A PRIORI BOUNDS FOR ELLIPTIC OPERATORS IN WEIGHTED SOBOLEV SPACES

SERENA BOCCIA, MARIA SALVATO AND MARIA TRANSIRICO

(Communicated by D. Žubrinić)

Abstract. This paper is concerning with the study of a class of weight functions and their properties. As an application, we prove some a priori bounds for a class of uniformly elliptic second order linear differential operators in weighted Sobolev spaces.

1. Introduction

Let \(\Omega \) be an open subset of \(\mathbb{R}^n \) (not necessarily bounded), \(n \geq 3 \). Assign in \(\Omega \) the uniformly elliptic second order linear differential operator

\[
L = - \sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i} + a. \tag{1.1}
\]

The aim of this paper is to investigate about a new class of weight functions (introduced in [15]) and to obtain some a priori estimates for the operator \(L \) in weighted Sobolev spaces.

In particular, we are interested in the study of the functions \(m : \Omega \rightarrow \mathbb{R}_+ \) such that

\[
\sup_{x,y \in \Omega, |x-y| < d} \frac{m(x)}{m(y)} < +\infty, \tag{1.2}
\]

with \(d \in \mathbb{R}_+ \). Typical examples of such functions are:

\[
m(x) = e^{t|x|}, \quad m(x) = (1 + |x|^2)^t, \quad x \in \Omega, t \in \mathbb{R}.
\]

Then we study the multiplication operator

\[
u \mapsto gu \tag{1.3}
\]

defined in a weighted Sobolev space and which takes values in a weighted Lebesgue space. We give conditions on \(g \) and \(\Omega \) so that the operator defined by (1.3) is bounded and other ones in order to get its compactness.

Keywords and phrases: Weight functions, weighted Sobolev spaces, elliptic operators, a priori bounds.
As an application, we obtain some a priori estimates for the operator L. We recall that when Ω is bounded, the problem of determining a priori bounds has been investigated by several authors under various hypotheses on the leading coefficients. It is worth to mention the results proved in [10], [7], [8], [16], [17], where the coefficients a_{ij} are required to be discontinuous. If the open set Ω is unbounded, a priori bounds are established in [12], [2] with analogous assumptions to those required in [10], while in [6], [3], [4], under similar hypotheses asked in [7], [8], the above estimates are obtained. In this paper, we extend some results of [7], [8] to a weighted case.

Actually, assuming that the coefficients a_{ij} are locally VMO and “close” at infinity to certain functions e_{ij} of class VMO, and supposing that the lower – order coefficients verify suitable regularity hypotheses and have a certain behaviour at the infinity, we get the following a priori bound:

$$||u||_{W^{2,p}_s(\Omega)} \leq c \left(||Lu||_{L^p(F)} + ||u||_{L^p(\Omega)} \right) \quad \forall u \in W^{2,p}_s(\Omega) \cap W^{1,p}_{\infty}(\Omega),$$

where $s \in \mathbb{R}$, Ω is sufficiently regular, $W^{2,p}_s(\Omega), W^{1,p}_s(\Omega)$ and $L^p_\infty(\Omega)$ are weighted Sobolev spaces in which the weight functions verify (1.2), $c \in \mathbb{R}_+$ is independent of u, and Ω_1 is a bounded open subset of Ω.

As a consequence of the above estimate we can say that the operator L has closed range and finite – dimensional kernel.

We wish to stress that an analogous estimate has been obtained in [5], in a different situation. Indeed, in [5] the open set Ω has singular boundary and the coefficients of the operator L are singular near a subset of $\partial \Omega$. Hence, in [5] the weight function goes to zero on such subset of $\partial \Omega$ and then also the weighted Sobolev spaces are different with respect to those considered in this paper.

2. Notation and function spaces

Let G be any Lebesgue measurable subset of \mathbb{R}^n and $\Sigma(G)$ the collection of all Lebesgue measurable subsets of G. Let $F \in \Sigma(G)$ and $|F|$ denote the Lebesgue measure of F. Let χ_F be the characteristic function of F and $\mathcal{D}(F)$ the class of restrictions to F of functions $\zeta \in C_0^\infty(\mathbb{R}^n)$ with $\overline{F} \cap \text{supp} \zeta \subseteq F$. If $X(F)$ is a space of functions defined on F, $X_{\text{loc}}(F)$ denotes the class of all functions $g : F \to \mathbb{R}$ such that $\zeta g \in X(F)$ for any $\zeta \in \mathcal{D}(F)$. Finally, for any $x \in \mathbb{R}^n$ and $r \in \mathbb{R}_+$, we put $B(x,r) = \{ y \in \mathbb{R}^n : |y-x| < r \}$, $B_r = B(0,r)$ and $F(x,r) = F \cap B(x,r)$. We now recall the definitions of the function spaces in which the coefficients of the operator are chosen. Indeed, if Ω has the property

$$|\Omega(x,r)| \geq A r^n \quad \forall x \in \Omega, \quad \forall r \in [0,1],$$

where A is a positive constant independent of x and r, then we can consider the space $\text{BMO}(\Omega, \tau)$ ($\tau \in \mathbb{R}_+$) of functions $g \in L^{1}_{\text{loc}}(\Omega)$ such that

$$[g]_{\text{BMO}(\Omega, \tau)} = \sup_{r \in [0,\tau]} \frac{1}{\Omega(x,r)} \int_{\Omega(x,r)} |g - \int_{\Omega(x,r)} g| < +\infty,$$
with
\[\int_{\Omega(x,r)} g = \left| \Omega(x,r) \right|^{-1} \int_{\Omega(x,r)} g. \]

If \(g \in BMO(\Omega) = BMO(\Omega, \tau_A) \), and
\[\tau_A = \sup \left\{ \tau \in \mathbb{R}_+ : \sup_{x \in \Omega} \frac{r^n}{\left| \Omega(x,r) \right|} \leq \frac{1}{A} \right\}, \]
we say that \(g \in VMO(\Omega) \) if \([g]_{BMO(\Omega,\tau)} \to 0 \) for \(\tau \to 0^+ \). A function
\[\eta[g] : [0,1] \longrightarrow \mathbb{R}_+ \]
is called a modulus of continuity of \(g \) in \(VMO(\Omega) \) if
\[[g]_{BMO(\Omega,\tau)} \leq \eta[g](\tau) \ \forall \tau \in [0,1], \lim_{\tau \to 0^+} \eta[g](\tau) = 0. \]

For \(t \in [1, +\infty[\) and \(\lambda \in [0,n[\), \(M^{t,\lambda}(\Omega) \) denotes the set of all functions \(g \) in \(L^t_{loc}(\bar{\Omega}) \) endowed with the following norm:
\[\|g\|_{M^{t,\lambda}(\Omega)} = \sup_{r \in [0,1]} \| r^{-\lambda/t} g \|_{L^t(\Omega(x,r))} < +\infty. \] (2.2)

Then we define \(\tilde{M}^{t,\lambda}(\Omega) \) as the closure of \(L^\infty(\Omega) \) in \(M^{t,\lambda}(\Omega) \) and \(M_0^{t,\lambda}(\Omega) \) as the closure of \(C_0^\infty(\Omega) \) in \(M^{t,\lambda}(\Omega) \). In particular, we put \(M^t(\Omega) = M^{t,0}(\Omega), M_0^t(\Omega) = \tilde{M}^{t,0}(\Omega) \) and \(M_0^t(\Omega) = M_0^0(\Omega) \). Recall that for a function \(g \in M^{t,\lambda}(\Omega) \) the following characterization holds:
\[g \in M^{t,\lambda}(\Omega) \iff \lim_{\tau \to 0^+} p_g(\tau) = 0 \] (2.3)
where
\[p_g(\tau) = \sup_{E \subset \Omega} \| \chi_E g \|_{M^{t,\lambda}(\Omega)}, \quad \tau \in \mathbb{R}_+. \]
Thus the modulus of continuity of \(g \in M^{t,\lambda}(\Omega) \) is a function
\[\tilde{\sigma}[g] : [0,1] \longrightarrow \mathbb{R}_+ \]
such that
\[p_g(\tau) \leq \tilde{\sigma}[g](\tau) \ \forall \tau \in [0,1], \lim_{\tau \to 0^+} \tilde{\sigma}[g](\tau) = 0. \]

Furthermore, if \(g \in M^{t,\lambda}(\Omega) \) then
\[g \in M_0^{t,\lambda}(\Omega) \iff \lim_{\tau \to 0^+} \left(p_g(\tau) + \|(1 - \xi_{1/\tau})g\|_{M^{t,\lambda}(\Omega)} \right) = 0 \] (2.4)
where \(\xi_r, \ r \in \mathbb{R}_+ \), is a function in \(C_0^\infty(\mathbb{R}^n) \) such that
\[0 \leq \xi_r \leq 1, \quad \xi_r|_{B_r} = 1, \ \text{supp} \xi_r \subset B_{2r}. \]
Thus the modulus of continuity of \(g \in M^t_\lambda(\Omega) \) is a function
\[
\sigma_o[g] : [0,1] \longrightarrow \mathbb{R}_+
\]
such that
\[
p_g(\tau) + \| (1 - \zeta_{1/\tau}) g \|_{M^t_\lambda(\Omega)} \leq \sigma_o[g](\tau) \quad \forall \tau \in [0,1], \quad \lim_{\tau \to 0^+} \sigma_o[g](\tau) = 0.
\]
A more detailed account of properties of the above defined function spaces can be found in [11], [13] and [14].

3. Weight functions

Let \(\Omega \) be an open subset of \(\mathbb{R}^n \), \(d \in \mathbb{R}_+ \) and \(G_d(\Omega) \) the set of all measurable functions \(m : \Omega \rightarrow \mathbb{R}_+ \) such that
\[
\sup_{x,y \in \Omega, |x-y| < d} \frac{m(x)}{m(y)} < +\infty.
\]
(3.1)

It is easy to verify that \(m \in G_d(\Omega) \) if and only if there exists \(\gamma \in \mathbb{R}_+ \) such that
\[
\gamma^{-1} m(y) \leq m(x) \leq \gamma m(y) \quad \forall y \in \Omega, \quad \forall x \in \Omega(y,d),
\]
(3.2)
where \(\gamma \in \mathbb{R}_+ \) is independent of \(x \) and \(y \).

Hence from (3.2) we get
\[
m, m^{-1} \in L^{\infty}_{\text{loc}}(\Omega).
\]
(3.3)

Let \(G(\Omega) \) be the class of weight functions defined as follows:
\[
G(\Omega) = \bigcup_{d \in \mathbb{R}_+} G_d(\Omega).
\]

Hence, if \(m \in G(\Omega) \) then:
\[
m^s \in G(\Omega), \quad \lambda m \in G(\Omega) \quad \forall s \in \mathbb{R}, \forall \lambda \in \mathbb{R}_+.
\]

Lemma 3.1. Let \(m \) be a positive function defined on \(\Omega \). If \(\log m \in \text{Lip}(\Omega) \) then \(m \in G(\Omega) \).

Proof. By the hypothesis, there is a constant \(L \in \mathbb{R}_+ \) such that for each \(x,y \in \Omega \)
\[
|\log m(x) - \log m(y)| \leq L|x-y|.
\]
(3.4)
For \(x,y \in \Omega \) such that \(|x-y| < d \) \((d \in \mathbb{R}_+)\), from (3.4) we have
\[
\left| \log \frac{m(x)}{m(y)} \right| \leq Ld \quad \forall y \in \Omega, \quad \forall x \in \Omega(y,d),
\]
and then the claimed implication. \(\square \)
Examples of functions in $G(\Omega)$ are:

$$m(x) = e^{|x|}, \quad m(x) = (1 + |x|^2)^t, \quad x \in \Omega, \, t \in \mathbb{R}.$$

Lemma 3.2. If $m \in G(\Omega)$ and Ω has the cone property, then there exists a function $\sigma \in G(\Omega) \cap C^\infty(\Omega)$ such that

$$c_1 m(x) \leq \sigma(x) \leq c_2 m(x) \quad \forall x \in \Omega,$$

$$\sup_{x \in \Omega} \frac{\partial^\alpha \sigma(x)}{\sigma(x)} < +\infty \quad \forall \alpha \in \mathbb{N}_0^n,$$

where $c_1, c_2 \in \mathbb{R}_+$ are dependent only on n, Ω, m.

Proof. Since $m \in G(\Omega)$ then there exists a positive number d such that $m \in G_d(\Omega)$. Assume $g \in C^\infty(\mathbb{R}^n)$ such that $g \geq 0$, $g|_{B_1^+} = 1$, $\text{supp} \, g \subset B_1$ and

$$\sigma : x \in \Omega \rightarrow \int_\Omega m(y) g\left(\frac{x - y}{d}\right) \, dy.$$

Since

$$\sigma(x) = \int_{\Omega(x,d)} m(y) g\left(\frac{x - y}{d}\right) \, dy \quad \forall x \in \Omega,$$

using (3.2), it follows (3.5). Thus $\sigma \in G_d(\Omega)$.

Again by (3.2), for all $\alpha \in \mathbb{N}_0^n$ and $x \in \Omega$, we have:

$$|\partial^\alpha \sigma(x)| \leq \gamma m(x) d^{-|\alpha|} \int_{\Omega(x,d)} |g^{(|\alpha|)}\left(\frac{x - y}{d}\right)| \, dy \leq c_3 m(x),$$

where c_3 depends on n, Ω, m, α, and then (3.6) follows. \square

Lemma 3.3. If Ω has the property that there are $r_0 \in \mathbb{R}_+$ and $x_0 \in \Omega \setminus B_{r_0}$ such that for every $x \in \Omega \setminus \overline{B_{r_0}} \subset \Omega$, then for any $m \in G(\Omega)$ and for every $x \in \Omega$,

$$c_0^{-1} e^{-c|x|} \leq m(x) \leq c_0 e^{c|x|},$$

where c and c_0 depend only on n, Ω and m.

Proof. Fix $x \in \Omega$. If $x \in \Omega \setminus B_{r_0}$ then $\overline{x_0 \Omega} \subset \Omega$ and by Lagrange’s theorem, using (3.6), we have

$$|\log \sigma(x) - \log \sigma(x_0)| \leq c|x - x_0|,$$

where $c \in \mathbb{R}_+$ depends on n, Ω, m. So, by an easy computation via (3.2), we have the result. Otherwise, if $x \in \Omega \cap B_{r_0}$, the result is obtained by (3.3). \square
If \(m \in G(\Omega), \ k \in \mathbb{N}_0, \ 1 \leq p < +\infty \) and \(s \in \mathbb{R} \), let \(W_s^{k,p}(\Omega) \) be the space of distributions \(u \) on \(\Omega \) such that \(m^s \partial^\alpha u \in L^p(\Omega) \) for \(|\alpha| \leq k \), equipped with the norm
\[
\|u\|_{W_s^{k,p}(\Omega)} = \sum_{|\alpha| \leq k} \|m^s \partial^\alpha u\|_{L^p(\Omega)}.
\]
(3.8)
Moreover, denote by \(\overset{\diamond}{W}_s^{k,p}(\Omega) \) the closure of \(C_0^\infty(\Omega) \) in \(W_s^{k,p}(\Omega) \) and put \(\overset{\diamond}{W}_s^{0,p}(\Omega) = L^p_s(\Omega) \).

From (3.6), by induction, we can deduce the following property of the function \(\sigma \) defined in Lemma 3.2:
\[
\sup_{x \in \Omega} \frac{|\partial^\alpha \sigma^s(x)|}{\sigma^s(x)} < +\infty \quad \forall \alpha \in \mathbb{N}_0^n, \quad \forall s \in \mathbb{R}.
\]
(3.9)
Now, by (3.9), we can easily deduce the following.

Lemma 3.4. Let \(k \in \mathbb{N}_0, \ 1 \leq p < +\infty \) and \(s \in \mathbb{R} \). If \(\Omega \) has the cone property, \(m \in G(\Omega) \) and \(\sigma \) is the function defined in Lemma 3.2, then the map
\[
\sigma^s u
\]
defines a topological isomorphism from \(W_s^{k,p}(\Omega) \) to \(W^{k,p}(\Omega) \) and from \(\overset{\diamond}{W}_s^{k,p}(\Omega) \) to \(\overset{\diamond}{W}^{k,p}(\Omega) \).

A more detailed account of properties of the above defined spaces can be found, for instance, in [15].

4. Some embedding results

Let \(m \) be a function of class \(G(\Omega) \). We consider the following condition:

\((h_0) \) \(\Omega \) has the cone property, \(p \in [1, +\infty[, s \in \mathbb{R}, k, t \) are numbers such that:
\[
k \in \mathbb{N}, \ \ t \geq p, \ t \geq \frac{n}{k}, \ t > p \text{ if } p = \frac{n}{k}, \ g \in \mathcal{M}'(\Omega).
\]

By Theorem 3.1 of [9] we easily obtain the following.

Theorem 4.1. If the assumption \((h_0) \) holds, then for any \(u \in W_s^{k,p}(\Omega) \) we have \(gu \in L^p_s(\Omega) \) and
\[
\|gu\|_{L^p_s(\Omega)} \leq c \|g\|_{\mathcal{M}'(\Omega)} \|u\|_{W_s^{k,p}(\Omega)},
\]
with \(c \) dependent only on \(\Omega, n, k, p \) and \(t \).

Corollary 4.2. If the assumption \((h_0) \) holds and \(g \in \mathcal{M}'(\Omega) \), then for any \(\varepsilon \in \mathbb{R}_+ \) there exists a constant \(c(\varepsilon) \in \mathbb{R}_+ \) such that
\[
\|gu\|_{L^p_s(\Omega)} \leq \varepsilon \|u\|_{W_s^{k,p}(\Omega)} + c(\varepsilon) \|u\|_{L^p_s(\Omega)} \quad \forall u \in W_s^{k,p}(\Omega),
\]
(4.2)
where \(c(\varepsilon) \) depends only on \(\varepsilon, \Omega, n, k, p, t, \sigma[g] \).
Proof. Fix $\varepsilon > 0$ and let c be the constant in (4.1). Since $g \in M_0^\prime(\Omega)$, there exists $g_\varepsilon \in L^\infty(\Omega)$ such that $\|g - g_\varepsilon\|_{M_0^\prime(\Omega)} < \frac{\varepsilon}{c}$. By Theorem 4.1

$$\|gu\|_{L^p_s(\Omega)} \leq c \|g - g_\varepsilon\|_{M_0^\prime(\Omega)} \|u\|_{W_s^{k,p}(\Omega)} + \|g_\varepsilon\|_{L^\infty(\Omega)} \|u\|_{L^p_s(\Omega)}$$

for any u in $W_s^{k,p}(\Omega)$, and then the result follows. \(\square\)

Corollary 4.3. If the assumption (h_0) holds and $g \in M_0^\prime(\Omega)$, then for any $\varepsilon \in \mathbb{R}_+$ there exist a constant $c(\varepsilon) \in \mathbb{R}_+$ and a bounded open subset $\Omega_\varepsilon \subset \subset \Omega$ with the cone property such that

$$\|gu\|_{L^p_s(\Omega)} \leq \varepsilon \|u\|_{W_s^{k,p}(\Omega)} + c(\varepsilon) \|u\|_{L^p_s(\Omega_\varepsilon)} \quad \forall u \in W_s^{k,p}(\Omega), \quad (4.3)$$

where $c(\varepsilon)$ and Ω_ε depend only on $\varepsilon, \Omega, n, k, p, m, s, t, \sigma_0[g]$.

Proof. Fix $\varepsilon > 0$ and let c be the constant in (4.1). Since $g \in M_0^\prime(\Omega)$, there exists $g_\varepsilon \in C_0^\infty(\Omega)$ such that $\|g - g_\varepsilon\|_{M_0^\prime(\Omega)} < \frac{\varepsilon}{c}$. Let Ω_ε be a bounded open subset of Ω, with the cone property, such that $\text{supp } g_\varepsilon \subset \subset \Omega_\varepsilon$, hence by Theorem 4.1 and (3.3), it follows that

$$\|gu\|_{L^p_s(\Omega)} \leq c \|g - g_\varepsilon\|_{M_0^\prime(\Omega)} \|u\|_{W_s^{k,p}(\Omega)} + \|g_\varepsilon u\|_{L^p_s(\Omega_\varepsilon)}$$

$$\leq \varepsilon \|u\|_{W_s^{k,p}(\Omega)} + \|g_\varepsilon\|_{L^\infty(\Omega_\varepsilon)} \|u\|_{L^p_s(\Omega_\varepsilon)} \quad (4.4)$$

for any u in $W_s^{k,p}(\Omega)$, and then we have the result. \(\square\)

Theorem 4.4. If the assumption (h_0) holds and $g \in M_0^\prime(\Omega)$, then the operator

$$u \in W_s^{k,p}(\Omega) \rightarrow gu \in L^p_s(\Omega) \quad (4.5)$$

is compact.

Proof. Let $(u_n)_{n \in \mathbb{N}}$ be a sequence of functions which weakly converges to zero in $W_s^{k,p}(\Omega)$. Therefore there exists $b \in \mathbb{R}_+$ such that $\|u_n\|_{W_s^{k,p}(\Omega)} \leq b$ for every $n \in \mathbb{N}$.

For $\varepsilon > 0$, from Corollary 4.3, there exist $c(\varepsilon) \in \mathbb{R}_+$ and a bounded open subset $\Omega_\varepsilon \subset \subset \Omega$ with the cone property such that

$$\|gu_n\|_{L^p_s(\Omega)} \leq \frac{\varepsilon}{b} \|u_n\|_{W_s^{k,p}(\Omega)} + c(\varepsilon) \|u_n\|_{L^p_s(\Omega_\varepsilon)} \quad \forall n \in \mathbb{N}. \quad (4.6)$$

Since $W_s^{k,p}(\Omega) \subset W^{k,p}(\Omega_\varepsilon)$, we obtain the result from a well-known compact embedding theorem. \(\square\)
5. A priori estimates

Assume that Ω is an unbounded open subset of $\mathbb{R}^n, n \geq 3,$ with the uniform $C^{1,1}$ regularity property, $p \in]1, +\infty[\text{ and } s \in \mathbb{R}$.

Consider in Ω the differential operator

$$L = -\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j} + \sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i} + a,$$ \hspace{1cm} (5.1)

with the following conditions on the coefficients:

\begin{equation}
\begin{aligned}
(a) & \quad a_{ij} = a_{ji} \in L^\infty(\Omega) \cap VMO_{loc}(\Omega), \ i, j = 1, \ldots, n, \\
(b) & \quad \exists \nu > 0 : \sum_{i,j=1}^{n} a_{ij} \xi_i \xi_j \geq \nu |\xi|^2 \text{ a.e. in } \Omega, \forall \xi \in \mathbb{R}^n, \\
(c) & \quad g \in L^\infty(\Omega), \ \lim_{r \to +\infty} \sum_{i,j=1}^{n} |e_{ij} - g a_{ij}|_{L^\infty(\Omega \setminus B_r)} = 0, \\
(d) & \quad a_i \in \tilde{M}^t(\Omega), \ i = 1, \ldots, n, \ a \in \tilde{M}^m(\Omega),
\end{aligned}
\end{equation}

where

$$t_1 \geq p, \ t_1 \geq n, \ t_1 > p \quad \text{if} \quad p = n, \\
t_2 \geq p, \ t_2 \geq n/2, \ t_2 > p \quad \text{if} \quad p = n/2.$$

Under assumptions (a) - (d), by Theorem 4.1, the operator $L : W^{2,p}_s(\Omega) \to L^p_s(\Omega)$ is bounded.

Let

$$L_0 = -\sum_{i,j=1}^{n} a_{ij} \frac{\partial^2}{\partial x_i \partial x_j}.$$ \hspace{1cm} (5.1)

THEOREM 5.1. Suppose that assumptions $(a), (b), (c)$ and (d) hold. Then there exists $r_0, c \in \mathbb{R}_+$ such that:

$$\|u\|_{W^{2,p}_s(\Omega)} \leq c(\|Lu\|_{L^p_s(\Omega)} + \|u\|_{L^p_s(\Omega)}) \ \forall u \in W^{2,p}_s(\Omega) \cap \tilde{W}^{1,p}_s(\Omega),$$

where c depends only on $n, p, t_1, t_2, \Omega, \nu, \mu, \|a_{ij}\|_{L^\infty(\Omega)}, \|e_{ij}\|_{L^\infty(\Omega)}, \|g\|_{L^\infty(\Omega)}, \eta[\zeta_{2r_0}a_{ij}], \eta[e_{ij}], \tilde{\sigma}[a], \tilde{\sigma}[a], m, s$ and r_0 depends only on $n, p, \Omega, \mu, \|e_{ij}\|_{L^\infty(\Omega)}, \eta[e_{ij}].$
Proof. Let \(u \in W^{2,p}_s(\Omega) \cap W^{1,p}_s(\Omega) \). By Lemma 3.4 we have that

\[\sigma^s u \in W^{2,p}(\Omega) \cap W^{1,p}(\Omega). \]

Then, by Theorem 3.1 of [3], there exist \(r_0 \) and \(c_0 \in \mathbb{R}_+ \) such that

\[||\sigma^s u||_{W^{2,p}(\Omega)} \leq c_0 \left(||L_0(\sigma^s u)||_{L^p(\Omega)} + ||\sigma^s u||_{L^p(\Omega)} \right), \]

(5.2)

where \(c_0 \) depends on \(n, p, \Omega, \nu, \mu, ||a_{ij}||_{L^\infty(\Omega)}, ||e_{ij}||_{L^\infty(\Omega)}, ||g||_{L^\infty(\Omega)}, |e_{ij}|, \) \(\eta[\zeta_{a_{ij}}], \eta[e_{ij}] \), and \(r_0 \) depends on \(n, p, \Omega, \mu, ||e_{ij}||_{L^\infty(\Omega)}, |e_{ij}|. \) Since

\[L_0(\sigma^s u) = \sigma^s Lu - s(s - 1)\sigma^{s-2} \sum_{i,j=1}^n a_{ij}\sigma_{xi}\sigma_{xj}u - 2s\sigma^{s-1} \sum_{i,j=1}^n a_{ij}\sigma_{xi}u_{xj} \]

\[-s\sigma^{s-1} \sum_{i,j=1}^n a_{ij}\sigma_{xi}u_{xj} - \sigma^s \sum_{i=1}^n a_{ii}u_{xi} - \sigma^s au, \]

(5.3)

from (5.2) and (5.3) we have

\[||\sigma^s u||_{W^{2,p}(\Omega)} \leq c_1 \left(||\sigma^s Lu||_{L^p(\Omega)} + ||\sigma^s u||_{L^p(\Omega)} \right) \]

(5.4)

\[+ \sum_{i,j=1}^n ||\sigma^{s-2}\sigma_{xi}\sigma_{xj}u||_{L^p(\Omega)} + \sum_{i,j=1}^n ||\sigma^{s-1}\sigma_{xj}u_{xj}||_{L^p(\Omega)} \]

\[+ \sum_{i,j=1}^n ||\sigma^{s-1}\sigma_{xi}u_{xj}||_{L^p(\Omega)} + \sum_{i=1}^n ||\sigma^s a_{ii}u_{xi}||_{L^p(\Omega)} + ||\sigma^s au||_{L^p(\Omega)}, \]

where \(c_1 \) depends on the same parameters as \(c_0 \) and on \(s \).

By Theorem 4.7 of [1], for all \(i = 1, \ldots, n \) we have:

\[||u_{xi}||_{L^p(\Omega)} \leq c_2 \left(||u_{xx}||_{L^p(\Omega)}^{\frac{1}{2}} ||u||_{L^p(\Omega)}^{\frac{1}{2}} + ||u||_{L^p(\Omega)}^{\frac{1}{2}} \right), \]

(5.5)

where \(c_2 \) depends on \(\Omega, m, n, p. \)

Moreover, from Corollary 4.2, for any \(\varepsilon \in \mathbb{R}_+ \) and \(i = 1, \ldots, n \) there exist \(c_1(\varepsilon), c_2(\varepsilon) \in \mathbb{R}_+ \) such that:

\[||a_{ii}u_{xi}||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_s(\Omega)} + c_1(\varepsilon) ||u_{xi}||_{L^p(\Omega)}; \]

(5.6)

\[||au||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_s(\Omega)} + c_2(\varepsilon) ||u||_{L^p(\Omega)}; \]

(5.7)

where \(c_1(\varepsilon) \) depends on \(\varepsilon, \Omega, n, p, t_1, \tilde{\sigma}[a_{ii}] \) and \(c_2(\varepsilon) \) depends on \(\varepsilon, \Omega, n, p, t_2, \tilde{\sigma}[a] \).

From (5.4)–(5.7), Lemma 3.2 and Lemma 3.4, it follows

\[||u||_{W^{2,p}_s(\Omega)} \leq c_3 \left(||Lu||_{L^p(\Omega)} + ||u||_{L^p(\Omega)} + \varepsilon ||u||_{W^{2,p}_s(\Omega)} \right) \]

\[+ c_3(\varepsilon) \left(||u_{xx}||_{L^p(\Omega)}^{\frac{1}{2}} ||u||_{L^p(\Omega)}^{\frac{1}{2}} + ||u||_{L^p(\Omega)}^{\frac{1}{2}} \right), \]

(5.8)
where c_3 depends on the same parameters as c_0 and on $s, m,$ and $c_3(ε)$ depends on $ε$, $Ω, n, p, t_1, t_2, \bar{σ}[a_i], \bar{σ}[a]$.

For $ε = \frac{1}{c_3}$, from (5.8) we have

$$||u||_{W^{2,p}_s(Ω)} \leq c_4 \left(||Lu||_{L^p_2(Ω)} + ||u||_{L^p_1(Ω)} + ||u_{xx}||_{L^p_2(Ω)} + ||u||_{L^p_1(Ω)} \right), \quad (5.9)$$

where c_4 depends on the same parameters as c_3 and on $t_1, t_2, \bar{σ}[a_i], \bar{σ}[a]$.

Using Young’s inequality and (5.9), we get the result. □

Add the following assumptions on the coefficients of L and on the weight function:

$$(h_4) \begin{cases}
(e_{ij})_{x_i} \in M_0^{n-1}(Ω), \text{ with } t \in [2, n], \ i, j, h = 1, \ldots, n; \\
 a_i \in M_0^{l_1}(Ω), \ i = 1, \ldots, n; \\
a = a' + b, a' \in M_0^2(Ω), b \in L^1(Ω), b_0 = \text{ess inf}_Ω b > 0, \\
g_0 = \text{ess inf}_Ω g > 0, \\
 \lim_{|x| \to +\infty} \frac{\sigma_x + \sigma_{xx}}{\sigma} = 0,
\end{cases}$$

where t_1 and t_2 are defined as in (h_3).

Theorem 5.2. Suppose that assumptions $(h_1), (h_2)$ and (h_4) hold. Then there are a real positive number c and a bounded open $Ω_1 \subset Ω$ with the cone property such that:

$$||u||_{W^{2,p}_s(Ω)} \leq c \left(||Lu||_{L^p_2(Ω)} + ||u||_{L^p(Ω_1)} \right) \quad \forall u \in W^{2,p}_s(Ω) \cap W^{1,p}_s(Ω),$$

where c and $Ω_1$ are dependent only on $n, p, Ω, ν, μ, g_0, b_0, t, t_1, t_2, m, s, ||a_{ij}||_{L^p(Ω)}, ||e_{ij}||_{L^p(Ω)}, ||g||_{L^p(Ω)}, ||b||_{L^p(Ω)}, \eta[ζ_2 b_{ij}], \sigma_0[(e_{ij})_x], \sigma_0[a_1], \sigma_0[a']$.

Proof. Let $u \in W^{2,p}_s(Ω) \cap W^{1,p}_s(Ω)$. By Lemma 3.4 we have that

$$\sigma^su \in W^{2,p}(Ω) \cap W^{1,p}(Ω).$$

Applying Theorem 3.3 of [4] to the operator $L_0 + b$, we have that there exist a real number $c_0 \in \mathbb{R}_+$ and an open bounded subset $Ω_0 \subset Ω$ with the cone property such that

$$||\sigma^su||_{W^{2,p}(Ω)} \leq c_0 \left(||(L_0 + b)(\sigma^su)||_{L^p(Ω)} + ||\sigma^su||_{L^p(Ω_0)} \right),$$

where c_0 and $Ω_0$ are dependent on $n, p, Ω, ν, μ, g_0, b_0, t, ||a_{ij}||_{L^p(Ω)}, ||e_{ij}||_{L^p(Ω)}, ||g||_{L^p(Ω)}, ||b||_{L^p(Ω)}, \eta[ζ_2 b_{ij}], \sigma_0[(e_{ij})_x], \sigma_0[a_1], \sigma_0[a']$.
Proceeding as in the proof of Theorem 5.1, we have
\[
||u||_{W^{s,p}_x(\Omega)} \leq c_1 \left(||Lu||_{L^p(\Omega)} + ||u||_{L^p(\Omega)} + \sum_{i,j=1}^n ||\sigma^{-2}_{x_i} \sigma_{x_j} u||_{L^p(\Omega)} \right) \\
+ \sum_{i,j=1}^n ||\sigma^{-1}_{x_i} u_{x_j}||_{L^p(\Omega)} + \sum_{i,j=1}^n ||\sigma^{-1}_{x_i} u_{x_j}||_{L^p(\Omega)} \\
+ \sum_{i=1}^n ||a_i u_{x_i}||_{L^p(\Omega)} + ||a'_u||_{L^p(\Omega)},
\]
where \(c_1\) depends on the same parameters as \(c_0\) and on \(m,s\).

From Corollary 4.3 and (1.6) of [11] it follows that for any \(\varepsilon \in \mathbb{R}_+\) and \(i,j = 1, \ldots, n\) there exist \(c_1(\varepsilon), c_2(\varepsilon), c_3(\varepsilon) \in \mathbb{R}_+\) and some bounded open subsets \(\Omega_1(\varepsilon) \subset \subset \Omega, \Omega_2(\varepsilon) \subset \subset \Omega, \Omega_3(\varepsilon) \subset \subset \Omega\) with the cone property such that
\[
||\sigma^{-2}_{x_i} \sigma_{x_j} u||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_1(\varepsilon) ||u||_{L^p(\Omega_1(\varepsilon))},
\]
\[
||\sigma^{-1}_{x_i} u_{x_j}||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_2(\varepsilon) ||u_{x_j}||_{L^p(\Omega_2(\varepsilon))},
\]
\[
||\sigma^{-1}_{x_i} u_{x_j}||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_3(\varepsilon) ||u||_{L^p(\Omega_3(\varepsilon))},
\]
where \(c_1(\varepsilon), c_2(\varepsilon), c_3(\varepsilon), \Omega_1(\varepsilon), \Omega_2(\varepsilon), \Omega_3(\varepsilon)\) are dependent on \(\varepsilon, \Omega, n, p, m, s\).

Using again Corollary 4.3 and Theorem 4.7 of [1] we have that there exist \(c_4(\varepsilon), c_5(\varepsilon) \in \mathbb{R}_+\) and bounded open sets \(\Omega_4(\varepsilon) \subset \subset \Omega, \Omega_5(\varepsilon) \subset \subset \Omega\) with the cone property such that:
\[
||a_i u_{x_i}||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_4(\varepsilon) ||u||_{L^p(\Omega_4(\varepsilon))}
\]
\[
\leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_4(\varepsilon) \left(||u_{x_i}||_{L^p(\Omega_4(\varepsilon))} + ||u||_{L^p(\Omega_4(\varepsilon))} \right),
\]
\[
||a'_u||_{L^p(\Omega)} \leq \varepsilon ||u||_{W^{2,p}_x(\Omega)} + c_5(\varepsilon) ||u||_{L^p(\Omega_5(\varepsilon))},
\]
where \(c_4(\varepsilon)\) and \(\Omega_4(\varepsilon)\) depend on \(\varepsilon, \Omega, n, p, m, s, t_1, \sigma_0[a_i]\), and \(c_5(\varepsilon)\) and \(\Omega_5(\varepsilon)\) depend on \(\varepsilon, \Omega, n, p, m, s, t_2, \sigma_0[a']\).

From (5.10)–(5.15) and Young’s inequality we have the result.

REFERENCES

318 S. Boccia, M. Salvato and M. Transirico

(Received April 9, 2010)