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THE OPTIMAL CONVEX COMBINATION BOUNDS OF ARITHMETIC
AND HARMONIC MEANS IN TERMS OF POWER MEAN

WEI-FENG X1A, WALTHER JANOUS AND YU-MING CHU

(Communicated by Josip Pecaric)

Abstract. In this paper, we answer the question: What are the greatest value p = p(c) and least
value g = g(a) such that the double inequality M, (a,b) < aA(a,b)+(1—o)H(a,b) < My(a,b)
holds for any o € (0,1) and all a,b > 0? Here, M,(a,b), A(a,b), and H(a,b) are the p-th
power, arithmetic, and harmonic means of « and b, respectively

1. Introduction

For p € R the p-th power mean M,(a,b) of two positive numbers a and b is
defined by

1
PoLpP \ P
M,(a,b) = <—CH2r ) ,p#0,
p\&,
Vvab, p=0.

It is well-known that M),(a,b) is continuous and strictly increasing with respect to
p € R for fixed a and b with a # b. In the recent past, the power mean has been the sub-
ject of intensive research. In particular, many remarkable inequalities for power mean
can be found in literature [1-17]. Let A(a,b) = 452, G(a,b) = Vab, and H(a,b) = azfz
be the arithmetic, geometric, and harmonic means of two positive number a and b, re-
spectively. Then

min{a,b} _1(a,b) = H(a,b) < My(a,b) = G(a,b)

<M
< M (a,b) =A(a,b) < max{a,b}.

In [18], Alzer and Janous established the following sharp double inequality (see
also [19, p. 350]):

A(a,b) + %G(a,b) < M% (a,b)
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for all a,b > 0.

For any o € (0,1), Janous [20] found the least value ¢ and the greatest value p
such that the inequality M, (a,b) < aA(a,b)+ (1 — o)G(a,b) < My(a,b) holds for all
a,b>0.

In this paper, we answer the question: What are the greatest value p = p(a)
and least value ¢ = g(ct) such that the double inequality M,(a,b) < aA(a,b)+ (1 —
o)H(a,b) < My(a,b) holds for any o € (0,1) and all a,b > 0?

2. Main results

LEMMA 2.1. For e € (0,1) and g(t) = (30— 4)1>* —20t*>* ' — at>* 2 4+ o> +
20t +4 —30 we have

(1)If 3 <o <1, then g(t) >0 whenever t € (1,0);

(2)If0< o < %, then g(t) <0 whenever t € (0,1).

Proof. Let h(t) =17"2%g" (1), then simple computations lead to

g(1)=0, 2.1)

g'(1)=0, 2.2)

g'(1) = 20020 — 1) (Bor— 4)** 2 — 2020t — 1) (200 — 2)12% 3
—o(200—2)(200—3)12* 4 420,

g"(1)=0, 2.3)

g"(1) = 20200 — 1) (20— 2) (3ot — 4)?* 2 — 2020 — 1) (200 — 2) (2t — 3)r2* 4
—ot(200—2) (200 —3) (200 — 4)12% 73,

h(1) = g"(1) = 160(ct— 1) (a—%), 2.4)

7(0) = —Sar(o— 1) (oc— %) (@—2), 2.5)
H(t)=4aRo—1)20—2)B3a—4)t—20(20—1)2a—2)(20.—3),

(1) =320(ax—1) (a—%) (a—%), (2.6)

H(0) = —16a (a—%) (—1) (a—%) 2.7)
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and . A
(1) =48 (a—§>(a—l)<a—§>. (2.8)
(O If % <o <1andre(1,),then (2.4), (2.6) and (2.8) lead to
h(1) >0, (2.9)
H(1)>0 (2.10)
and
1() > 0. @11

From (2.1)-(2.3) and (2.9)—(2.11) we clearly see that g(r) > 0.
QIfo<a< % and 7 € (0,1), then from (2.4)—(2.8) we know that

(1) >0, (2.12)
h(0) > 0, (2.13)
H(1) <0, (2.14)
1 (0) >0 (2.15)

and K/ (¢) is strictly decreasing in (0,1).

From (2.14) and (2.15) together with the monotonicity of 4’(¢) in (0,1) we clearly
see that there exists A; € (0,1), such that #'(z) > 0 for t € (0,A;) and /() < 0 for
t € (A1, 1), hence h(r) is strictly increasing in (0,A;) and strictly decreasing in (4, 1).
From (2.12), (2.13) and the monotonicity of 4(r) we know that i(r) > 0 for ¢ € (0,1).
Now g(#) < 0 follows from (2.1)—(2.3) and h(z) > 0 for r € (0,1).

THEOREM 2.1. Inequality 0A(a,b)+ (1 — a)H(a,b) = Maq—1(a,b) holds for
any o € (0,1) and all a,b > 0, with equality if and only if a = b, and the constant
20— 1 cannot be improved.

Proof. If a= b, then we clearly see that aA(a,b)+ (1 —a)H (a,b) = Mrq—1(a,b) =

If a # b, then we divide the proof into three cases.

Case 1. If a0 = %7 then simple computation leads to

1 1 a+b ab
SA(@ D)+ 5H(a,b) = Mo(a,h) = ==+ —=— Vab

_ (Va-vp)*
" 4ty

Case 2. If % < o < 1, then we assume that ¢« > b >0 and 1t = % > 1. Elementary
computation yields

oA(a,b)+ (1 —a)H(a,b) — May—1(a,b)

1
o+ 1)+ (4—2a)r <1+12a1)2a_f

=0 2(1+1) 2

(2.16)
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Let
1
ﬂg:mgwﬂ+u+@—zm4—mgu4yd _“%u+ﬂWU
log?2

-+2;%_1—Jog2, 2.17)

then
£ = (Ba—4)1?* — 20?7 — o?* 2 fat? + 20t +4 - 30 2.18)

- (t+ D) (21 D2+ 1)+ (4 —2a)1] '

and

f(1)=o0. (2.19)

From (2.16)—(2.19) and Lemma 2.1(1) we know that otA(a,b) + (1 — ot)H (a,b) >
MZOC—I ((1, b) .

Case 3.1f 0 < o < , then we assume that 0 < a < b and t = ¢ € (0,1). From
(2.16)—(2.19) and Lemma 2.1(2) we clearly see that oA(a,b) + (1 — o)H(a,b) >
MZOC—I ((1, b) .

Next, we prove that M1 (a,b) is the best possible lower power mean bound for
the sum aA(a,b)+ (1 —a)H(a,b).

Let p>20—1,¢>0 and

gt)=aA(l,0)+ (1 —a)H(1,1) = My(1,1). (2.20)

Then simple computations lead to

g(1) =0, (2.21)
¢(1)=0 (2.22)

and
g%U:—Blg?19<o. (2.23)

Inequality (2.23) and the continuity of g”(¢) imply that there exists 6 > 0 such
that

g"(r) <0 (2.24)

forall 7 € [1,1+6).
From (2.24) we know that g'(r) is strictly decreasing in [1,1+ §], then (2.22)
leads to the conclusion that

gt) <0 (2.25)
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forall 7 € (1,1+6].
Therefore, 0tA(1,1) + (1 —a)H(1,1) < M,(1,t) for r € (1,1 + 6] follows from
(2.20) and (2.21) together with (2.25).

LEMMA 2.2. If o € (0,1), then (1 —2a)logor+ (2 —2)log2 < 0.

Proof. Let f(o) = (1 —20)logor+ (200 —2)log?2, then

f(1)=0, (2.26)
flla) = —210ga+é+210g2—2, (2.27)
f(1)=2log2—1>0 (2.28)
and
/! _ _% _ L
fle) ==~ — <0, (2.29)

From (2.26)-(2.29) we clearly see that f(o) < 0 for o € (0,1).

LEMMA 2.3. If ¢ € (0,1), p 710g£0g1iga and

g(t) = Bo— 4™ —20uP — P + o + 201 +4 - 3ax,
then there exists 79 € (0,1), such that g() <0 for 7 € (0,19) and g(¢) >0 for ¢ € (19, 1).

Proof. From 0 < p < 1 and Lemma 2.2 together with elementary computations
we have

g(1)=0, (2.30)
lim g(r) = (2.31)

)= Ba—4)(p+1)f —2apt’ ' —a(p— 1)’ +2at +2a,

g’ 1)=—[(1 —20)]loga+ (2o —2)1log2| < 0 2.32
( ) log2 IOgOC[( )Og ( )Og ]< ’ ( )
lim ¢'(t) = +oo 2.33
t10+g() ) ( )

g"(t) = Ba—4)(p+1)pt" ' —2ap(p— 1" > —a(p—1)(p—2)1" > +2a,
¢"(1)=—4p(p+1-20a)

4p
= [(1-20)] 20—2)log2] < 0 2.34
Tog2 _Toga | ~ 2@)loga+(2a—2)log2] < (2.34)

and
g"(t)=1"*Ba—4)(p+1)p(p—1)*—2ap(p—1)(p—2)t—a(p—1)(p—2)(p—3)].

Since 3ot —4)(p+ )p(p—1) > 0 and A = 2ap(p — 1)(p —2)]> + 43 —
4)(p+1)p(p—1)*(p—2)(p—3) =4ap(p—1)*(p—2)[4(1—a)p(2—p)+9(1 — ) +
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3] <0, hence g"”'(r) > 0 and g"(¢) is strictly increasing in (0,1). From (2.34) and the
monotonicity of g”(z) we know that g"(r) < 0 for z € (0,1), hence g'(¢) is strictly
decreasing in (0,1). Then from (2.32) and (2.33) together with the monotonicity of
g'(¢t) in (0,1) we know that there exists A € (0,1), such that g’(z) > 0 for € (0,1)
and g'(r) <0 for ¢ € (A,1), which implies that g(¢) is strictly increasing in (0,A) and
strictly decreasing in (4, 1). Now, from (2.30) and (2.31) together with the monotonic-
ity of g(r) in (0,1) we clearly see that there exists 7y € (0, 1) such that g(r) < 0 for
1 €(0,70) and g(r) > 0 for 7 € (19,1).

THEOREM 2.2. Inequality 0tA(a,b)+ (1 —a)H(a,b) <M 12 (a,b) holds for

Tog2 logat

any o € (0,1) and all a,b > 0, with equality ifand only if a =b,and M 12 (a,b)

is the best possible upper power mean bound for the sum 0A(a,b)+ (1 — o)H(a,b).

Proof. If a = b, then we clearly see that

OCA(Cl,b) + (1 — (X)H(a,b) =M 1 (a,b) =a.

Tog2-Toga
If a # b, then we assume that b > a > 0. Let p = % and t = % € (0,1),
then
oA(a,b)+ (1 —a)H(a,b) —My(a,b)
24 (4 P\ 7
., a(1+t2()1++(;1) 2a)t_<14;t ) ] 239
Let

) = 10g[a(1+t2)+(4—2a)t}—log(l—i-t)—%log(l—l-t”)—l- (%4) log2,  (2.36)

then

J(1)=f(0)=0 (2.37)
and

(3o — 4Pt —20tP — P + ot + 20t +4 -3

) = t+1)(P+ D)ol +12)+ (4 —2a)]

(2.38)

Lemma 2.3 and (2.38) imply that there exists #y € (0, 1), such that f(z) is strictly
decreasing in (0,#) and f(¢) is strictly increasing in (¢, 1). Then the monotonicity of
f(t) in (0,1) and (2.37) imply that f(r) <O for 7 € (0,1). Now from (2.35) and (2.36)
we clearly see that oA (a,b) + (1 — o)H (a,b) < MI log2 (a,b).

og2—loga

Next, we prove the that M 152 (a,b) is the best possible upper power mean
log2—loga

bound for the sum aA(a,b)+ (1 —o)H(a,b).
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Forany 0 < & < p, let 0 <t < 1, making use of the Taylor expansion we have
oA(Lt)+(1—o)H(1,t) —M,_(1,1)
20 ot (4 — 2000t + 0] — 2(1+1)(1 +17~€) e
2T (141)
(-27% —2)+o(tP%)

= . (2.39)
2" e (141)

It is not difficult to verify that
o027 > 2. (2.40)

From (2.39) and (2.40) we know that for any 0 < € < p, there exists § = (g, ) >

0, such that aA(1,7) 4+ (1 —a)H(1,1) > M,_¢(1,1) for t € (0,6).
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