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ON DIAZ–METCALF AND KLAMKIN–MCLENAGHAN

TYPE OPERATOR INEQUALITIES

MAREK NIEZGODA

(Communicated by Yuki Seo)

Abstract. In this note, a result of M. S. Moslehian, R. Nakamoto and Y. Seo [Electron. J. Linear
Algebra, 22 (2011) 179–190] on Diaz-Metcalf and Klamkin-McLenaghan type inequalities for
positive definite operators is extended to operators having accretive transforms.

1. Introduction and summary

Throughout for a complexHilbert space (H,〈·, ·〉) , we denote by B(H) the algebra
of all bounded linear operators on H with the identity operator I on H .

For positive definite operators A and B on H , the geometric mean of A and B is
defined by

A�B = A1/2(A−1/2BA−1/2)1/2A1/2 (1)

(see [7]).
Recently, M. S. Moslehian, R. Nakamoto and Y. Seo [10, Theorem 2.1, part (i)]

proved, among other results, the following:
Let H and K be complex Hilbert spaces. Let A,B ∈ B(H) be positive definite

operators and Φ : B(H) → B(K) be a positive linear map. If

m2A � B � M2A for some positive real numbers m < M , (2)

then the following inequalities hold:

(i) operator Diaz-Metcalf (D-M) type inequality:

MmΦ(A)+ Φ(B) � (M +m) Φ(A�B), (3)

(ii) operator Klamkin-McLenaghan (K-L) type inequality:

Φ(A�B)−1/2Φ(B)Φ(A�B)−1/2−Φ(A�B)1/2Φ(A)−1Φ(A�B)1/2 (4)

� (
√

M−√
m)2I.

(Here and in the sequel, Φ(C)p means (Φ(C))p for an operator C and expo-
nent p .)
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Also, M. S. Moslehian, R. Nakamoto and Y. Seo [10, Theorem 2.1, part (ii)]
showed that if

m2
1I � A � M2

1 I and m2
2I � B � M2

2 I

for some positive numbers m1 < M1 and m2 < M2 , then the following inequalities hold

(iii) operator Diaz-Metcalf (D-M) type inequality:

M2m2

M1m1
Φ(A)+ Φ(B) �

(
M2

m1
+

m2

M1

)
Φ(A�B), (5)

(iv) operator Shisha-Mond (S-M) type inequality:

Φ(A�B)−1/2Φ(B)Φ(A�B)−1/2−Φ(A�B)1/2Φ(A)−1Φ(A�B)1/2 (6)

�
(√

M2

m1
−

√
m2

M1

)2

I.

In light of (1) and (2), the positive operator Z = (A−1/2BA−1/2)1/2 with mI � Z �
MI for positive scalars m,M , plays a key role in inequalities (3)–(4).

In this paper, our purpose is to extend (3)–(4) by using some other Z ’s.

In Section 2, we generalize (3)–(4) by employing an operator Z ∈ B(H) such that
Z∗Z = A−1/2BA−1/2 and

Re(Z−mI)∗(MI−Z) � 0 (7)

for some complex scalars m,M ∈ C . The condition (7) says that the transform (Z −
mI)∗(MI −Z) of Z is accretive [4, 5]. (See [2, 3, 4, 5, 6, 9, 10, 11, 12, 13, 14] for
applications of (7) in deriving inequalities.) In Theorem 2.1 we show that the accretivity
is equivalent to an operator D-M type inequality and to a preliminary version of K-
L inequality. In our approach we use complex scalars m and M and arbitrary (not
necessarily Hermitian) operators Z . A special case of Theorem 2.1 for positive scalars
m and M is demonstrated in Corollary 2.2.

In Section 3, we present further generalizations of (3)–(4). Here we replace the
map A−1/2(·)A−1/2 by an arbitrary invertible strictly positive map Ψ having strictly
positive inverse Ψ−1 . Moreover, in place of (7) we apply the condition

Re(Z−mW)∗(MW −Z) � 0 (8)

with Ψ(A) = W ∗W and Ψ(B) = Z∗Z (see Theorem 3.1).

Finally, in Corollary 3.3 we give a specialization of Theorem 3.1 for positive
scalars m and M .
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2. Accretive operators and D-M and K-L type inequalities

For operators X ,Y ∈ B(H) , we write Y � X (resp., Y < X ) if X −Y is positive
semidefinite (resp., positive definite).

An operator C ∈ B(H) is said to be accretive (resp., strictly accretive) if Re(C) �
0 (resp., Re (C) > 0), where the symbol Re(C) stands for 1

2 (C+C∗) , and C∗ ∈ B(H)
is the adjoint of C in the sense that 〈Cx,y〉 = 〈x,C∗y〉 for all x,y ∈ H [4, p. 2753].

For an operator Z ∈ B(H) and scalars m,M ∈ C , we denote

Cm,M(Z) = (Z−mI)∗(MI−Z) (9)

(see [4, p. 2752]). It follows that

Cm,M(Z) is accretive iff Re〈h,(Z−mI)∗(MI−Z)h〉 � 0 for all h ∈ H (10)

(see [11, 12]). Hereafter Rez = 1
2(z+ z) stands for the realis of a complex number z .

For scalars m,M ∈ C such that Re(M +m) �= 0, we define

αm,M =
M +m

|Re(M +m)| . (11)

For positive definite operators A,B ∈ B(H) and an operator Z ∈ B(H) satisfying

Z∗Z = A−1/2BA−1/2, (12)

we denote
A�ZB = A1/2ZA1/2 (13)

(see [14, p. 3]).
We now discuss properties of the binary operation �Z . It is easily seen that A�ZB =

A�B whenever Z > 0. Thus �Z reduces to the geometric mean � for positive definite
Z .

It is evident that A�ZB strongly depends on Z satisfying (12). For instance, ob-
serve that (12) is fulfilled for Z = U(A−1/2BA−1/2)1/2 with unitary U ∈ B(H) . In
consequence,

A�ZB = A1/2U(A−1/2BA−1/2)1/2A1/2. (14)

Clearly, if A and U commute then A�ZB = UA�B .
If B = A or B = A−1 then (14) gives A�ZA = A1/2UA1/2 and A�ZA−1 = A1/2UA−1/2 ,

respectively.
So, in general, A�ZB is not positive definite for A,B > 0. Therefore A�ZB is not a

”mean” in the usual meaning.
It is known that

A�B � M +m

2
√

Mm
Re(A�ZB)

whenever 0 < m � M and Cm,M(Z) is accretive (see [14, Theorem 2.1]).
We return to definitions. For α ∈ C , we introduce

Gα ,Z(A,B) = Re (αA�ZB). (15)
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It follows that Gαm,M ,Z(A,B) = A�B whenever Z > 0 with (12) and M +m is positive.
Let H and K be complex Hilbert spaces. A linear map Φ : B(H) → B(K) is

said to be positive if 0 � Φ(X) whenever 0 � X ∈ B(H) . If in addition 0 < Φ(X) for
0 < X ∈ B(H) , then Φ is said to be strictly positive.

In the forthcoming theorem we show the equivalency between the accretivity of the
transform Cm,M(Z) satisfying (12) and inequalities of Diaz-Metcalf and pre- Klamkin-
McLenaghan’s type. This theorem is motivated by [6, Theorem 2], [10, Theorem 2.1],
[12, Theorem 1.1, Proposition 2.1] and [14, Theorem 2.1].

THEOREM 2.1. Let H be a complex Hilbert space. Let A,B ∈ B(H) be positive
definite operators and m,M ∈ C be scalars with Re(mM) > 0 and Re(M +m) �= 0 .
Let Z ∈ B(H) satisfy Z∗Z = A−1/2BA−1/2 .

The following three statements (i)–(iii) are equivalent:

(i) The operator Cm,M(Z) is accretive.

(ii) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the following Diaz-Metcalf type inequality holds

Re(mM)Φ(A)+ Φ(B) � Φ
(
Re (M +mA�ZB)

)
. (16)

(iii) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , and for the operator

G = Re (αm,MA�ZB) with αm,M =
M +m

|Re(M +m)| , (17)

the operator Φ(G) ∈ B(K) is positive definite, and the following pre-Klamkin-
McLenaghan type inequality holds

Φ(G)−1/2Φ(B)Φ(G)−1/2−Φ(G)1/2Φ(A)−1Φ(G)1/2 (18)

�
(
|Re(M +m)|−2

√
Re (mM)

)
I−

(√
Re(mM)X1/2−X−1/2

)2
,

where X = Φ(G)−1/2Φ(A)Φ(G)−1/2.

In consequence, each of the equivalent statements (i)–(iii) implies the following
Klamkin-McLenaghan type inequality.

(iv) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K ,

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (19)

�
(
|Re (M +m)|−2

√
Re (mM)

)
I,

where G is defined by (17).
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Proof. (i) ⇒ (ii). In a similar manner as in the proof of [14, Theorem 2.1], one
can get the following Diaz-Metcalf type inequality

Re(mM)A+B � Re(M +mA�ZB). (20)

Now, it is obvious that (20) gives (16), as required.
(ii) ⇒ (iii). Applying (16) for K = H and Φ = the identity on H , we obtain (20).

By pre- and post-multiplying both sides of inequality (20) by A−1/2 , we get

Re(mM) I + Z∗Z � Re(M +mZ). (21)

However Re(mM) > 0, so we may easily deduce

0 < Re(mM) I + Z∗Z.

This and (21) directly imply that the operator M +mZ is strictly accretive, i.e.,

0 < Re(M +mZ). (22)

Fix any complex Hilbert space K and any strictly positive linear map Φ : B(H)→
B(K) . From (22) we get

0 < Φ(A1/2Re(M +mZ)A1/2) = Φ(Re (M +mA1/2ZA1/2)).

Thus we have
0 < Φ(Re (M +mA�ZB)) = |Re (M +m)|Φ(G). (23)

Because 0 < |Re (M +m)| , we obtain

0 < Φ(G), (24)

completing proof of the first part of (iii).
It follows from (16) and (23) that

Φ(B) � |Re(M +m)|Φ(G)−Re(mM)Φ(A). (25)

By pre- and post-multiplying both sides of the inequality (25) by Φ(G)−1/2 , we get

Φ(G)−1/2Φ(B)Φ(G)−1/2 (26)

� |Re(M +m)|I−Re(mM)Φ(G)−1/2Φ(A)Φ(G)−1/2.

Denoting

L = Φ(G)−1/2Φ(B)Φ(G)−1/2−Φ(G)1/2Φ(A)−1Φ(G)1/2, (27)

we may rewrite (26) in the form

L � |Re(M +m)|I−Re(mM)X −X−1, (28)
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where X = Φ(G)−1/2Φ(A)Φ(G)−1/2 .
We find that

Re(mM)X +X−1 =
(√

Re (mM)X1/2−X−1/2
)2

+2
√

Re(mM)I.

Combining this and (28) gives

L �
(
|Re (M +m)|−2

√
Re (mM)

)
I−

(√
Re(mM)X1/2−X−1/2

)2
. (29)

By making use of (27) and (29) we obtain (18).
This completes the proof of the implication (ii) ⇒ (iii).
As the proof of implications (i) ⇒ (ii) ⇒ (iii) can be easily reversed, we obtain

the validity of implications (iii) ⇒ (ii) ⇒ (i).
The implication (iii) ⇒ (iv) is obvious. �
The next result is a direct consequence of Theorem 2.1 for positive scalars m and

M .

COROLLARY 2.2. Under the hypotheses of Theorem 2.1, if in addition m and M
are positive then the following three statements (i’)–(iii’) are equivalent:

(i’) The operator Cm,M(Z) is accretive.

(ii’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the following Diaz-Metcalf type inequality holds

mM Φ(A)+ Φ(B) � (M +m) Φ(Re(A�ZB)) . (30)

(iii’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the operator Φ(G) ∈ B(K) is positive definite, and the following pre-
Klamkin-McLenaghan type inequality holds

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (31)

�
(√

M−√
m

)2
I−

(√
mMX1/2−X−1/2

)2
,

where G = Re(A�ZB) and X = Φ(G)−1/2Φ(A)Φ(G)−1/2 .

In consequence, each of the equivalent statements (i’)–(iii’) implies the following
Klamkin-McLenaghan type inequality.

(iv’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K ,

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (32)

�
(√

M−√
m

)2
I ,

where G = Re(A�ZB) .
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3. Further generalizations of D-M and K-L inequalities

For operators Z,W ∈ B(H) and scalars m,M ∈ C , we denote

Cm,M(Z,W ) = (Z−mW)∗(MW −Z). (33)

THEOREM 3.1. Let H be a complex Hilbert space. Let A,B ∈ B(H) be positive
definite operators and m,M ∈ C be scalars with Re(mM) > 0 and Re(M +m) �= 0 .
Assume Ψ : B(H) → B(H) is an invertible linear operator such that Ψ and Ψ−1 are
strictly positive linear maps.

If W,Z ∈ B(H) are linear operators satisfying Ψ(A) = W ∗W and Ψ(B) = Z∗Z ,
then the following three statements (i)–(iii) are equivalent:

(i) The operator Cm,M(Z,W ) is accretive.

(ii) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the following Diaz-Metcalf type inequality holds

Re (mM)Φ(A)+ Φ(B) � Φ
(
Ψ−1(Re (M +mW ∗Z))

)
. (34)

(iii) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , and for the operator

G = Ψ−1Re (αm,M W ∗Z) with αm,M =
M +m

|Re (M +m)| , (35)

the operator Φ(G) ∈ B(K) is positive definite, and the following pre-Klamkin-
McLenaghan type inequality holds

Φ(G)−1/2Φ(B)Φ(G)−1/2−Φ(G)1/2Φ(A)−1Φ(G)1/2 (36)

�
(
|Re(M +m)|−2

√
Re (mM)

)
I−

(√
Re(mM)X1/2−X−1/2

)2
,

where X = Φ(G)−1/2Φ(A)Φ(G)−1/2 .

In consequence, each of the equivalent statements (i)–(iii) implies the following
Klamkin-McLenaghan type inequality.

(iv) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K ,

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (37)

�
(
|Re (M +m)|−2

√
Re (mM)

)
I,

where G is defined by (35).

Proof. Equivalences (i) ⇔ (ii) ⇔ (iii) can be easily proved by an analogous
method as in the proof of Theorem 2.1. �
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REMARK 3.2. The case of Theorem 3.1 for Ψ = A−1/2(·)A−1/2 and W = I (the
identity operator on H ) leads to Theorem 2.1. In this context, inequalities (34), (36)
and (37) reduce to (16), (18) and (19), respectively, because Ψ−1 = A1/2(·)A1/2 and

G = Ψ−1Re (αm,M W ∗Z) = A1/2Re(αm,MZ)A1/2 = Re(αm,MA�ZB).

By making use of Theorem 3.1 for positive scalars m and M we obtain

COROLLARY 3.3. Under the hypotheses of Theorem 3.1, if in addition m and M
are positive then the following three statements (i’)–(iii’) are equivalent:

(i’) The operator Cm,M(Z,W ) is accretive.

(ii’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the following Diaz-Metcalf type inequality holds

mMΦ(A)+ Φ(B) � (M +m)Φ
(
Ψ−1Re (W ∗Z)

)
. (38)

(iii’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K , the operator Φ(G) ∈ B(K) is positive definite, and the following pre-
Klamkin-McLenaghan type inequality holds

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (39)

�
(√

M−√
m

)2
I−

(√
mMX1/2−X−1/2

)2
,

where G = Ψ−1Re (W ∗Z) and X = Φ(G)−1/2Φ(A)Φ(G)−1/2 .

In consequence, each of the equivalent statements (i’)-(iii’) implies the following
Klamkin-McLenaghan type inequality.

(iv’) For any strictly positive linear map Φ : B(H) → B(K) with a complex Hilbert
space K ,

Φ(G)−1/2Φ(B)Φ(G)−1/2 −Φ(G)1/2Φ(A)−1Φ(G)1/2 (40)

�
(√

M−√
m

)2
I,

where G = Ψ−1Re (W ∗Z) .
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