1

q � α
n−λ is sufficient for the bounded-

ness of L−α/2 from L̃1,λ (Rn) to WL̃q,λ (Rn) .

Proof. Since the semigroup e−tL has the kernel pt(x,y) which satisfies condition
(6), it follows that

|L−α/2 f (x)| � CIα | f |(x)
for all x ∈ Rn , where C > 0 is independent of x (see [12]). Hence by Theorem 2 we
have

‖L−α/2 f‖L̃q,λ
� C‖Iα | f |‖L̃q,λ

� C‖ f‖L̃p,λ
,

where the constant C > 0 is independent of f . �
Property (6) is satisfied for large classes of differential operators (see, for example

[6]). In [6] also other examples of operators which are estimates from above by Riesz
potentials are given. In these cases Theorem 2 is also applicable for proving bounded-
ness of those operators from L̃p,λ to L̃q,λ .
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