Some New Inequalities for an Interior Point of a Triangle

Jian Liu

(Communicated by S. Segura Gomis)

Abstract. In this paper we establish three new inequalities involving an arbitrary point of a triangle. Some related conjectures and problems are put forward.

1. Introduction

Let P be an arbitrary point in the plane of triangle ABC and let D, E, F be the feet of the perpendiculars from P to BC, CA, AB, respectively. In [1], the author gave the following identity:

$$
\vec{S}_{\triangle PBC} \cdot PA^2 + \vec{S}_{\triangle PCA} \cdot PB^2 + \vec{S}_{\triangle PAB} \cdot PC^2 = 4R^2\vec{S}_{\triangle DEF},
$$

(1.1)

where R is the circumradius of $\triangle ABC$ and $\vec{S}_{\triangle PBC}$, $\vec{S}_{\triangle PCA}$, $\vec{S}_{\triangle PAB}$, $\vec{S}_{\triangle DEF}$ denote directed areas of $\triangle PBC$, $\triangle PCA$, $\triangle PAB$, $\triangle DEF$. The directed area of a triangle is defined as follows: Given a triangle XYZ, if the orientation around the vertexes X, Y, Z in sequence is counterclockwise, then its directed area $\vec{S}_{\triangle XYZ}$ is positive and $\vec{S}_{\triangle XYZ} = S_{\triangle XYZ}$. If that one is clockwise, then the directed area $\vec{S}_{\triangle XYZ}$ is negative and $\vec{S}_{\triangle XYZ} = -S_{\triangle XYZ}$.

In particular, when P lies inside triangle ABC, identity (1.1) becomes

$$
S_aR_1^2 + S_bR_2^2 + S_cR_3^2 = 4R^2S_p,
$$

(1.2)

where $R_1 = PA$, $R_2 = PB$, $R_3 = PC$ and S_a, S_b, S_c denote the areas of the $\triangle PBC$, $\triangle PCA$, $\triangle PAB$ respectively, and S_p is the area of the pedal triangle DEF.

It is well known that the following inequality holds between the area S of the triangle ABC and the area S_p of the pedal triangle DEF:

$$
S_p \leq \frac{1}{4}S,
$$

(1.3)

with equality if and only if P is the circumcenter of the triangle ABC (see Figure 1). Therefore, it follows from (1.2) that (see Figure 2)

$$
S_aR_1^2 + S_bR_2^2 + S_cR_3^2 \leq SR^2.
$$

(1.4)

This inequality inspires the author to find the similar conclusion:

Keywords and phrases: triangle, interior point, Erdős-Mordell inequality, Euler inequality, conjecture.
THEOREM 1.1. Let P be an arbitrary interior point of the triangle ABC. Then

$$S_a R_1^3 + S_b R_2^3 + S_c R_3^3 \leq SR^3,$$ \hspace{1cm} (1.5)

with equality if and only if P is the circumcenter of the triangle ABC.

If P coincides with the centroid of $\triangle ABC$, then $S_a = S_b = S_c = \frac{1}{3}S$, $R_1 = \frac{2}{3}m_a$, $R_2 = \frac{2}{3}m_b$, $R_3 = \frac{2}{3}m_c$ (the three medians of $\triangle ABC$) and it follows from (1.5) that

$$m_a^3 + m_b^3 + m_c^3 \leq \frac{81}{8}R^3,$$ \hspace{1cm} (1.6)

which was conjectured by Ji Chen in [2].

At the same time when inequality (1.5) has been proven, we obtain the following two interesting geometric inequalities:

THEOREM 1.2. Let P be an arbitrary point of triangle ABC with circumradius R and inradius r. Let r_p be the inradius of the pedal triangle of P with respect to triangle ABC. Then

$$\frac{1}{2r_p} \geq \frac{1}{R} + \frac{1}{2r},$$ \hspace{1cm} (1.7)

with equality if and only if triangle ABC is equilateral and P is its center.

THEOREM 1.3. Let P be an arbitrary interior point of $\triangle ABC$ and let D, E, F denote the feet of the perpendiculars from P to BC, CA, AB respectively. Let r_p be the inradius of the pedal triangle DEF and let $PA = R_1$, $PB = R_2$, $PC = R_3$, $PD = r_1$, $PE = r_2$, $PF = r_3$. Then

$$R_1 + R_2 + R_3 \geq r_1 + r_2 + r_3 + 6r_p,$$ \hspace{1cm} (1.8)

with equality if and only if $\triangle ABC$ is equilateral and P is its center.

In this note we will prove the above three theorems and propose some related conjectures and problems.
2. Some lemmas

To prove our theorems, we need several lemmas.

Lemma 2.1. Let P be an arbitrary point with barycentric coordinates (x,y,z) in the plane of the triangle ABC. Then

$$(x+y+z)^2PA^2 = (x+y+z)(yc^2 + zb^2) - (yza^2 + zxb^2 + yxc^2),$$ \hspace{1cm} (2.1)

where a, b, c are the lengths of the edges BC, CA, AB respectively.

The above formulae is well known (see e.g. [3] P_{278}).

Lemma 2.2. For any point P inside triangle ABC, we have

$$cr_2 + br_3 \leq aR_1.$$ \hspace{1cm} (2.2)

If AO (O is the circumcenter of $\triangle ABC$) cuts BC at X, then the equality if and only if P lies on the segment AX.

Analogously to (2.2) we also have two inequalities. Lemma 2.2 is a simple important proposition and it has various proofs, see [4]–[10]. Next, we give a crucial lemma which is substantially equivalent to Lemma 2.2.

Lemma 2.3. For any point P inside triangle ABC, we have

$$R_1 \geq \frac{R^2}{2R} + \frac{2RS_p}{S},$$ \hspace{1cm} (2.3)

with equality as in (2.2).

Proof. Note that $S_a = \frac{1}{2}ar_1$, $S_b = \frac{1}{2}br_2$, $S_c = \frac{1}{2}cr_3$, $S_a + S_b + S_c = S$, applying Lemma 2.1 and 2.2 we have

$$(S_a + S_b + S_c)^2R_1^2 = (S_a + S_b + S_c)(S_b c^2 + S_c b^2) - (S_b S_c a^2 + S_c S_a b^2 + S_a S_b c^2)$$

$$= \frac{1}{2}(br_2 c^2 + cr_3 b^2)S - \frac{1}{4}(bcr_2r_3 a^2 + car_3 r_1 b^2 + abr_1 r_2 c^2)$$

$$= \frac{1}{2}bc(br_2 + cr_3)S - \frac{1}{4}abc(ар_2 r_3 + br_3 r_1 + cr_1 r_2)$$

$$\leq \frac{1}{2}abcR_1 S - \frac{1}{2}abc(r_2 r_3 \sin A + r_3 r_1 \sin B + r_1 r_2 \sin C)$$

$$= \frac{1}{2}abcR_1 S - abc(S_{\Delta PEF} + S_{\Delta PFD} + S_{\Delta PDE})$$

$$= \frac{1}{2}abc(R_1 S - 2RS_p).$$
Then make use of \(S_a + S_b + S_c = S \) and \(abc = 4SR \), we get
\[
R_1S - 2RS_p \geq \frac{SR_1^2}{2R},
\]
this yields inequality (2.3). Clearly, the condition of the equality in (2.3) is the same as (2.2). □

Lemma 2.4. For any point \(P \) inside triangle \(ABC \), we have
\[
S_aR_1 + S_bR_2 + S_cR_3 \geq 4RS_p,
\]
(2.4)
with equality if and only if \(P \) is the circumcenter of the triangle \(ABC \).

Proof. Since the area of the quadrilateral is less than or equal to the half product of two diagonals, so we have
\[
S_b + S_c \leq \frac{1}{2}aR_1, \quad S_c + S_a \leq \frac{1}{2}bR_2, \quad S_a + S_b \leq \frac{1}{2}cR_3,
\]
(2.5)
with equalities if and only if \(PA \perp BC, PB \perp CA, PC \perp AB \) respectively. Adding up these inequalities and using identity \(S_a + S_b + S_c = S \), we obtain
\[
aR_1 + bR_2 + cR_3 \geq 4S.
\]
(2.6)
Equality holds if and only if \(P \) is the orthocenter of \(\triangle ABC \).

Applying inequality (2.6) to the pedal triangle \(\triangle DEF \) (see Figure 1), we get
\[
EF \cdot r_1 + FD \cdot r_2 + DE \cdot r_3 \geq 4S_p,
\]
Observe that \(EF = \frac{ar_1}{2R} \), \(ar_1 = 2S_a \), etc., then inequality (2.4) follows at once. According to the equality condition of (2.6), we conclude easily that the equality in (2.4) holds if and only if \(P \) is the circumcenter of the triangle \(ABC \). □

Remark 2.1. Inequality (2.4) can also be proven easily by using Lemma 2.2 and the identity (1.2).

Lemma 2.5. Suppose that \(P \) is any point in the plane of the triangle \(ABC \). Then
\[
aR_1^2 + bR_2^2 + cR_3^2 \geq abc,
\]
(2.7)
with equality holds if and only if \(P \) is the incenter of \(\triangle ABC \).

Inequality (2.7) is given first by M. K. Lamkin (see [3]). The author [11] generalized its equivalent form:
\[
R_1^2 \sin A + R_2^2 \sin B + R_3^2 \sin C \geq 2S
\]
(2.8)
to the polygon. I proved the following result: For any polygon $A_1A_2\cdots A_n$ and an arbitrary point P
\[
\sum_{i=1}^{n} PA_i^2 \sin A_i \geq 2F, \tag{2.9}
\]
where F is the area of the polygon. Later, the author further generalized inequality (2.9) into the case involving two arbitrary points P, Q (see [12]):
\[
\sum_{i=1}^{n} PA_i \cdot QA_i \sin A_i \geq 2F. \tag{2.10}
\]

Lemma 2.6. For any point P inside triangle ABC, we have
\[
\frac{R_1^2 + R_2^2 + R_3^2}{r_1 + r_2 + r_3} \geq 2R, \tag{2.11}
\]
with equality if and only if $\triangle ABC$ is equilateral and P is its center.

Inequality (2.11) was first posed by the author, and it was first proved by Xiao-Guang Chu and Zhen-Gang Xiao [13]. Xue-Zhi Yang gave a simple proof in his book [14, P15]. We introduce a brief sketch of his proof as follows:

Applying the Cosine Law, one gets easily
\[
4S^2 R_1^2 = b^2 c^2 (r_2^2 + r_3^2) + bcr_2r_3(b^2 + c^2 - a^2). \tag{2.12}
\]
Then we use $abc = 4SR$ and the identity:
\[
ar_1 + br_2 + cr_3 = 2S, \tag{2.13}
\]
we obtain
\[
4S^2 (\sum R_1^2 - 2R \sum r_1) = \sum [b^2 c^2 (r_2^2 + r_3^2) + bcr_2r_3(b^2 + c^2 - a^2)] - abc \sum ar_1 \sum r_1. \tag{2.14}
\]
where \sum denotes cyclic sums. From this we can obtain the identity:
\[
4S^2 (\sum R_1^2 - 2R \sum r_1) = \sum bcr_2r_3(b - c)^2 + \frac{1}{2} \sum a [c(r_3 + r_1) - b(r_1 + r_2)]^2, \tag{2.15}
\]
which implies inequality (2.11).

3. The proofs of the Theorems

3.1. The proof of Theorem 1.1

Proof. We multiply both sides of inequality (2.3) by S_aR_1, then
\[
\frac{S_a R_3^3}{2R} + \frac{2RS_p S_a R_1}{S} \leq S_a R_1^2.
\]
Analogously, we have

\[
\frac{S_b R_2^3}{2R} + \frac{2RS_p S_b R_2}{S} \leq S_b R_2^2, \quad \frac{S_c R_3^3}{2R} + \frac{2RS_p S_c R_3}{S} \leq S_c R_3^2.
\]

By adding up three inequalities and then using identity (1.2) one has

\[
\frac{S_a R_1^3 + S_b R_2^3 + S_c R_3^3}{2R} + \frac{2RS_p}{S}(S_a R_1 + S_b R_2 + S_c R_3) \leq 4R^2 S_p.
\]

So, it follows from Lemma 2.4 that

\[
\frac{S_a R_1^3 + S_b R_2^3 + S_c R_3^3}{2R} + \frac{8R^2 S_p^2}{S} \leq 4R^2 S_p,
\]

Namely

\[
S_a R_1^3 + S_b R_2^3 + S_c R_3^3 \leq 8R^3 \left(S_p - \frac{2S_p^2}{S} \right) = S R^3 - \frac{(S - 4S_p)^2 R^3}{S} \leq S R^3.
\]

This completes the proof of (1.5). According to the conditions of equality (2.3) and (1.3), we conclude that the equality in (1.5) occurs if and only if \(P \) is the circumcenter of the triangle \(ABC \). \(\square \)

Remark 3.1. By applying the inequality of Theorem 1.1 and the weighted power mean inequality, we can get the following generalization of inequality (1.5):

\[
S_a R_1^k + S_b R_2^k + S_c R_3^k \leq S R^k, \quad (3.1)
\]

where \(0 < k \leq 3 \). In addition, by using Radon inequality, we can prove that if \(k < 0 \) then (3.1) holds inversely.

3.2. The proof of Theorem 1.2

Proof. From Lemma 2.3 and Lemma 2.5, we have

\[
aR_1 + bR_2 + cR_3 \geq \frac{1}{2R}(aR_1^2 + bR_2^2 + cR_3^2) + \frac{2RS_p}{S}(a + b + c) \\
\geq \frac{abc}{2R} + \frac{2RS_p}{S}(a + b + c).
\]

Since \(abc = 4SR, a + b + c = 2s \), it follows that

\[
aR_1 + bR_2 + cR_3 \geq 2S + \frac{4R}{r} S_p.
\]

(3.2)
Equality occurs if and only if the point P coincide with the circumcenter and the incenter of $\triangle ABC$. This means that $\triangle ABC$ is equilateral and P is its center.

From (3.2) we have

\[
\frac{aR_1 + bR_2 + cR_3}{8RS_p} \geq \frac{S}{4RS_p} + \frac{1}{2r}.
\]

As

\[
r_p = \frac{4RS_p}{aR_1 + bR_2 + cR_3},
\]

we get

\[
\frac{1}{2r_p} \geq \frac{S}{4RS_p} + \frac{1}{2r}.
\]

Hence, the inequality (1.7) follows immediately from (3.4) and (1.3). □

3.3. The proof of Theorem 1.3

Proof. First, by adding up the inequality of Lemma 2.3 and its analogues we get

\[
R_1 + R_2 + R_3 \geq \frac{R_1^2 + R_2^2 + R_3^2}{2R} + \frac{6RS_p}{S}.
\]

Form inequality (2.6) and identity (24), we know (2.6) is equivalent to

\[
\frac{S_p}{S} \geq \frac{r_p}{R},
\]

with equality as in (2.6). Therefore, the inequality (1.8) of Theorem 1.3 follows immediately from (3.5), (3.6) and (2.11). Clearly equality holds in (1.8) if and only if $\triangle ABC$ is equilateral and P is its center. □

REMARK 3.2. From inequality (3.5) and the following identity (we omit its proof)

\[
\frac{R_1^2 + R_2^2 + R_3^2}{2R} + \frac{6RS_p}{S} = r_1 \left(\frac{b}{c} + \frac{c}{b} \right) + r_2 \left(\frac{c}{a} + \frac{a}{c} \right) + r_3 \left(\frac{a}{b} + \frac{b}{a} \right),
\]

we get

\[
R_1 + R_2 + R_3 \geq r_1 \left(\frac{b}{c} + \frac{c}{b} \right) + r_2 \left(\frac{c}{a} + \frac{a}{c} \right) + r_3 \left(\frac{a}{b} + \frac{b}{a} \right).
\]

Further, we have the following famous Erdős-Mordell inequality (see [5]–[10]):

\[
R_1 + R_2 + R_3 \geq 2(r_1 + r_2 + r_3).
\]

Recently, the author gave this new proof in [15].
4. Several conjectures and problems

Euler inequality in the triangle is well known, it states that

\[R \geq 2r. \] \hspace{1cm} (4.1)

From this we consider the stronger inequality of Theorem 1.2. After being checked by the computer, we pose the following stronger conjecture:

Conjecture 1. For any arbitrary interior point \(P \), we have

\[\frac{1}{2r_p} \geq \frac{1}{\sqrt{2Rr}} + \frac{1}{2r}. \] \hspace{1cm} (4.2)

From (1.7) and the arithmetic-geometric mean inequality, it is easy to prove:

\[8r_p \leq R + 2r. \] \hspace{1cm} (4.3)

For this inequality, we have the following unsolved problem:

Problem 1. Find the maximum value \(k \) such that the inequality

\[2(k + 2)r_p \leq R + kr \] \hspace{1cm} (4.4)

is valid for arbitrary interior point \(P \) of \(\triangle ABC \).

Remark 4.1. From Euler inequality (4.1) we see that the inequality which takes the maximum value \(k \) is the strongest in all inequalities whose type is as (4.4). With the help of the computer, the author finds the maximum value \(k \) is about 7.88 ···.

Next, we denote the circumradius of the pedal triangle \(DEF \) by \(R_p \), note that \(R_p \geq 2r_p \), we first suppose

\[R_p + 6r_p \leq R + 2r, \] \hspace{1cm} (4.5)

which is stronger than the inequality (4.3). Further the following with one parameter conjecture is posed:

Conjecture 2. If real number \(k \) satisfies 1.8 \(\leq k \leq 7.8 \), then the inequality

\[R_p + 2kr_p \leq R + (k - 1)r \] \hspace{1cm} (4.6)

holds for an arbitrary interior point \(P \) of \(\triangle ABC \).

Also, we can put forward the following problem:

Problem 2. Find the maximum and the minimum value of \(k \) such that the inequality (4.6) holds for an arbitrary interior point \(P \) of \(\triangle ABC \).
When \(k = 2 \), inequality (4.6) becomes

\[
R_p + 4r_p \leq R + r. \tag{4.7}
\]

This inequality has not yet been proved. The author thinks it has the following exponential generalization:

Conjecture 3. If \(k \geq \frac{3}{4} \) is a real number, then the following inequality

\[
R^k_p + (4r_p)^k \leq R^k + r^k \tag{4.8}
\]

holds for an arbitrary interior point \(P \) of \(\triangle ABC \).

Another similar difficult conjecture is

Conjecture 4. If \(k \geq \frac{1}{2} \) is a real number, then the following inequality

\[
\frac{1}{R^k_p} + \frac{1}{r^k_p} \geq \frac{1}{r^k} + \frac{4^k}{R^k} \tag{4.9}
\]

holds for an arbitrary interior point \(P \) of \(\triangle ABC \).

It is possible that the inequality similar to (4.9) holds true for Cevian triangles. So we propose the following dual conjecture:

Conjecture 5. Let \(P \) be an interior point of \(\triangle ABC \). Let \(LMN \) denotes the Cevian triangle of \(P \) respect to \(\triangle ABC \) and let \(R_q, r_q \) denote its circumradius and inradius respectively. If \(k \geq \frac{1}{2} \) is a real number, then the following inequality holds:

\[
\frac{1}{R^k_q} + \frac{1}{r^k_q} \geq \frac{1}{r^k} + \frac{4^k}{R^k}. \tag{4.10}
\]

Considering the exponential generalization of Theorem 1.3, the following conjecture is brought forward:

Conjecture 6. If \(k \) is a positive number, then the inequality:

\[
R^k_1 + R^k_2 + R^k_3 - (r^k_1 + r^k_2 + r^k_3) \geq 3 \cdot 2^k (2^k - 1) r^k_p \tag{4.11}
\]

holds for an arbitrary interior point \(P \) of \(\triangle ABC \).

Acknowledgements. The author would like to thank the referee for his observations and suggestions.
REFERENCES

(Received May 20, 2011)

Jian Liu
East China Jiaotong University
Jiangxi province Nanchang City
330013, China

e-mail: China99jian@163.com