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ON SOME PROPERTIES OF JENSEN–MERCER’S FUNCTIONAL

MARIO KRNIĆ, NEDA LOVRIČEVIĆ AND JOSIP PEČARIĆ

(Communicated by I. Franjić)

Abstract. Motivated by results of S.S. Dragomir, J.E. Pečarić and L.E. Persson, related to su-
peradditivity and monotonicity of discrete Jensen’s functional, in this paper we consider Jensen-
Mercer’s functional, for which we state and prove analogous results. In particular, these results
are obtained for Jensen-Mercer’s functional under Jensen-Steffensen’s conditions. Integral ver-
sions are also given.

1. Introduction

As A. McD. Mercer proved a Jensen-type inequality in his paper [6], it was named
the Jensen-Mercer inequality, after both mathematicians involved. Namely, for a convex
function f : [a,b] → R, [a,b] ⊆ R, x = (x1, . . . ,xn) ∈ [a,b]n, and p = (p1, . . . , pn) a
non-negative n− tuple, such that Pn := ∑n

i=1 pi > 0, Mercer proved that the following
inequality holds:

f

(
a+b− 1

Pn

n

∑
i=1

pixi

)
� f (a)+ f (b)− 1

Pn

n

∑
i=1

pi f (xi). (1)

In the sequel, the set of all non-negative n− tuples p = (p1, . . . , pn), such that Pn :=
∑n

i=1 pi > 0 will be denoted with P0
n .

The difference between the right-hand and the left-hand side of inequality (1) de-
fines discrete Jensen-Mercer’s functional

M ( f ,x,p) := Pn[ f (a)+ f (b)]−
n

∑
i=1

pi f (xi)−Pn f

(
a+b− 1

Pn

n

∑
i=1

pixi

)
. (2)

For a fixed function f and n− tuple x, M ( f ,x, ·) can be considered as a function on
P0

n , which is a convex subset in R
n. Furthermore, because of (1), M ( f ,x,p) � 0, for

all p ∈ P0
n .
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It was proved in [1] that (1) remains valid even when the condition on non-negativity
of p is relaxed, that is, when p satisfies the conditions for Jensen-Steffensen’s inequal-
ity. More precisely, (1) holds if x = (x1, . . . ,xn) ∈ [a,b]n is a monotonic n− tuple and
p = (p1, . . . , pn) is a real n− tuple, such that for Pk := ∑k

i=1 pi, k = 1, . . . ,n, we have

0 � Pk � Pn, k = 1, . . . ,n−1, Pn > 0, (3)

with f being a convex function as before. Here is also ∑n
i=1 pixi ∈ [a,b], (see [1]).

In the sequel, the set of all n− tuples p = (p1, . . . , pn), satisfying Jensen-Steffensen’s
conditions (3) will be denoted with Pn. In this setting, the associated functional (2) is
called (discrete) Jensen-Mercer’s functional under Jensen-Steffensen’s conditions.

Now that we introduced the basic notions to be dealt with in the sequel, let us
explain the motivation for writing this paper. In paper [5], S.S. Dragomir and al. intro-
duced and investigated discrete Jensen’s functional

Jn( f ,x,p) =
n

∑
i=1

pi f (xi)−Pn f

(
1
Pn

n

∑
i=1

pixi

)
. (4)

They proved that Jn( f ,x, ·) is superadditive on P0
n , that is, if p,q ∈ P0

n , then

Jn( f ,x,p+q) � Jn( f ,x,p)+ Jn( f ,x,q), (5)

and is also increasing on P0
n , that is,

if p � q, then Jn( f ,x,p) � Jn( f ,x,q) � 0. (6)

(Here p � q means pi � qi, i = 1, . . . ,n.) However, monotonicity property (6) had been
obtained by J.E. Pečarić, (see [7, p.717]), even before Dragomir unified both properties.

In our paper we are going to prove that superadditivity and monotonicity prop-
erty hold in the case of Jensen-Mercer’s functional, too, in all its variants. Namely,
in Section 2 we deal with discrete Jensen-Mercer’s functional and in Section 3 with
discrete Jensen-Mercer’s functional under Jensen-Steffensen’s conditions. In the last
two sections we give integral versions of the results from the first two sections. In the
beginning of the first two sections we list some of the known results needed for further
considerations. These are given in the paper of J. Barić and A. Matković (see [2]). The
discrete notation given in Introduction is valid in the sequel.

2. Properties of discrete Jensen-Mercer’s functional

The main results of this section are accompanied with a few consequent results,
one of which is related to a result given in [2]. For that purpose we cite it here.

THEOREM A. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples from
P0

n . Let m and M be any real constants such that

m � 0, pi −mqi � 0, Mqi − pi � 0, i = 1, . . . ,n.
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If f : [a,b] → R is a convex function and x = (x1, . . . ,xn) is any n− tuple from [a,b]n,
then

MM ( f ,x,q) � M ( f ,x,p) � mM ( f ,x,q).

In the following theorem we are concerned with proving the superadditivity prop-
erty of the functional (2).

THEOREM 1. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples from
P0

n . If f : [a,b] → R, [a,b] ⊆ R, is a convex function and if x = (x1, . . . ,xn) is an n−
tuple in [a,b]n , then M ( f ,x, ·) defined by (2) is superadditive on P0

n , i.e.

M ( f ,x,p+q) � M ( f ,x,p)+M ( f ,x,q) � 0. (7)

Proof. Starting from the definition we have

M ( f ,x,p+q) = (Pn +Qn)[ f (a)+ f (b)]−
n

∑
i=1

(pi +qi) f (xi)

−(Pn +Qn) f

(
a+b− ∑n

i=1(pi +qi)xi

Pn +Qn

)

= Pn[ f (a)+ f (b)]+Qn[ f (a)+ f (b)]−
n

∑
i=1

pi f (xi)−
n

∑
i=1

qi f (xi)

−(Pn +Qn) f

(
a+b− ∑n

i=1(pi +qi)xi

Pn +Qn

)
, (8)

while, after arranging, convexity of f and Jensen’s inequality yield

f

(
a+b− ∑n

i=1(pi +qi)xi

Pn +Qn

)
= f

(
∑n

i=1(pi +qi)(a+b− xi)
Pn +Qn

)

= f

(
Pn

Pn +Qn

∑n
i=1 pi(a+b− xi)

Pn
+

Qn

Pn +Qn

∑n
i=1 qi(a+b− xi)

Qn

)

� Pn

Pn +Qn
f

(
a+b− ∑n

i=1 pixi

Pn

)
+

Qn

Pn +Qn
f

(
a+b− ∑n

i=1 qixi

Qn

)
. (9)

Finally, combining relation (8) and inequality (9) we get

M ( f ,x,p+q) � Pn[ f (a)+ f (b)]+Qn[ f (a)+ f (b)]−
n

∑
i=1

pi f (xi)−
n

∑
i=1

qi f (xi)

−Pn f

(
a+b− ∑n

i=1 pixi

Pn

)
−Qn f

(
a+b− ∑n

i=1 qixi

Qn

)
= M ( f ,x,p)+M ( f ,x,q) .

Because of (1) we have that M ( f ,x,p) � 0 and M ( f ,x,q) � 0, so the proposed
right-hand side inequality in (7) holds. �

The functional (2) satisfies the monotonicity property, as is shown in the sequel.
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THEOREM 2. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples from
P0

n , such that p � q, (i.e. pi � qi, i = 1, . . . ,n). If f : [a,b] → R, [a,b] ⊆ R, is a
convex function and if x = (x1, . . . ,xn) is an n− tuple in [a,b]n , then for functional
M ( f ,x, ·) defined by (2) inequality

M ( f ,x,p) � M ( f ,x,q) (10)

holds on P0
n .

Proof. The monotonicity property follows directly from superadditivity. Since
p � q, p can be represented as the sum of two n− tuples: p−q and q. Applying (7)
we have

M ( f ,x,p) = M ( f ,x,p−q+q) � M ( f ,x,p−q)+M ( f ,x,q) .

Finally, since by (1) M ( f ,x,p−q) � 0, we have that M ( f ,x,p) � M ( f ,x,q) ,
which proves the theorem. �

REMARK 1. We can easily obtain the result from Theorem A from [2] by means
of Theorem 2. Let p,q ∈ P0

n and let m and M be real constants such that p−mq
and Mq− p are in P0

n . If f : [a,b] → R, [a,b] ⊆ R, is a convex function and if
x = (x1, . . . ,xn) is an n− tuple in [a,b] , then by Theorem 2

M ( f ,x,p) � M ( f ,x,p−mq)+M ( f ,x,mq) � mM ( f ,x,q) .

Similarly we get
M ( f ,x,p) � MM ( f ,x,q) ,

that is
MM ( f ,x,q) � M ( f ,x,p) � mM ( f ,x,q) .

Applying Theorem 2, we are able to give the result on bounding the functional (2)
by a non-weighted functional.

COROLLARY 1. Let p, x, f and functional M be as in Theorem 2. Then

max
1�i�n

{pi}MN ( f ,x) � M ( f ,x,p) � min
1�i�n

{pi}MN ( f ,x),

where MN ( f ,x) = n[ f (a)+ f (b)]−∑n
i=1 f (xi)−n f

(
a+b− 1

n

n

∑
i=1

xi

)
.

Proof. Let pmin ∈P0
n be a constant n− tuple, i.e. pmin =

(
min

1�i�n
{pi}, . . . , min

1�i�n
{pi}

)
.

Then for any p ∈ P0
n we have p � pmin. So applying Theorem 2 we have

M ( f ,x,p) � M ( f ,x,pmin) . (11)
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On the other hand,

M ( f ,x,pmin) = min
1�i�n

{pi}
{

n[ f (a)+ f (b)]−
n

∑
i=1

f (xi)−n f

(
a+b− 1

n

n

∑
i=1

xi

)}
,

i.e. M ( f ,x,pmin) = min
1�i�n

{pi}MN ( f ,x), which is the required non-weighted bound.

The left-hand side inequality is obtained similarly, by exchanging the roles of min and
max . �

3. Properties of discrete Jensen-Mercer’s functional
under Jensen-Steffensen’s conditions

The main results of this section are accompanied with a few consequent results,
related to some results given in [2]. For that purpose we cite them here. These results
in [2] are obtained for normalized Jensen-Mercer’s functional.

THEOREM B. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples satis-
fying

0 � Pk,Qk � 1, k = 1, . . . ,n−1, Pn = Qn = 1. (12)

Let m and M be real constants such that

m � 0, Pk −mQk � 0, (1−Pk)−m(1−Qk) � 0, k = 1, . . . ,n−1 (13)

and
MQk −Pk � 0, M(1−Qk)− (1−Pk) � 0, k = 1, . . . ,n−1. (14)

If f : [a,b]→ R, [a,b]⊆ R, is a convex function and if x = (x1, . . . ,xn) is a monotonic
n− tuple in [a,b]n , then

MM ( f ,x,q) � M ( f ,x,p) � mM ( f ,x,q). (15)

The following corollary of Theorem B was also given in [2] and will be of interest
in the sequel. It considers the uniformdistribution u = ( 1

n , . . . , 1
n ) and the corresponding

nonweighted functional

M ( f ,x) := M ( f ,x,u) = f (a)+ f (b)− 1
n

n

∑
i=1

f (xi)− f

(
a+b− 1

n

n

∑
i=1

xi

)
.

COROLLARY A. Let p = (p1, . . . , pn) be an n− tuple satisfying

0 � Pk � 1, k = 1, . . . ,n−1, Pn = 1.

For k ∈ {1, . . . ,n} denote Pk := ∑k
i=1 pi and define

m̃0 := n ·min

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
,
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M̃0 := n ·max

{
Pk

k
,
1−Pk

n− k
: k = 1, . . . ,n−1

}
.

If f : [a,b] → R is a convex function and if x = (x1, . . . ,xn) ∈ [a,b]n is any monotonic
n− tuple, then

M̃0M ( f ,x) � M ( f ,x,p) � m̃0M ( f ,x). (16)

Just like in the previous section, we are first going to discuss the superadditivity
property of the functional (2), this time - under Jensen-Steffensen’s conditions.

THEOREM 3. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples from
Pn. If f : [a,b] → R, [a,b] ⊆ R, is a convex function and if x = (x1, . . . ,xn) is a
monotonic n− tuple in [a,b]n , then M ( f ,x, ·) defined by (2) is superadditive on Pn,
i.e.

M ( f ,x,p+q) � M ( f ,x,p)+M ( f ,x,q) � 0. (17)

Proof. The proof follows the same lines as in Theorem 1, but for the right-hand
side inequality in (17) we use Jensen-Mercer’s inequality under Jensen-Steffensen’s
conditions. �

In order to adjust monotonicity property (10) to functional (2) under Jensen-Stef-
fensen’s conditions, we are going to impose some extra conditions on n− tuples p and
q from Pn, as follows.

THEOREM 4. Let p = (p1, . . . , pn) and q = (q1, . . . ,qn) be two n− tuples from
Pn. Let Pk � Qk, Pn −Pk � Qn −Qk, k = 1, . . . ,n− 1, and Pn > Qn, where Pk =
∑k

i=1 pi and Qk = ∑k
i=1 qi. If f : [a,b] → R, [a,b]⊆ R, is a convex function and if x =

(x1, . . . ,xn) is a monotonic n− tuple in [a,b]n , then for functional M ( f ,x, ·) defined
by (2) inequality

M ( f ,x,p) � M ( f ,x,q) (18)

holds on Pn.

Proof. Write M ( f ,x,p) = M ( f ,x,p−q+q) . Now, if we could apply super-
additivity property (17) to p−q and q, monotonicity property would also be proved.
And that would be the case if the n− tuple p− q = (p1 − q1, . . . , pn − qn) belonged
to Pn. Hence the following conditions need to be satisfied: 0 � Pk −Qk � Pn −Qn,
k = 1, . . . ,n−1, and Pn−Qn > 0, which yields: 0 � Pk−Qk, Pk −Qk � Pn−Qn, k =
1, . . . ,n−1, and Pn−Qn > 0. Now, taking into account that by (1) M ( f ,x,p−q) � 0,
we have

M ( f ,x,p) = M ( f ,x,p−q+q) � M ( f ,x,p−q)+M ( f ,x,q) � M ( f ,x,q) .

�



ON SOME PROPERTIES OF JENSEN-MERCER’S FUNCTIONAL 131

REMARK 2. We can easily obtain the result of Theorem B by means of Theorem
4. Let p,q ∈ Pn and let m and M be real constants such that p−mq and Mq− p
are in Pn. If f : [a,b] → R is a convex function and if x = (x1, . . . ,xn) ∈ [a,b]n is any
monotonic n− tuple, then by Theorem 4 is

M ( f ,x,p) � M ( f ,x,p−mq)+M ( f ,x,mq) � mM ( f ,x,q) .

Similarly we get
M ( f ,x,p) � MM ( f ,x,q) ,

that is
MM ( f ,x,q) � M ( f ,x,p) � mM ( f ,x,q) . (19)

Since p−mq ∈ Pn implies Pk � mQk and (Pn −Pk) � m(Qn −Qk), and since Mq−
p ∈ Pn implies Pk � MQk and (Pn −Pk) � M(Qn −Qk), k = 1, . . . ,n− 1, which are
the assumptions of Theorem B (only in a non-normalized form), by obtaining (19), we
proved Theorem B.

Applying Theorem 4, we are able to give the result on bounding the functional (2)
by a nonweighted functional. But, almost the same result, only in a slightly specialized
form, is given in Corollary A, cited from [2]. Our proof would then be the alternative
one, obtained via Theorem 4. Hence the detailed analysis is given in the form of a
remark.

REMARK 3. In order not to derange our former consideration, we write Corollary
A in a slightly different form, namely, for Pn > 0 :

Let p = (p1, . . . , pn) be an n− tuple from Pn. Define

m = min
1�k�n−1

{
Pk

k
,
Pn−Pk

n− k

}
, M = max

1�k�n−1

{
Pk

k
,
Pn−Pk

n− k

}
,

where Pk = ∑k
i=1 pi and Pn = ∑n

i=1 pi. If f : [a,b]→R is a convex function
and if x = (x1, . . . ,xn) ∈ [a,b]n is any monotonic n− tuple, then

MMN ( f ,x) � M ( f ,x,p) � mMN ( f ,x),

where MN ( f ,x) = n[ f (a)+ f (b)]−∑n
i=1 f (xi)−n f

(
a+b− 1

n

n

∑
i=1

xi

)
.

Alternative proof of Corollary A. Let qmin ∈ P0
n be a constant n− tuple, i.e.

qmin = (α,α, . . . ,α), where α > 0, for Qn := ∑n
i=1 qi > 0 must be satisfied. Provided

Pk � Qk = kα, Pn −Pk � Qn −Qk = (n− k)α, k = 1, . . . ,n− 1, and Pn > Qn = nα,
Theorem 4 can be applied. Further, these imply corresponding conditions concerning
α :
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(i) α � Pk
k , k = 1, . . . ,n−1,

(ii) α � Pn−Pk
n−k , k = 1, . . . ,n−1,

(iii) α < Pn
n .

In order to prove the right-hand side inequality, let us first denote

m = min
1�k�n−1

{
Pk

k
,
Pn−Pk

n− k

}
.

Obviously, m satisfies conditions (i) and (ii) , and is a candidate for the choice of α.
However, (iii) needs some extra considerations. Fix k ∈ {1, . . . ,n}. Then (i) and (ii)
imply nα � Pn, i.e. α � Pn

n . Now we distinguish two cases:

1◦ α <
Pn

n
. Condition (iii) is instantly satisfied and Theorem 4 yields

M ( f ,x,p) � M ( f ,x,qmin) .

2◦ α =
Pn

n
, i.e. Pn = nα. From (ii) we get nα −Pk � nα − kα, i.e. Pk � kα. But

from (i) is also Pk � kα, hence Pk = kα, k = 1, . . . ,n− 1. Since in that case
p = (α,α, . . . ,α) = qmin, inequality

M ( f ,x,p) � M ( f ,x,qmin)

holds again.

So m is a good choice for α . Now, respecting notation from the corollary statement
we get

M ( f ,x,qmin) = m

(
n[ f (a)+ f (b)]−

n

∑
i=1

f (xi)−n f

(
a+b− 1

n

n

∑
i=1

xi

))

= mMN ( f ,x).

Lower bound provided by the non-weighted functional is then

M ( f ,x,p) � mMN ( f ,x).

Upper bound is obtained similarly, by exchanging the roles of p and q, and with

M = max
1�k�n−1

{
Pk

k
,
Pn−Pk

n− k

}
.

�
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4. Properties of integral Jensen-Mercer’s functional

In [3] Cheung, Matković and Pečarić have proved that if (Ω,A ,μ) is a probability
space and x : Ω → [a,b] , (−∞ < a < b < ∞,) is a measurable function, then for any
continuous convex function f : [a,b] → R the following inequality holds:

f

⎛
⎝a+b−

∫
Ω

xdμ

⎞
⎠� f (a)+ f (b)−

∫
Ω

f (x)dμ . (20)

It can analogously be proved that for a measure space (Ω,A ,μ) with 0 < μ (Ω) <
∞ the integral version of Jensen-Mercer’s inequality

f

⎛
⎝a+b− 1

μ (Ω)

∫
Ω

xdμ

⎞
⎠� f (a)+ f (b)− 1

μ (Ω)

∫
Ω

f (x)dμ (21)

holds. In a special case, when Ω = [α,β ] , where −∞ < α < β < ∞ and λ : [α,β ] → R

is any nondecreasing function such that λ (β ) �= λ (α) inequality (21) becomes

f

(
a+b− 1

λ (β )−λ (α)

∫ β

α
x(t)dλ (t)

)

� f (a)+ f (b)− 1
λ (β )−λ (α)

∫ β

α
f (x(t))dλ (t). (22)

Inequality (22) can also be rewritten as:

f

(
1

λ (β )−λ (α)

∫ β

α
(a+b− x(t)) dλ (t)

)

� 1
λ (β )−λ (α)

∫ β

α
( f (a)+ f (b)− f (x(t))) dλ (t). (23)

Let us abbreviate the former notation by setting λ (β )− λ (α) := λ β
α . Now we

consider the corresponding integral Jensen-Mercer’s functional

M ( f ,x,λ ) := λ β
α [ f (a)+ f (b)]−

∫ β

α
f (x(t))dλ (t)

−λ β
α f

(
a+b− 1

λ β
α

∫ β

α
x(t)dλ (t)

)
. (24)

Because of (22) we always have M ( f ,x,λ ) � 0. For the sake of the consider-
ations in the next section, let us denote with Λ[α ,β ], −∞ < α < β < ∞, the class of
all functions λ : [α,β ] → R which are either continuous or of bounded variation and
satisfy the conditions

λ (α) � λ (t) � λ (β ) for all t ∈ [α,β ], λ (β )−λ (α) > 0. (25)
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As for now, we notice that any nondecreasing function λ : [α,β ] → R with λ (β )−
λ (α) > 0 belongs to Λ[α ,β ] and are concerned with such functions, while dealing with
the integral versions of the results from Section 2. We start with the integral analogue
of Theorem 1.

THEOREM 5. Let λ and μ be two nondecreasing functions from Λ[α ,β ] and let
x : [α,β ] → [a,b], −∞ < a < b < ∞, be a continuous function. If f : [a,b] → R is a
continuous convex function, then functional M ( f ,x, ·) defined by (24) is superadditive
on Λ[α ,β ], i.e.

M ( f ,x,λ + μ) � M ( f ,x,λ )+M ( f ,x,μ) � 0. (26)

Proof. Since λ and μ are nondecreasing functions, so is λ +μ , so M ( f ,x,λ + μ)
is well defined. From the definition we have

M ( f ,x,λ + μ) =
(

λ β
α + μβ

α

)
[ f (a)+ f (b)]−

∫ β

α
f (x(t))d(λ + μ)(t)

−
(

λ β
α + μβ

α

)
· f

(
a+b− 1

λ β
α + μβ

α

∫ β

α
x(t)d(λ + μ)(t)

)
, (27)

while convexity of f and (integral) Jensen’s inequality yield

f

(
a+b− 1

λ β
α + μβ

α

∫ β

α
x(t)d(λ + μ)(t)

)
=

= f

(
λ β

α

λ β
α + μβ

α
·
∫ β

α (a+b− x(t))dλ (t)

λ β
α

+
μβ

α

λ β
α + μβ

α
·
∫ β

α (a+b− x(t))dμ(t)

μβ
α

)

� λ β
α

λ β
α + μβ

α
· f

(∫ β
α (a+b− x(t))dλ (t)

λ β
α

)
+

μβ
α

λ β
α + μβ

α
· f

(∫ β
α (a+b− x(t))dμ(t)

μβ
α

)
.

Finally, combining the last inequality with (27) we get

M ( f ,x,λ + μ) �

� λ β
α [ f (a)+ f (b)]−

∫ β

α
f (x(t))dλ (t)−λ β

α · f

(
a+b−

∫ β
α x(t)dλ (t)

λ β
α

)

+μβ
α [ f (a)+ f (b)]−

∫ β

α
f (x(t))dμ(t)− μβ

α · f

(
a+b−

∫ β
α x(t)dμ(t)

μβ
α

)

= M ( f ,x,λ )+M ( f ,x,μ) .

Because of the inequality (22) we have that M ( f ,x,λ ) � 0 and M ( f ,x,μ) � 0, so
the proposed right-hand side inequality in (26) holds. �

We proceed with the integral analogue of Theorem 2.
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THEOREM 6. Let λ and μ be functions from Λ[α ,β ], let x : [α,β ]→ [a,b], −∞ <
a < b < ∞, be a continuous function and f : [a,b] → R be a continuous convex func-
tion. If μ and ρ := λ − μ are nondecreasing functions, then for functional M ( f ,x, ·)
defined by (24) inequality

M ( f ,x,λ ) � M ( f ,x,μ) (28)

holds on Λ[α ,β ] .

Proof. Since μ and ρ := λ −μ are nondecreasing functions, so is the function λ .
Hence M ( f ,x,λ ) , M ( f ,x,μ) and M ( f ,x,λ − μ) are all well defined. If we write
M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) , we can apply (26) in the following way:

M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) � M ( f ,x,λ − μ)+M ( f ,x,μ) .

Since by (22) M ( f ,x,λ − μ) � 0, we have that M ( f ,x,λ ) � M ( f ,x,μ) , which
ends the proof. �

REMARK 4. Theorem A, cited from [2] in Section 2, has its integral version, also
given in [2]. Hence the latter one can easily be obtained by means of Theorem 6.
(Follows the same lines as in the discrete case, in Remark 1.)

Just like in the discrete case (Section 2), we are able to give the result on bounding
the functional (24) by a nonweighted functional. Almost the same result, only in a
slightly specialized form, was given in [2]. What we obtain here is its alternative proof,
via Theorem 6. Hence we give our consideration in the form of a remark.

REMARK 5. According to our former considerations, we slightly alter the nota-
tion from [2], so that the result reads:

Let λ be a nondecreasing function from Λ[α ,β ]. Let x : [α,β ] → [a,b],
−∞ < a < b < ∞, be a continuous function and let f : [a,b] → R be a
continuous and convex function. If m and M are defined by

m := inf
α<t<β

{
inf

{
λ (t)−λ (s)

t − s
, α � s � β , s �= t

}}
,

M := sup
α<t<β

{
sup

{
λ (t)−λ (s)

t− s
, α � s � β , s �= t

}}
,

then
MM ( f ,x) � M ( f ,x,λ ) � mM ( f ,x), (29)

where

M ( f ,x) := (β −α)[ f (a)+ f (b)]−∫ β
α f (x(t))dt−(β −α) f

(
a+b− 1

β−α
∫ β

α x(t)dt
)

.
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Proof. Let us prove the right-hand side inequality in (29). According to the defi-

nition of m, m � λ (t)−λ (s)
t− s

. It follows that λ (t)−mt− (λ (s)−ms) � 0. Let μ be a

function from Λ[α ,β ], such that μ(t) = mt, μ(s) = ms. Function μ is nondecreasing.
Function ρ := λ − μ is also nondecreasing, since ρ(t) � ρ(s). Hence by Theorem 6
we have that

M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) � M ( f ,x,μ). (30)

On the other hand, we have

M ( f ,x,μ) = (mβ −mα)[ f (a)+ f (b)]−
∫ β

α
f (x(t))d(mt)

−(mβ −mα) f

(
a+b− 1

mβ −mα

∫ β

α
x(t)d(mt)

)
= mM ( f ,x). (31)

Now, combining (30) and (31) we have the right-hand side inequality in (29) proved.
The left-hand side inequality is obtained similarly, by exchanging the roles of λ and
μ . �

5. Properties of integral Jensen-Mercer’s functional
under Jensen-Steffensen’s conditions

One of the integral analogues of Jensen-Steffensen’s inequality was given by R. P.
Boas. For a continuous and monotonic function x : [α,β ] → 〈a,b〉, −∞ < α < β < ∞
and −∞ � a < b � ∞, for a convex function f : 〈a,b〉 → R and for λ : [α,β ] → R,
either continuous function or of bounded variation, satisfying

λ (α) � λ (t) � λ (β ) for all t ∈ [α,β ], λ (β )−λ (α) > 0, (32)

Boas proved that Jensen-Steffensen’s inequality

f

(
1

λ (β )−λ (α)

∫ β

α
x(t)dλ (t)

)
� 1

λ (β )−λ (α)

∫ β

α
f (x(t))dλ (t).

holds.
Barić and Matković proved in [2] that Jensen-Mercer’s inequality (22) also re-

mains valid when the condition ”λ is a nondecreasing function” is relaxed, as in
the Boas’ result. Namely, they proved that for a continuous and monotonic function
x : [α,β ] → [a,b], −∞ < α < β < ∞ and −∞ < a < b < ∞, for a continuous and con-
vex function f : [a,b] → R and for λ : [α,β ] → R, either continuous function or of
bounded variation, satisfying (32), inequality (22) holds. Only in this section, the use
of Λ[α ,β ], −∞ < α < β < ∞, the class of all functions λ : [α,β ] → R which are either
continuous or of bounded variation and satisfy (32), is fully justified. (In Section 3 we
dealt only with the nondecreasing functions from the defined class.) The first integral
result that we give here is the integral analogue of Theorem 3.
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THEOREM 7. Let λ and μ be functions from Λ[α ,β ], either both continuous or
both of bounded variation. If x : [α,β ] → [a,b], −∞ < a < b < ∞, is a continuous
and monotonic function and if f : [a,b]→ R is a continuous and convex function, then
functional M ( f ,x, ·) defined by (24) is superadditive on Λ[α ,β ], i.e.

M ( f ,x,λ + μ) � M ( f ,x,λ )+M ( f ,x,μ) � 0. (33)

Proof. The proof follows the same lines as in Theorem 5, but for the right-hand
side inequality in (33) we use integral Jensen-Mercer’s inequality (22) under Jensen-
Steffensen’s conditions. �

The integral analogue of Theorem 4 is given in the form of the result that follows.

THEOREM 8. Let λ and μ be functions from Λ[α ,β ], either both continuous or
both of bounded variation. Let

λ (α)− μ(α) � λ (t)− μ(t) � λ (β )− μ(β ), t ∈ [α,β ],

λ (β )− μ(β ) > λ (α)− μ(α).

If x : [α,β ] → [a,b], −∞ < a < b < ∞, is a continuous and monotonic function and
if f : [a,b] → R is a continuous and convex function, then for functional M ( f ,x, ·)
defined by (24) inequality

M ( f ,x,λ ) � M ( f ,x,μ) (34)

holds on Λ[α ,β ].

Proof. Write M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) . If we could apply superadditiv-
ity property (33) to λ − μ and μ , monotonicity property would also be proved. And
that would be the case if λ − μ , also continuous or of bounded variation, belonged to
Λ[α ,β ], which, according to the assumptions of the theorem, is the case. Now, since by
(22) is M ( f ,x,λ − μ) � 0, we have

M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) � M ( f ,x,λ − μ)+M ( f ,x,μ) � M ( f ,x,μ) ,

which was to be proved. �

REMARK 6. Theorem B, cited from [2] in Section 3, has its integral version, also
given in [2]. Hence the latter one can easily be obtained by means of Theorem 8.
(Follows the same lines as in the discrete case, in Remark 2.)

In the sequel we lean on Remark 3, and in this setting that means - bounding of
functional (24) by a nonweighted functional. As before, we only give an alternative
proof of the integral version of Corollary A, cited from [2], so our result is given within
another remark.
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REMARK 7. With a slightly altered notation from that in [2], according to our
former considerations, the result reads:

Let λ be a function from Λ[α ,β ]. Let x : [α,β ] → [a,b], −∞ < a < b <
∞, be a continuous and monotonic function and let f : [a,b] → R be a
continuous and convex function. If m and M are defined by

m := inf
α<t<β

{
λ (t)−λ (α)

t−α
,

λ (β )−λ (t)
β − t

}
,

M := sup
α<t<β

{
λ (t)−λ (α)

t−α
,

λ (β )−λ (t)
β − t

}
,

then
MM ( f ,x) � M ( f ,x,λ ) � mM ( f ,x), (35)

where

M ( f ,x) := (β −α)[ f (a)+ f (b)]−∫ β
α f (x(t))dt−(β −α) f

(
a+b− 1

β−α
∫ β

α x(t)dt
)

.

Proof. Let us prove the right-hand side inequality in (35). According to the def-

inition of m we have that m � λ (t)−λ (α)
t−α

, m � λ (β )−λ (t)
β − t

. Hence the following

inequalities hold: λ (α)−mα � λ (t)−mt � λ (β )−mβ . Let μ be a function from
Λ[α ,β ], such that μ(t) = mt, μ(α) = mα and μ(β ) = mβ . Then we write λ (α)−
μ(α) � λ (t)− μ(t) � λ (β )− μ(β ). Hence by Theorem 8 we have that

M ( f ,x,λ ) = M ( f ,x,λ − μ + μ) � M ( f ,x,μ). (36)

On the other hand, we have that M ( f ,x,μ) = mM ( f ,x), as in (31), so the right-hand
side inequality in (35) is proved. The left-hand side inequality is obtained similarly, by
exchanging the roles of λ and μ . �
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