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HARDY INEQUALITIES FOR SOME NON–CONVEX DOMAINS

WALEED ABUELELA

(Communicated by G. Sinnamon)

Abstract. Considering two different geometrical conditions, we obtain some new Hardy-type
inequalities for non-convex domains in R

n . In order to do so, we study the three-dimensional
case and then generalise the approach to the n -dimensional case.

1. Introduction

We study high dimension variants of the classical integral Hardy-type inequality
([8])

∞∫
0

(
F(x)

x

)p

dx � μ
∞∫

0

f p(x)dx, (1)

where p > 1, f (x) � 0, and F(x) =
∫ x
0 f (t)dt with constant μ . Inequality (1) with its

improvements have played a fundamental role in the development of many mathemat-
ical branches such as spectral theory and PDE’s, see for instance [2], [3], [4], [5], [7]
and [10]. We centre our attention on the multi-dimensional version of (1) for p = 2,
which takes the following form (see for example [6]):

μ
∫
Ω

| f (x)|2
d(x)2 dx �

∫
Ω

|∇ f |2 dx, f ∈ C ∞
c (Ω), (2)

where
d(x) := min{|x− y| : y /∈ Ω}. (3)

For convex domains Ω ⊂ R
n, the sharp constant μ in (2) has been shown to equal 1

4 ,
see for instance [5] and [10]. However, the sharp constant for non-convex domains is
unknown, although for arbitrary planar simply-connected domains Ω ⊂R

2, A. Ancona
([1]) proved, using the Koebe one-quarter Theorem, that the constant μ in (2) is greater
than or equal to 1

16 . Later A. Laptev and A. Sobolev ([9]) considered, under certain
geometrical conditions, classes of domains for which there is a stronger version of
the Koebe Theorem, this implied better estimates for the constant μ . Other specific
examples of non-convex domains were presented by E. B. Davies ([6]).

Our main goal is to obtain new Hardy-type inequalities for some non-convex do-
mains in R

n, n � 3, which satisfy certain geometrical conditions, focusing on obtaining
upper bounds for μ . In fact we have two different conditions introduced in the follow-
ing section.
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2. Notations and conditions

In this section we present two ‘non-convexitymeasures’ for domains Ω ⊂R
n; n �

3. The n -dimensional open ball with centre a and radius R is defined by

Bn(a,R) = {y ∈ R
n : |y−a|< R}.

CONDITION 2.1. (Exterior Ball Condition) We say that Ω ⊂ R
n satisfies the Ex-

terior Ball Condition if there exists a number R > 0 such that for each w ∈ ∂Ω, one
can find a point a ∈ R

n with |w−a|= R such that

Bn(a,R)∩Ω = /0.

Condition 2.1 means that one can touch every point on ∂Ω with a ball of some
radius R. Let Π be a k -dimensional subspace of R

n and let R > 0. We refer to the set

Z (Π,R) = {y ∈ R
n : dist(y,Π) < R},

as an (n,k)−cylinder of radius R.

CONDITION 2.2. ((n,k)−Cylinder Condition) We say that Ω ⊂ R
n satisfies the

(n,k)−Cylinder Condition if there exists a number R > 0 such that for each w ∈ ∂Ω
there exists a k -dimensional subspace Π of R

n such that

w ∈ Z (Π,R) and Z (Π,R)∩Ω = /0.

Observe that in the (n,k)−Cylinder Condition, if k = 0, then this condition is
equivalent to the Exterior Ball Condition and if k = n−1, this condition is equivalent
to the convexity of Ω. Therefore, we may suppose that 1 � k � n−2 in our analysis.

Suppose that the domain Ω satisfies one of Conditions 2.1 and 2.2. For a fixed
x∈Ω , choose w, a mutual point of ∂Ω and ∂B, to be such that d(x) = |x−w|. Denote
by B the appropriate test domain, i.e. a ball (Condition 2.1) or an (n,k)−cylinder
(Condition 2.2). Furthermore, by du(x) we mean the distance from x∈ Ω to ∂Ω in the
direction u, i.e.

du(x) := min{|s| : x+ su /∈ Ω}, (4)

and d̃u(x) the distance from x ∈ Ω to ∂B, in the direction u, i.e.

d̃u(x) := min{|s| : x+ su ∈ ∂B}.

Finally, denote by θ0 ∈
(
0, π

2

)
the angle at which the line segment representing d̃u(x)

leaves ∂B to infinity.
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3. Main results and discussion

In this section we state and discuss our main theorems which will be proved in
Section 4.

3.1. Results related to the Exterior Ball Condition

The following two theorems are related to the Exterior Ball Condition.

THEOREM 3.1. Suppose that the domain Ω ⊂ R
3 satisfies Condition 2.1 with

constant R > 0. Then for any function f ∈C ∞
c (Ω) the following Hardy-type inequality

holds: ∫
Ω

μ (x,R)
| f (x)|2
d(x)2 dx �

∫
Ω

|∇ f (x)|2 dx, (5)

where

μ (x,R) =
(R−d (x))

√
d (x)2 +2Rd (x)+d (x)2

4(R+d (x))
√

d (x)2 +2Rd (x)
. (6)

REMARK 3.2. The function μ (x,R) given by (6), can be written as powers of
d(x)
R as follows

μ (x,R) =
1
4
− d (x)

2R
+O

((
d(x)
R

) 3
2
)

, (7)

which, for convex domains i.e. when R → ∞ , tends, linearly in d(x)
R , to 1

4 .

For higher dimensions we have not been able to find a simple analytic expression
for the function μ(x,R) , hence we content ourselves with the the asymptotic result
stated in the following theorem.

THEOREM 3.3. Suppose that the domain Ω ⊂ R
n, n � 3, satisfies Condition 2.1

with constant R > 0. Then for any function f ∈ C ∞
c (Ω) the following Hardy-type in-

equality holds: ∫
Ω

μ(x,R)
| f (x)|2
d(x)2 dx �

∫
Ω

|∇ f (x)|2 dx, (8)

where if x is such that d(x)
R � ε with some ε ∈ (0,1), then

μ(x,R) =
1
4
−
(

n−1
4

)
d(x)
R

+O

((
d(x)
R

) 3
2
)

. (9)
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In particular, if the in-radius δin < R, then

μ(x,R) � 1
4
−
(

n−1
4

)
δin

R
+O

((
δin

R

) 3
2
)

,

uniformly for all x ∈ Ω.

REMARK 3.4. Using (9) with n = 3 gives the asymptotic form (7) of μ(x,R)
immediately.

3.2. Results related to the (n,k)−Cylinder Condition

This section is devoted to domains which satisfy the (n,k)−Cylinder Condition.

THEOREM 3.5. Suppose that the domain Ω ⊂ R
3 satisfies Condition 2.2 for k =

1 with constant R > 0. Then for any function f ∈ C ∞
c (Ω) the following Hardy-type

inequality holds: ∫
Ω

μ (x,R)
| f (x)|2
d(x)2 dx �

∫
Ω

|∇ f (x)|2 dx, (10)

where

μ (x,R) =
R

[
πR+2

√
d (x) (d (x)+2R)+2R tan−1

(
R√

d(x)(d(x)+2R)

)]
2π (d (x)+2R)2

. (11)

REMARK 3.6. The function μ (x,R) , given by (11), has the following asymptotic

expansion in powers of d(x)
R

μ (x,R) =
1
4
− d (x)

4R
+O

((
d(x)
R

)3/2
)

. (12)

In comparisonwith the asymptotic form (7) obtained for μ(x,R) under the Exterior Ball
Condition, we can conclude that the (n,k)−Cylinder Condition gives a better result,
since the coefficient of the second term in (12) is 1

4 instead of 1
2 in (7).

Again for higher dimensions we content ourselves with the asymptotic form of the
function μ(x,R) stated in the following theorem.

THEOREM 3.7. Suppose that the domain Ω ⊂ R
n, n � 3, satisfies Condition 2.2

with 1 � k � n− 2 . Then for any function f ∈ C ∞
c (Ω) the following Hardy-type in-

equality holds: ∫
Ω

μ (x,R)
| f (x)|2
d(x)2 dx �

∫
Ω

|∇ f (x)|2 dx, (13)
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where if x is such that d(x)
R � ε with some ε ∈ (0,1), then

μ(x,R) =
1
4
−
(

n− k−1
4

)
d(x)
R

+O

((
d(x)
R

)3/2
)

. (14)

In particular, if the in-radius δin < R, then

μ(x,R) � 1
4
−
(

n− k−1
4

)
δin

R
+O

((
δin

R

)3/2
)

,

uniformly for all x ∈ Ω.

REMARK 3.8. If n = 3 and k = 1 then (14) leads to (12). Comparing the asymp-
totic expression (14) of μ(x,R) with the corresponding expression (9) under the Ex-
terior Ball Condition, we easily see that (14) gives a better result with respect to the
coefficient of the second term.

The key ingredient in proving Theorems 3.1, 3.3, 3.5 and 3.7 is the following
proposition.

PROPOSITION 3.9. (E. B. Davies, [4, 7]) Let Ω be a domain in R
n and let f ∈

C ∞
c (Ω) . Then

n
4

∫
Ω

| f (x)|2
m(x)2 dx �

∫
Ω

|∇ f (x)|2 dx,

where m(x) is given by

1
m(x)2 :=

1
|Sn−1|

∫
Sn−1

1
du(x)2 dS(u), (15)

and
du(x) := min{|t| : x+ tu /∈ Ω} ,

for every unit vector u ∈ S
n−1 and x ∈ Ω. Here

∣∣Sn−1
∣∣= 2πn/2

Γ(n/2) is the surface area of
the unit sphere in R

n .

In addition, we need the following proposition to prove Theorem 3.7.

PROPOSITION 3.10. Let n− k � 2 . For any function f (ζ ) = f (ζ1,ζ2) of the
angular variable ζ ∈ S

n−1, where ζ1 and ζ2 are projections of ζ on the (n− k)-di-
mensional subspace V (which we identify with R

n−k ) and its orthogonal complement
(which we identify with R

k ) respectively, the following formula holds:

∫
Sn−1

f (ζ )dζ =
∫

Sk−1

∫
Sn−k−1

∫ π
2

0
f (η sinφ ,ξ cosφ)sinn−k−1 φ cosk−1 φ dφ dη dξ .
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Proof. Let g(x) = f (x|x|−1) for all non-zero x ∈ R
n . We use the following for-

mula:
n−1

∫
Sn−1

f (ζ )dζ =
∫
|x|<1

g(x)dx =: I.

Represent x = (y,z) with y ∈ R
n−k and z ∈ R

k , so that

I =
∫
|z|<1

∫
|y|<

√
1−|z|2

g(y,z) dydz.

Introduce spherical coordinates:

y = (ρ ,η),z = (t,ξ ),ρ = |y|,t = |z|,η ∈ S
n−k−1,ξ ∈ S

k−1.

Thus
I =

∫
Sk−1

∫
Sn−k−1

∫
t<1

∫
ρ<

√
1−t2

g(ρη ,tξ )ρn−k−1tk−1 dρ dt dη dξ .

Now we view the variables (t,ρ) as coordinates on the plane and introduce the polar
coordinates:

v =
√

ρ2 + t2,ρ = vsinφ ,t = vcosφ ,φ ∈ (0,π/2),

so

I =
∫

Sk−1

∫
Sn−k−1

∫ 1

0
vn−1

∫ π
2

0
g(vη sinφ ,vξ cosφ)sinn−k−1 φ cosk−1 φ dvdφ dη dξ .

By definition of g ,

g(vη sinφ ,vξ cosφ) = f (η sinφ ,ξ cosφ),

and hence this function is independent of v . Integrating in v , we get

I =
1
n

∫
Sk−1

∫
Sn−k−1

∫ π
2

0
f (η sinφ ,ξ cosφ)sinn−k−1 φ cosk−1 φ dφ dη dξ ,

which leads to the required formula. �
Our strategy to prove Theorems 3.1, 3.3, 3.5 and 3.7 is to obtain lower bounds for

the function 1
m(x)2 given by (15), containing d(x) , then apply Proposition 3.9.

4. Proofs

Proof of Theorem 3.1. By (15) and the fact that d̃u(x) � du(x) , we have

1
m(x)2 =

1
4π

∫
S2

1
du(x)2 dS(u) � 1

4π

∫
S2

1

d̃u(x)2
dS(u). (16)

Since the function d̃u(x) is symmetric, with respect to the ball B3(a,R), using spherical
coordinates, (r,θ ,φ) where r � 0, 0 � θ � π and 0 � φ � 2π , leads to u = u(θ ,φ),
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and that d̃u(x) depends on θ only. Thus, slightly abusing the notation, from this point
on we write d̃(x,θ ) instead of d̃u(x). Therefore, inequality (16) becomes

1
m(x)2 � 1

4π

2π∫
0

π∫
0

1

d̃(x,θ )2
sinθ dθdφ =

π
2∫

0

1

d̃(x,θ )2
sinθ dθ . (17)

Since Ω ⊂ R
3 satisfies Condition 2.1, then considering the two-dimensional cross sec-

tion that contains x ∈ Ω, and the line segments representing both d(x) and d̃(x,θ ), we
have

sinθ0 =
R

R+d(x)
=

1

1+ d(x)
R

, (18)

and the Cosine law gives

1

d̃(x,θ )2
=

1

cos2 θ
(
R+d(x)−

√
R2 − (d(x)2 +2Rd(x)) tan2 θ

)2 . (19)

Therefore, inequality (17) takes the following form:

1

m(x)2 � 1

(R+d (x))2

θ0∫
0

sinθ

cos2 θ
(

1−
√

R2

(R+d(x))2
−
(

d(x)2+2Rd(x)
(R+d(x))2

)
tan2 θ

)2 dθ . (20)

To compute the integral in (20), we use the following substitution:

secθ =
R+d(x)√

d(x)2 +2Rd(x)
t,

which produces the following inequality:

1

m(x)2 � 2

(R+d(x))
√

d(x)2 +2Rd(x)
× (I1(x,R)− I2(x,R)+ I3(x,R)) , (21)

where

I1(x,R) =
1∫

√
d(x)2+2Rd(x)

R+d(x)

dt
t4

, I2(x,R) =
1∫

√
d(x)2+2Rd(x)

R+d(x)

dt
2t2

,

and I3(x,R) =
1∫

√
d(x)2+2Rd(x)

R+d(x)

√
1− t2

t4
dt.
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Concerning the first integral I1(x,R), we have

I1(x,R) =
(R+d (x))3 −

(
d (x)2 +2Rd (x)

) 3
2

3
(
d (x)2 +2Rd (x)

) 3
2

. (22)

Moreover, the integral I2(x,R) gives

I2(x,R) =
R+d(x)−√d(x)2 +2Rd(x)

2
√

d(x)2 +2Rd(x)
. (23)

Finally, use the substitution r = 1
t for I3(x,R) to obtain

I3(x,R) =
R3

3
(
d (x)2 +2Rd (x)

) 3
2

. (24)

Using (22), (23), and (24) in (21), yields the following lower bound on 1
m(x)2 :

1

m(x)2 �
(R−d (x))

√
d (x)2 +2Rd (x)+d (x)2

3d (x)2 (R+d (x))
√

d (x)2 +2Rd (x)
. (25)

Applying Proposition 3.9 to (25) returns the Hardy-type inequality (5) with μ(x,R)
given by (6). �

Proof of Theorem 3.3. By (15) and the relation between d(x) and d̃u(x), we
obtain

1

m(x)2 =
1

|Sn−1|
∫

Sn−1

1
du(x)2 dS(u) � 1

|Sn−1| × Jn(x), (26)

where

Jn(x) =
∫

Sn−1

1

d̃u(x)2
dS(u). (27)

Now the aim is to estimate Jn(x) . Using the spherical coordinates leads to

Jn(x) =
π∫

0

1

d̃(x,θ )2
sinn−2 θdθ

∫
Sn−2

dω = b

π
2∫

0

1

d̃(x,θ )2
sinn−2 θdθ ; b = 2

∣∣Sn−2
∣∣ .

Since Ω ⊂ R
n satisfies Condition 2.1, then using (19) implies that

Jn(x) =
b
R2

θ0∫
0

sinn−2 θ

cos2 θ
(

1+ d(x)
R −

√
1−
(

d(x)2

R2 +2 d(x)
R

)
tan2 θ

)2 dθ . (28)
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Equation (28) can be simplified as follows:

Jn(x) =
b
R2

θ0∫
0

sinn−2 θ
(
1+ α +

√
1− (α2 +2α) tan2 θ

)2

cos2 θ (1+2α + α2−1+(α2 +2α) tan2 θ )2 dθ ; α =
d (x)
R

=
b
R2

1

(2α + α2)2

θ0∫
0

cos2 θ sinn−2 θ
(

1+ α +
√

1− (α2 +2α) tan2 θ
)2

dθ

︸ ︷︷ ︸
I1(α)

.

(29)

Now let us estimate I1(α) : since θ0 ∈ (0, π
2 ) then we can write θ0 = π

2 − τ1 where
c1
√

α � τ1 � c2
√

α with some positive constants c1,c2;c1 < c2. Moreover, since

0 �
(
α2 +2α

)
tan2 θ � 1,

using the expansion
√

1− t = 1− t
2

+O(t2); 0 � t � 1,

the integral I1(α) can be rewritten as

I1(α) =
1

(2α + α2)2

θ0∫
0

cos2 θ sinn−2 θ
(

1+ α +1−
(

α2

2
+ α

)
tan2 θ

+O
((

α tan2 θ
)2))2

dθ

=
1

α2

θ0∫
0

cos2 θ sinn−2 θ
(
1−α tan2 θ

)
dθ

+
1

α2 (α +2)2

θ0∫
0

cos2 θ sinn−2 θ O
((

α tan2 θ
)2)

dθ

︸ ︷︷ ︸
I2(α)

. (30)

The second term in (30), I2(α) , can be estimated as follows: since 1
α2(α+2)2

� 1
α2 , and

|sinθ | � 1, then

I2(α) � 1
α2

θ0∫
0

α2 sinn+2 θ
cos2 θ

dθ �
θ0∫
0

1
cos2 θ

dθ =
θ0∫
0

1

sin2
(π

2 −θ
)dθ .
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However, for 0 � x � π
2 , we have sinx � 2x

π , hence,

I2(α) � π2

4

θ0∫
0

1(π
2 −θ

)2 dθ � π2

4
· 1

π
2
−θ0︸ ︷︷ ︸
τ1

� π2

4
· 1
c1
√

α
= O

(
1√
α

)
.

Thus, the integral I1(α) takes the following form:

I1(α) =
1

α2

π
2∫

0

cos2 θ sinn−2 θdθ − 1
α2

π
2∫

θ0

cos2 θ sinn−2 θdθ

− 1
α

π
2∫

0

sinn θdθ +
1
α

π
2∫

θ0

sinn θdθ +O

(
1√
α

)
.

However, the second and fourth terms in the above equation have the following esti-
mates: since for any θ ∈ (0,θ0) we have θ = π

2 − τ2 with c1
√

α � τ2 � τ1 � c2
√

α
which implies cosθ = sinτ2 � c2

√
α , we obtain cos2 θ � cα , so∣∣∣∣∣∣∣

1
α2

π
2∫

θ0

cos2 θ sinn−2 θdθ

∣∣∣∣∣∣∣�
cα
α2

π
2∫

θ0

dθ =
c
α

(π
2
−θ0

)
=

cτ1

α
� cc2√

α
= O

(
1√
α

)
,

and ∣∣∣∣∣∣∣
1
α

π
2∫

θ0

sinn θdθ

∣∣∣∣∣∣∣�
1
α

π
2∫

θ0

dθ =
1
α

(π
2
−θ0

)
� O

(
1√
α

)
.

Therefore, I1(α) becomes

I1(α) =
1

α2

π
2∫

0

sinn−2 θdθ −
(

1
α2 +

1
α

) π
2∫

0

sinn θdθ +O

(
1√
α

)
. (31)

Thus, using (31) and the fact that
∫ π

2
0 sinn−2 θ dθ =

√
π

2
Γ( n−1

2 )
Γ( n

2 )
in (29), we obtain the

following form for Jn(x) :

Jn(x) = 2

∣∣Sn−2
∣∣

d(x)2

⎡
⎢⎣

π
2∫

0

sinn−2 θdθ −
π
2∫

0

sinn θdθ − d(x)
R

π
2∫

0

sinn θdθ +O

((
d(x)
R

)3/2
)⎤⎥⎦

=
1

nd(x)2 · 2π
n
2

Γ
(

n
2

)
[
1− (n−1) · d(x)

R
+O

((
d(x)
R

)3/2
)]

. (32)
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Now use (32) in (26) to obtain the following lower bound on the function 1
m(x)2 :

1
m(x)2 � 1

nd(x)2

[
1− (n−1) · d(x)

R
+O

((
d(x)
R

)3/2
)]

. (33)

Apply Proposition 3.9 on (33), to obtain the Hardy-type inequality (8) with μ(x,R) as
in (9). �

Proof of Theorem 3.5. By (15) and the fact that d̃u(x) � du(x) , we have

1
m(x)2 =

1
4π

∫
S2

1
du(x)2 dS(u) � 1

4π

∫
S2

1

d̃u(x)2
dS(u). (34)

Consider a two dimensional cross section of the cylinder Z (�,R) , here � is a straight
line (cylinder’s axis), and the domain Ω by the plane Λ, which is orthogonal to � and
containing x. Let u

′ ∈ Λ be the projection of u onto Λ . Therefore, we now have
a planar ‘picture’ in which we have the point x , a disk of radius R with centre that
belongs to �, and the line segments representing the distance from x to that disk as
well as the distance from x to the boundary of that disk in the direction u

′
. Let d̃u′ (x)

be the distance from x to the the boundary of that disk in the direction u
′
. Let θ , φ be

the standard spherical coordinates of the vector u such that θ ∈ [−π ,π ] is the angle in
the plane Λ and φ ∈ [0,π ] . Because of the planar ‘picture’ depicted, we have

d̃u′ (x) = d̃(x,θ ) = cosθ
(

R+d(x)−
√

R2− (d(x)2 +2Rd(x)) tan2 θ
)

, (35)

where −θ0 � θ � θ0 with thθ0 ∈
(
0, π

2

)
is the angle at which the line segment repre-

senting d̃u′ (x,θ ) leaves the boundary of the two dimensional disk to infinity. On the
other hand, it is clear that

d̃u(x)2 = d̃(x,θ ,φ)2 = d̃(x,θ )2 + d̃(x,θ )2 cot2 φ , (36)

where 0 � φ � π . Therefore, using the spherical coordinates with (36) in (34) implies

1
m(x)2 � 1

2π

π∫
0

θ0∫
−θ0

sinφ
d̃(x,θ )2 (1+ cot2 φ)

dθdφ . (37)

Now use (35) in (37) to obtain

1
m(x)2 � 1

2

π∫
0

sin3 φ dφ · I(x,R) =
2
3
· I(x,R),

where

I(x,R) =
1
π

θ0∫
−θ0

dθ

cos2 θ
(
R+d(x)−√R2− (d(x)2 +2Rd(x)) tan2 θ

)2 ,
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To evaluate I(x), use the substitution

s =

√
a(x)2−R2

R
tanθ , where a(x) = R+d(x)

to have

I(x,R) =
1
π

R√
a(x)2−R2

s0∫
−s0

1(
a(x)−R

√
1− s2

)2 ds

=
1
π

R√
a(x)2−R2

(I1(x,R)+ I2(x,R)+ I3(x,R)) ,

where

I1(x,R) =
s0∫

−s0

2a(x)R
√

1− s2(
R2s2 +a(x)2 −R2

)2 ds,

I2(x,R) =
s0∫

−s0

2
(
R2−R2s2

)
ds(

R2s2 +a(x)2 −R2
)2 ,and

I3(x,R) =
s0∫

−s0

ds

R2s2 +a(x)2−R2
.

Use the substitutions

v1 =
√

1+A√
1− s2

s, where A =
R2

a(x)2 −R2
,

for I1(x,R) and

v2,3 =
Rs√

a(x)2 −R2
,

for the integrals I2(x,R), I3(x,R), and then use the fact that s0 =
√

d(x)2+2Rd(x)
R tanθ0

= 1, see (18), to have

1

m(x)2 �
2R

[
πR+2

√
d (x)(d (x)+2R)+2R tan−1

(
R√

d(x)(d(x)+2R)

)]
3d (x)2 π (d (x)+2R)2

. (38)

Now Proposition 3.9 with (38) to obtain (10) with μ(x,R) given by (11). �
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Proof of Theorem 3.7. As illustrated before, 1
m(x)2 has the following lower bound

1
m(x)2 =

1
|Sn−1|

∫
Sn−1

1
du(x)2 dS(u) � 1

|Sn−1|
∫

Sn−1

1

d̃u(x)2
dS(u). (39)

Now let us consider an (n−k)-dimensional cross section of the cylinder Z (Π,R) and
the domain Ω by the (n− k) plane Λ, which is orthogonal to R

k and containing x.
Then this cross section is exactly a sphere S

n−k−1.
Considering the above cross section, the vector d̃u(x) = γ u; γ = |d̃u(x)| , repre-

senting the distance d̃u(x), can be written as a sum of two orthogonal vectors. One
is the projection of d̃u(x) onto the k -dimensional subspace V , which is parallel to
the subspace R

k, and the other is in the orthogonal subspace V ⊥, which is parallel to
R

n−k . Accordingly, we have∣∣d̃u(x)
∣∣2 =

∣∣(d̃u(x)
)
V

∣∣2 +
∣∣(d̃u(x)

)
V ⊥
∣∣2 .

In order to evaluate
∣∣(d̃u(x)

)
V

∣∣2 and
∣∣(d̃u(x)

)
V ⊥
∣∣2 , we decompose the vector u∈ S

n−1

into two orthogonal components as follows:

u = (η sinφ ,ξ cosφ) ; ξ ∈ S
k−1 ⊂ V , η ∈ S

n−k−1 ⊂ V ⊥ andφ ∈
(
0,

π
2

)
.

Denote d̃η(x) =
∣∣(d̃u(x)

)
V

∣∣ . Clearly this is the distance from x to a sphere S
n−k−1 in

the direction η (which is the projection of u onto the (n− k) subspace).
Since, the two coordinates, η sinφ and ξ cosφ , representing the vector u are

orthogonal coordinates, in the (n− k)-dimensional subspace and the k -dimensional
subspace respectively, we have |γ η sinφ | = γ sinφ is the distance from x to the (n−
k)-dimensional cross section of the cylinder, i.e., to S

n−k−1 . Therefore, we have

γ2 =
d̃η(x)2

sin2 φ
. (40)

Consequently, inequality (39), using Proposition 3.10 with relation (40), produces the
following bound:

1
m(x)2 � 1

|Sn−1|
∫

Sk−1

∫
Sn−k−1

∫ π
2

0

1

d̃(η sinφ ,ξ cosφ)2
sinn−k−1 φ cosk−1 φ dφ dη dξ

= In,k × Jn−k(x), (41)

where

In,k =
|Sk−1|
|Sn−1|

∫ π
2

0
sinn−k+1 φ cosk−1 φdφ =

|Sk−1|
2|Sn−1| β

(
k
2
,
n− k+2

2

)
,

β is the Beta function, and

Jn−k(x) =
∫

Sn−k−1

1

d̃η(x)2
dη .
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Recall that, |Sn−1| = 2πn/2

Γ(n/2) and β (x,y) = Γ(x)Γ(y)
Γ(x+y) , so we have

In,k =
Γ(n/2)Γ( n−k+2

2 )
2Γ( n+2

2 )
π

k−n
2 . (42)

On the other hand, for Jn−k(x), we follow the same argument applied to Jn(x) defined
in (27), which results in

Jn−k(x) =
1

(n− k)d(x)2 ·
2π

n−k
2

Γ
(

n−k
2

)
[
1− (n− k−1)

d(x)
R

+O

((
d(x)
R

)3/2
)]

. (43)

Use (43) and (42) in (41) to obtain

1
m(x)2 � 1

nd(x)2

[
1− (n− k−1)

d(x)
R

+O

((
d(x)
R

)3/2
)]

. (44)

Apply Proposition 3.9 on the lower bound (44) to obtain the Hardy-type inequality (13)
with μ(x,R) given by (14). �
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