

A REMARK ON EXTENSION OF ORDER PRESERVING OPERATOR INEQUALITY

TATSUYA KOIZUMI AND KEIICHI WATANABE

(Communicated by M. Fujii)

Abstract. We will give an extension of order preserving operator inequality of Furuta type.

1. Introduction

Each capital letter means a bounded linear operator on a Hilbert space. An operator T is said to be positive semidefinite (denoted by $0 \le T$) if $0 \le (Tx,x)$ for all vectors x. We denote by 0 < T if T is positive semidefinite and invertible.

THEOREM 1. [11], [10] Let
$$0 \le p \le 1$$
. If $0 \le B \le A$ holds, then $B^p \le A^p$.

For 1 < p, $0 \le B \le A$ does not always ensure $B^p \le A^p$. The following result has been obtained from this point of view.

THEOREM 2. [2] Let $0 \le p$, $1 \le q$ and $0 \le r$ with $p+r \le (1+r)q$. If $0 \le B \le A$ holds, then

$$\left(A^{\frac{r}{2}}B^{p}A^{\frac{r}{2}}\right)^{\frac{1}{q}} \leqslant A^{\frac{p+r}{q}}.$$

It is known that the following result interpolates Theorem 2 and an inequality equivalent to the main result of Ando-Hiai log majorization [1] by the parameter $0 \le t \le 1$.

THEOREM 3. [3] Let $1 \le p$, $1 \le s$, $0 \le t \le 1$ and $t \le r$. If $0 \le B \le A$ with 0 < A, then the following inequality holds:

$$\left\{A^{\frac{r}{2}} \left(A^{-\frac{t}{2}} B^p A^{-\frac{t}{2}}\right)^s A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{(p-t)s+r}} \leqslant A^{1-t+r}.$$

An elementary one-page proof is in the Monograph [4], which the first author began his research of this direction by reading its Japanese edition.

Furuta [6] gave a further extension of Theorem 3, which is applied to development of the theory of operator functions and log majorization (e.g. [7], [8], [9]).

DEFINITION. [6]. Let n be a natural number. Put

$$\varphi[2n;r,t] = (\cdots(((p_1-t)p_2+t)p_3-t)p_4+\cdots-t)p_{2n}+r.$$

Supported in part by Grants-in-Aid for Scientific Research, Japan Society of the Promotion of Science.

Mathematics subject classification (2010): 47A63.

Keywords and phrases: Löwner-Heinz inequality, Furuta inequality, order preserving operator inequality.

THEOREM 4. [6] Let $1 \le p_j$ $(j = 1, \dots, 2n)$, $0 \le t \le 1$ and $t \le r$. If $0 \le B \le A$ with 0 < A, then the following inequality holds:

$$\left\{A^{\frac{r}{2}}\left(A^{-\frac{t}{2}}\cdots\left(A^{\frac{t}{2}}\left(A^{-\frac{t}{2}}B^{p_1}A^{-\frac{t}{2}}\right)^{p_2}A^{\frac{t}{2}}\right)^{p_3}\cdots A^{-\frac{t}{2}}\right)^{p_{2n}}A^{\frac{r}{2}}\right\}^{\frac{1-t+r}{\phi[2n;r,t]}} \leqslant A^{1-t+r}.$$

The following result by Uchiyama [12] is 3 operators version of Theorem 3.

THEOREM 5. [12] Let $1 \le p_1, p_2, 0 \le t_1 \le 1$ and $t_1 \le t_2$. If $0 \le B \le A_1 \le A_2$ with $0 < A_1$, then the following inequality holds:

$$\left\{A_2^{\frac{t_2}{2}} \left(A_1^{-\frac{t_1}{2}} B^{p_1} A_1^{-\frac{t_1}{2}}\right)^{p_2} A_2^{\frac{t_2}{2}}\right\}^{\frac{1-t_1+t_2}{(p_1-t_1)p_2+t_2}} \leqslant A_2^{1-t_1+t_2}.$$

Another simplified proof of Theorem 5 is also given in [5] by using Theorem 3. Yang and Wang [13] gave a unifying extension of Theorem 4 and Theorem 5.

DEFINITION. [13]. Let n be a natural number. Put

$$\eth[2n] = \{\cdots((((p_1-t_1)p_2+t_1)p_3-t_2)p_4+t_2)p_5-\cdots-t_n\}p_{2n}+t_n.$$

THEOREM 6. [13] Let $1 \leqslant p_j (j = 1, \dots, 2n)$, $0 \leqslant t_k \leqslant 1 (k = 1, \dots, n)$ and $t_n \leqslant r$. If $0 \leqslant B \leqslant A_1 \leqslant A_2 \leqslant \dots \leqslant A_{2n-1} \leqslant A_{2n}$ with $0 < A_1$, then the following inequality holds:

$$\begin{split} \left\{ A_{2n}^{\frac{r}{2}} \left(A_{2n-1}^{-\frac{t_{n}}{2}} \left(A_{2n-2}^{\frac{t_{n-1}}{2}} \cdots A_{4}^{\frac{t_{2}}{2}} \left[A_{3}^{-\frac{t_{2}}{2}} \left\{ A_{2}^{\frac{t_{1}}{2}} \left(A_{1}^{-\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{-\frac{t_{1}}{2}} \right)^{p_{2}} A_{2}^{\frac{t_{1}}{2}} \right\}^{p_{3}} A_{3}^{-\frac{t_{2}}{2}} \right]^{p_{4}} A_{4}^{\frac{t_{2}}{2}} \cdots \\ A_{2n-2}^{\frac{t_{n-1}}{2}} \right)^{p_{2n-1}} A_{2n-1}^{-\frac{t_{n}}{2}} \right)^{p_{2n}} A_{2n}^{\frac{r}{2}} \bigg\}^{\frac{1-t_{n}+r}{6[2n]-t_{n}+r}} \leqslant A_{2n}^{1-t_{n}+r}. \end{split}$$

2. Results

We will give the following result which is an extension of Theorem 6.

DEFINITION. Let n be a natural number. We set

$$\alpha(2n) = 1 - t_1 + t_2 - \dots - t_{2n-1} + t_{2n}$$

$$\psi(2n) = \{ \dots (((p_1 - t_1)p_2 + t_2)p_3 - t_3)p_4 + \dots - t_{2n-1} \} p_{2n} + t_{2n}.$$

THEOREM 7. Let *n* be a natural number. Let $1 \le p_j \ (j = 1, \dots, 2n), \ 0 \le t_{2k-1} \le 1$ and $t_{2k-1} \le t_{2k} \ (k = 1, \dots, n)$. If $0 \le B \le A_1 \le A_2$ and

$$A_{2k-2}^{\alpha(2k-2)} \leqslant A_{2k-1}^{\alpha(2k-2)} \leqslant A_{2k}^{\alpha(2k-2)} \ (k=2,\cdots n) \tag{*}$$

with $0 < A_1$, then the following inequality holds:

$$\left\{ A_{2n}^{\frac{t_{2n}}{2}} \left(A_{2n-1}^{-\frac{t_{2n-1}}{2}} \cdots \left(A_{2}^{\frac{t_{2}}{2}} \left(A_{1}^{-\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{-\frac{t_{1}}{2}} \right)^{p_{2}} A_{2}^{\frac{t_{2}}{2}} \right)^{p_{3}} \cdots A_{2n-1}^{-\frac{t_{2n-1}}{2}} \right)^{p_{2n}} A_{2n}^{\frac{t_{2n}}{2}} \right\}^{\frac{\alpha(2n)}{\psi(2n)}} \\
\leqslant A_{2n}^{\alpha(2n)}. \tag{1}$$

LEMMA 8. *Under the assumption of Theorem 7*,

$$1 \leqslant \alpha(2n) \leqslant \psi(2n)$$
.

Proof. $\psi(2) = (p_1 - t_1)p_2 + t_2 \geqslant (1 - t_1)p_2 + t_2 \geqslant 1 - t_1 + t_2 = \alpha(2) \geqslant 1$. Suppose $1 \leqslant \alpha(2k) \leqslant \psi(2k)$ for some k such that $1 \leqslant k \leqslant n - 1$. Then we have

$$\psi(2k+2) = (\psi(2k)p_{2k+1} - t_{2k+1})p_{2k+2} + t_{2k+2}$$

$$\geqslant (\alpha(2k)p_{2k+1} - t_{2k+1})p_{2k+2} + t_{2k+2}$$

$$\geqslant \alpha(2k) - t_{2k+1} + t_{2k+2} = \alpha(2k+2) \geqslant 1. \quad \Box$$

Proof of Theorem 7. For the case of n = 1, it is exactly Theorem 5. Let $1 \le p_{2n+1}, p_{2n+2}, 0 \le t_{2n+1} \le 1, t_{2n+1} \le t_{2n+2}$ and

$$A_{2n}^{\alpha(2n)} \leqslant A_{2n+1}^{\alpha(2n)} \leqslant A_{2n+2}^{\alpha(2n)}.$$

Suppose that the inequality (1) holds. We denote the left hand side of (1) by B_1 . Put

$$p = \frac{\psi(2n)}{\alpha(2n)} p_{2n+1}, \quad t = \frac{t_{2n+1}}{\alpha(2n)}, \quad r = \frac{t_{2n+2}}{\alpha(2n)}, \quad s = p_{2n+2}.$$

Then it is easy to check that $1 \le p$, $1 \le s$, $0 \le t \le 1$ and $t \le r$. We have

$$B_1^p = \left(A_{2n}^{\frac{t_{2n}}{2}} \left(A_{2n-1}^{-\frac{t_{2n-1}}{2}} \cdots \left(A_{2}^{\frac{t_{2}}{2}} \left(A_{1}^{-\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{-\frac{t_{1}}{2}}\right)^{p_{2}} A_{2}^{\frac{t_{2}}{2}}\right)^{p_{3}} \cdots A_{2n-1}^{-\frac{t_{2n-1}}{2}}\right)^{p_{2n}} A_{2n}^{\frac{t_{2n}}{2}}\right)^{p_{2n+1}}.$$

Since

$$B_1 \leqslant A_{2n}^{\alpha(2n)} \leqslant A_{2n+1}^{\alpha(2n)} \leqslant A_{2n+2}^{\alpha(2n)}$$

applying Theorem 5, we have

$$\left\{ \left(A_{2n+2}^{\alpha(2n)} \right)^{\frac{r}{2}} \left(\left(A_{2n+1}^{\alpha(2n)} \right)^{-\frac{t}{2}} B_1^p \left(A_{2n+1}^{\alpha(2n)} \right)^{-\frac{t}{2}} \right)^s \left(A_{2n+2}^{\alpha(2n)} \right)^{\frac{r}{2}} \right\}^{\frac{1-t+r}{(p-t)s+r}} \leqslant \left(A_{2n+2}^{\alpha(2n)} \right)^{1-t+r}. \tag{2}$$

Then we have

$$\alpha(2n)(1-t+r) = \alpha(2n) - t_{2n+1} + t_{2n+2} = \alpha(2n+2),$$

so the right hand side of (2) is $A_{2n+2}^{\alpha(2n+2)}$. It is obvious that

$$\left(A_{2n+2}^{\alpha(2n)}\right)^{\frac{r}{2}} = A_{2n+2}^{\frac{t_{2n+2}}{2}} \quad \text{and} \quad \left(A_{2n+1}^{\alpha(2n)}\right)^{-\frac{t}{2}} = A_{2n+1}^{-\frac{t_{2n+1}}{2}}.$$

Furthermore, it is easy to see that

$$\frac{1-t+r}{(p-t)s+r} = \frac{\alpha(2n+2)}{\psi(2n+2)}$$

holds, so we can conclude that

$$\left\{ A_{2n+2}^{\frac{t_{2n+2}}{2}} \left(A_{2n+1}^{-\frac{t_{2n+1}}{2}} \cdots \left(A_{2}^{\frac{t_{2}}{2}} \left(A_{1}^{-\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{-\frac{t_{1}}{2}} \right)^{p_{2}} A_{2}^{\frac{t_{2}}{2}} \right)^{p_{3}} \cdots A_{2n+1}^{-\frac{t_{2n+1}}{2}} \right)^{p_{2n+2}} A_{2n+2}^{\frac{t_{2n+2}}{2}} \right\}^{\frac{\alpha(2n+2)}{\psi(2n+2)}} \\
\leqslant A_{2n+2}^{\alpha(2n+2)}.$$
(3)

This completes the proof. \Box

DEFINITION. Let n be a natural number. We set

$$\beta(2n+1) = 1 + t_1 - t_2 + \dots + t_{2n+1}$$

$$\gamma(2n+1) = \{ \dots ((p_1 + t_1)p_2 - t_2) p_3 + \dots - t_{2n} \} p_{2n+1} + t_{2n+1}$$

THEOREM 9. Let *n* be a natural number. Let $1 \le p_j (j = 1, \dots, 2n + 1), \ 0 \le t_{1}, \ 0 \le t_{2k} \le 1 \ and \ t_{2k} \le t_{2k+1} \ (k = 1, \dots, n).$ If $0 \le B \le A_1$ and

$$A_{2k-1}^{\beta(2k-1)} \leqslant A_{2k}^{\beta(2k-1)} \leqslant A_{2k+1}^{\beta(2k-1)} \ (k=1,\cdots n)$$

with $0 < A_1$, then the following inequality holds:

$$\left\{ A_{2n+1}^{\frac{t_{2n+1}}{2}} \left(A_{2n}^{-\frac{t_{2n}}{2}} \cdots \left(A_{2}^{-\frac{t_{2}}{2}} \left(A_{1}^{\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{\frac{t_{1}}{2}} \right)^{p_{2}} A_{2}^{-\frac{t_{2}}{2}} \right)^{p_{3}} \cdots A_{2n}^{-\frac{t_{2n}}{2}} \right)^{p_{2n+1}} A_{2n+1}^{\frac{t_{2n+1}}{2}} \right\}^{\frac{\beta(2n+1)}{\gamma(2n+1)}} \\
\leqslant A_{2n+1}^{\beta(2n+1)}.$$

Proof. Put $t_1 = 0$ and $p_1 = 1$ in the inequality (3). Then we have

$$\left\{A_{2n+2}^{\frac{t_{2n+2}}{2}} \left(A_{2n+1}^{-\frac{t_{2n+1}}{2}} \cdots \left(A_{2}^{\frac{t_{2}}{2}} B^{p_{2}} A_{2}^{\frac{t_{2}}{2}}\right)^{p_{3}} \cdots A_{2n+1}^{-\frac{t_{2n+1}}{2}}\right)^{p_{2n+2}} A_{2n+2}^{\frac{t_{2n+2}}{2}}\right\}^{\frac{\alpha(2n+2)}{\psi(2n+2)}} \leqslant A_{2n+2}^{\alpha(2n+2)}.$$

For $j = 2, \dots, 2n+2$, rewrite t_j, p_j and A_j by t_{j-1}, p_{j-1} and A_{j-1} , respectively. \square

COROLLARY 10. Let n be a natural number and l be an even natural number. Let $1 \le p_j$ $(j=1,\cdots,2n+l), \ 0 \le t_1,\cdots,t_n,t_{n+1},t_{n+3},\cdots,t_{n+l-1} \le 1$ and $t_{n+1} \le t_{n+2},\cdots,t_{n+l-1} \le t_{n+l}. \ 0 \le B \le A_1 \le A_2 \le \cdots \le A_{2n+2}$, with $0 < A_1$, then the following inequality holds:

$$\left\{ A_{2n+2}^{\frac{t_{n+l}}{2}} \left(A_{2n+2}^{-\frac{t_{n+l}-1}{2}} \cdots \left(A_{2n+2}^{\frac{t_{n+2}}{2}} \left(A_{2n+1}^{-\frac{t_{n+1}}{2}} \left(A_{2n}^{\frac{t_{n}}{2}} \left(A_{2n-1}^{-\frac{t_{n}}{2}} \cdots \left(A_{2}^{\frac{t_{1}}{2}} \left(A_{1}^{-\frac{t_{1}}{2}} B^{p_{1}} A_{1}^{-\frac{t_{1}}{2}} \right)^{p_{2}} A_{2}^{\frac{t_{1}}{2}} \right)^{p_{3}} \right. \\ \left. \cdots A_{2n-1}^{-\frac{t_{n}}{2}} \right)^{p_{2n}} A_{2n}^{\frac{t_{n}}{2}} \right)^{p_{2n+1}} A_{2n+1}^{-\frac{t_{n+1}}{2}} \right)^{p_{2n+2}} A_{2n+2}^{\frac{t_{n+2}}{2}} \right)^{p_{2n+3}} \cdots A_{2n+2}^{-\frac{t_{n+l-1}}{2}} \right)^{p_{2n+l}} A_{2n+2}^{\frac{t_{n+l}}{2}} \right\}^{\frac{\alpha'}{\psi'}} \\ \leqslant A_{2n+2}^{\alpha'},$$

where

$$\alpha' = 1 - t_{n+1} + t_{n+2} - \dots - t_{n+l-1} + t_{n+l}$$

$$\psi' = (\dots (((((p_1 - t_1)p_2 + t_1)p_3 - \dots - t_n)p_{2n} + t_n)p_{2n+1} - t_{n+1})p_{2n+2} + \dots - t_{n+l-1})p_{2n+l} + t_{n+l}.$$

Proof. By putting $A_{2n+2} = A_{2n+3} = \cdots = A_{2n+l}$ and replacing $t_1, t_2, \cdots, t_{2n-1}, t_{2n}, t_{2n+1}, \cdots, t_{2n+l}$ in Theorem 7 to $t_1, t_1, \cdots, t_n, t_n, t_{n+1}, \cdots, t_{n+l}$ in Corollary 10, respectively, we can apply Theorem 7 successively. \square

COROLLARY 11. Let n be a natural number. Let $1 \le p_j (j = 1, \dots, 2n), \ 0 \le t_{2k-1} \le 1$ and $t_{2k-1} \le t_{2k} (k = 1, \dots, n)$. If $0 \le B \le A$ with 0 < A, then the following inequality holds:

$$\left\{ A^{\frac{t_{2n}}{2}} \left(A^{-\frac{t_{2n-1}}{2}} \cdots \left(A^{\frac{t_{2}}{2}} \left(A^{-\frac{t_{1}}{2}} B^{p_{1}} A^{-\frac{t_{1}}{2}} \right)^{p_{2}} A^{\frac{t_{2}}{2}} \right)^{p_{3}} \cdots A^{-\frac{t_{2n-1}}{2}} \right)^{p_{2n}} A^{\frac{t_{2n}}{2}} \right\}^{\frac{\alpha(2n)}{\psi(2n)}} \\
\leqslant A^{\alpha(2n)}.$$

Proof. Put
$$A = A_1 = A_2 = \cdots = A_{2n}$$
 in Theorem 7. \square

COROLLARY 12. Let n be a natural number. Let $1 \le p_j$ $(j = 1, \dots, 2n + 1)$, $0 \le t_1$, $0 \le t_{2k} \le 1$ and $t_{2k} \le t_{2k+1}$ $(k = 1, \dots, n)$. If $0 \le B \le A$ with 0 < A, then the following inequality holds:

$$\left\{A^{\frac{t_{2n+1}}{2}} \left(A^{-\frac{t_{2n}}{2}} \cdots \left(A^{-\frac{t_{2}}{2}} \left(A^{\frac{t_{1}}{2}} B^{p_{1}} A^{\frac{t_{1}}{2}}\right)^{p_{2}} A^{-\frac{t_{2}}{2}}\right)^{p_{3}} \cdots A^{-\frac{t_{2n}}{2}}\right)^{p_{2n+1}} A^{\frac{t_{2n+1}}{2}}\right\}^{\frac{\beta(2n+1)}{\gamma(2n+1)}} \le A^{\beta(2n+1)}.$$

Proof. Put
$$A = A_1 = A_2 = \cdots = A_{2n+1}$$
 in Theorem 9. \square

REMARK. If we omit the condition (*) in Theorem 7 and assume only $0 \le B \le A_1 \le A_2 \le \cdots \le A_{2n}$ with $0 < A_1$, we cannot always obtain the inequality (1). We may take operators $I \le C_1 \le C_2$ such that $C_1^2 \nleq C_2^2$, where I denotes the identity operator. Put n=2, $p_1=\cdots=p_4=1$, $t_1=t_3=1$, $t_2=t_4=2$ and $B=A_1=I$, $A_2=C_1$, $A_3=A_4=C_2$. In this case, $\alpha(4)=\psi(4)=3$. If the inequality (1) holds, we would have

$$C_2 C_2^{-\frac{1}{2}} C_1^2 C_2^{-\frac{1}{2}} C_2 \leqslant C_2^3$$

which leads to $C_1^2 \leq C_2^2$, a contradiction.

REMARK. Theorem 7 becomes Theorem 6, when $t_{2k-1} = t_{2k} (k = 1, \dots, n-1)$, $t_{2n} = r$ and $0 \le B \le A_1 \le A_2 \le \dots \le A_{2n}$, and rewrite t_{2k-1} to $t_k (k = 1, \dots, n)$.

REFERENCES

- [1] T. Ando and F. Hiai, Log majorization and complementary Golden-Thompson type inequalities, Linear Algebra Appl. 197/198 (1994), 113–131.
- [2] T. FURUTA, $A \ge B \ge 0$ assures $(B^r A^p B^r)^{1/q} \ge B^{(p+2r)/q}$ for $r \ge 0$, $p \ge 0$, $q \ge 1$ with $(1+2r)q \ge p+2r$, Proc. Amer. Math. Soc. **101**, 1 (1987), 85–88.
- [3] T. FURUTA, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 219 (1995), 139–155.
- [4] T. FURUTA, *Invitation to linear operators*, Taylor & Francis, London, 2001.
- [5] T. FURUTA, A proof of an order preserving inequality, Proc. Japan Acad. Ser. A Math. Sci. 78, 2 (2002), 26.
- [6] T. FURUTA, Further extension of an order preserving operator inequality, J. Math. Inequal. 2, 4 (2008), 465–472.
- [7] T. FURUTA, Log majorization via an order preserving operator inequality, Linear Algebra Appl. 431, 1–2 (2009), 132–138.
- [8] T. FURUTA, Operator function associated with an order preserving operator inequality, J. Math. Inequal. 3, 1 (2009), 21–29.
- [9] T. FURUTA, An extension of order preserving operator inequality, Math. Inequal. Appl. 13, 1 (2010), 49–56.
- [10] E. HEINZ, Beiträge zur Störungstheorie der Spektralzerlegung, Math. Ann. 124 (1951), 415-438.
- [11] K. LÖWNER, Über monotone Matrixfunktionen, Math. Z. 38 (1934), 177–216.
- [12] M. UCHIYAMA, Criteria for monotonicity of operator means, J. Math. Soc. Japan 55, 1 (2003), 197–207.
- [13] C. YANG AND Y. WANG, Further extension of Furuta inequality, J. Math. Inequal. 4, 3 (2010), 391–398.

(Received May 27, 2011)

Tatsuya Koizumi Graduate School of Science & Technology Niigata University 950-2181, Japan

e-mail: f10a061h@mail.cc.niigata-u.ac.jp

Keiichi Watanabe

Department of Mathematics, Faculty of Science Niigata University 950-2181, Japan

e-mail: wtnbk@math.sc.niigata-u.ac.jp