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WEIGHTED OSTROWSKI, TRAPEZOID AND
GRUSS TYPE INEQUALITIES ON TIME SCALES
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(Communicated by A. Peterson)

Abstract. In this paper we first derive a weighted Montgomery identity on time scales and then
establish weighted Ostrowski, trapezoid and Griiss type inequalities on time scales, respectively.
These results not only provide a generalization of the known results, but also give some other
interesting inequalities on time scales as special cases.

1. Introduction

The theory of calculus on time scales was initiated by Hilger [12] in 1988 in
order to unify continuous and discrete analysis, and it has a potential application in
some mathematical models of real processes and phenomena studied in economics
[2], population dynamics [3], space weather [15], physics [31] and so on. Nowa-
days many authors study the theory of certain integral inequalities on time scales (see
[6,7,8, 11,13, 16, 17, 19, 20, 21, 22, 23, 25, 28, 29, 30, 32, 35, 36, 38]).

In 1938, Ostrowski derived a formula to estimate the absolute deviation of a differ-
entiable function from its integral mean [26], the so-called Ostrowski inequality, which
can also be shown by using the Montgomery identity [24]. These two properties was
proved by Bohner and Matthews in [7] for general time scales, which unify discrete,
continuous and many other cases. By using the Montgomery identity on time scales,
they established the following Ostrowski inequality on time scales.

THEOREM 1. Let a,b,s,t €T, a<b and f: [a,b] — R be differentiable. Then

<

105 [ o] < 2ot +me.a),

where hy(-,-) is defined by Definition 8 below and M = sup }fA(t)} < oo. This in-
a<t<b
equality is sharp in the sense that the right-hand side of (1.1) cannot be replaced by a

smaller one.
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Recently, Karpuz and Ozkan [13] generalized Ostrowski’s inequality and Mont-
gomery’s identity on arbitrary time scales by the means of generalized polynomials
on time scales. By introducing a parameter, Liu, Ng6 and Chen [23] also extended a
generalization of the above inequality on time scales. Ng6 and Liu [25] gave a sharp
Griiss type inequality on time scales and then applied it to the sharp Ostrowski-Griiss
inequality on time scales. Motivated by the ideas of [7, 23, 25, 37], Tuna and Daghan
[35] studied generalizations of Ostrowski and Ostrowski-Griiss type inequality on time
scales.

More recently, Liu [ 18] established the following weighted generalization of three
point inequality with a parameter for mappings of bounded variation.

THEOREM 2. Let us have 0 < k < 1, f:[a,b] — R be a mapping of bounded

variation, g : [a,b] — [0,00) continuous and positive on (a,b) andlet h: [a,b] — R be
differentiable such that W' (t) = g(t) on |a,b]. Then

[ewdr [ g( h
Pea’ " paa’” >] }/ 8Os

— {(1 —k)f(x)+k

TR R [P
[/g i g - M40 H\b/ ke )

b
forall x € [a,b], where \/(f) denotes the total varfiation of f on the interval |a,b].
a

Motivated by the above research, the purpose of this paper is to obtain some
weighted Ostrowski, trapezoid and Griiss type inequalities with a parameter on time
scales based on a weighted Montgomery identity on time scales. These results not
only provide a generalization of the known results, but also give some other interesting
inequalities on time scales as special cases.

This paper is organized as follows. In Section 2, we briefly present the general
definitions and theorems related to the time scales calculus. The weighted Montgomery
identity, weighted Ostrowski type inequality, weighted trapezoid type and weighted
Griiss type inequality on time scales are derived in subsections 3.1, 3.2, 3.3 and 3.4,
respectively.

2. Time scales essentials
In this section we briefly introduce the time scales theory. For further details and

proofs we refer the reader to Hilger’s Ph.D. thesis [12], the books [4, 5, 14], and the
survey [1].

DEFINITION 1. A time scale T is an arbitrary nonempty closed subset of R.
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We assume throughout that T has the topology that is inherited from the standard
topology on R. It also assumed throughout that in T the interval [a,b] means the set
{t€T: a<t<b} forthepoints a < b in T. Since a time scale may not be connected,
we need the following concept of jump operators.

DEFINITION 2. For ¢t € T, we define the forward jump operator ¢ : T — T by
o(t) =inf{s € T:s>r}, while the backward jump operator p : T — T is defined by
p(t)=sup{seT: s<t}.

The jump operators ¢ and p allow the classification of points in T as follows.

DEFINITION 3. If o(t) > 1, then we say that t is right-scattered, while if p(r) <7
then we say that 7 is left-scattered. Points that are right-scattered and left-scattered at
the same time are called isolated. If o(r) =1, then ¢ is called right-dense, and if
p(t) =t then 7 is called left-dense. Points that are both right-dense and left-dense are
called dense.

DEFINITION 4. The mapping u : T — R defined by u(t) = o(t) —¢ is called
the graininess function. The set TX is defined as follows: if T has a left-scattered
maximum m, then T =T — {m}; otherwise, T4 =T.

If T=R, then u(r) =0, and when T = Z, we have u(r) = 1.

DEFINITION 5. Let f: T — R. f is called differentiable at r € TX, with (delta)
derivative f2(r) € R, if for any given £ > 0 there exists a neighborhood U of ¢ such
that

flo() = f(s) = f20)[o(t) —s]| <elo() —s|, VseU.

If T=R, then f2(r) = L andif T =7, then f2(r) = f(t+1)— f(t).

THEOREM 3. Assume f,g:T — R are differentiable at t € T*. Then the product
fg: T — R is differentiable at t with

(/8)2(1) = fA(0)g(1) + f(0(1)g™(1) = f(1)g* (1) + f2(1)g (o (1)).

DEFINITION 6. The function f: T — R is said to be rd-continuous (denote f €
Cu(T, R)), if it is continuous at all right-dense points 7 € T and its left-sided limits
exist at all left-dense points ¢ € T'.

It follows from [4, Theorem 1.74] that every rd-continuous function has an anti-
derivative.

DEFINITION 7. Let f € C,4(T,R). Then F : T — R is called the antiderivative
of f on T if it satisfies F2(t) = f(t) for any ¢ € T. In this case, we define the
A-integral of f as

/a[f(s)As:F(t)—F(a), teT.
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THEOREM 4. Let f,g be rd-continuous, a,b,c € T and o, € R. Then
(1) J; lef (6) + Bg(0)] At = ot [ f(0) A +B [, g(1)A

(2) [ f(0)Ar = = [ f(e)Ae

(3) Jo FOA = [7 fO)A + [ f(1)Ar

(4) [ F(0)g ()M = (fg)(b) = (f&)(a) — [} fA(1)g(o (1)),

THEOREM 5. If f is A-integrable on [a,b], then so is |f|,and

m’ < [(irwna

DEFINITION 8. Let & : T?> — R, k € Ny be defined by

ho(t,s) =1 forall s;reT

and then recursively by

1
th(m):/ he(z,5)AT forall 5T
S

3. Main results
In this section we first derive a weighted Montgomery identity on time scales and

then establish weighted Ostrowski, trapezoid and Griiss type inequalities on time scales,
respectively.

3.1. Weighted Montgomery identity on time scales

LEMMA 1. Let 0 < k<1, g:[a,b] — [0,0) be rd continuous and positive and
h:la,b] — R be differentiable such that h*(t) = g(t) on [a,b]. Let a,b,s,t €T, a<b
and f:|a,b] — R be differentiable. Then for all s € [a,b], we have

b
/a S(1,5) f2(s)As

={(1—k)f(t)+k
a8
~ [Cssprtotsnas G.1)

_ Jh(s) = ((1 =k)h(a) +kh(t)), a< s <t,
S(t’s)_{ — (kh(t)+ (1= K)h(b)), t < s < b. (3.2)

where
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Proof. Using item (4) of Theorem 4, we have
!
[ 1) = (1 = h(@) + k(1)) £ (5)s

= [H()— (1~ Bh(a) + Kh(0)]1(6)~ (a) — (1~ R)h(a) + ko)) a)
- [ ertotonas
and
[ 166) = (e + (1= )L 018
= [4(6) — (kh(e) + (1~ BR(B)))F(5) — () — (6h(0) + (1~ (B0
- [ st
Therefore, the equality (3.1) is proved by adding the above two identities. []

COROLLARY 1. In the case of T =R in Lemma 1, we have

b
/a S(t,5)f'(s)ds

I g()ar !

where g(t) =W (t) on |a,b] and

[ h(s) = (1= k)h(@) +kh(r)), a <s <1,
8(t,5) = {h(s) — (kh(t)+ (1 = )R(B)). 1 <5 < b.

:{(1—k)f(t)+k

[t g(t)dr [P g(t)dr b P s
ea O e dtf(b)” | swar= [“sorss)as

This is the result given in [18, equation (8)].

COROLLARY 2. In the case of T =7 in Lemma 1, we have

b—1
D S(t,)Af(s)
t—1 b—1
; g(s) ; g(s) b—1 b—1
= U= RfO) +k | fla) + 2 f 1) | ¢ X 8(s) — 3 g(s)f (s + 1),
> g(s) Y g(s) e e

S=a S=a

where g(t) =h(t+ 1) —h(z) on [a,b—1] and

_ —((1=k)h(a)+kh(t)),a<s<t—1,
8(t,5) = {h(s) k(1) + (1 — Kh(b)). t <5 <b—1.
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COROLLARY 3. Let f:]a,b)| = R, g>1, a=q™ and b= q" with m <n in
Lemma 1. Then we have

f(q"“) JiCa)
ES”] (q—1)g*

B B fq,:g(t)dqt ", qqu(l)dqt ) q
—{(1 k>f<t>+k[—f;;g(t) L ”r:g(t) ) / 2(t)dt

n

- / " o) f(ar)dgt,

m

where

<qk<t,
¢ <q"

_ [ (@) = (1 = k)h(g™) +kh(1)), 4"
S0 = { h(g*) — (kh(t) + (1 = k)h(g")), t <

COROLLARY 4. In the case of h(t) =t in Lemma 1, we have

—u _ b
(=060 = 5 [ st o [ =10 +55 [ r(otas

where
fs—((1=klat+kt),a<s<t,
S(t,s) = {s—(kH—(l—k)b): 1 <s<b.

This is the result given in [35, Lemma 1].

COROLLARY 5. In the case of T =R in Corollary 4, we have

t—a b
e a/S’S k[b—af()+b—f } b a/f

where g(t) =W (t) on |a,b] and

(1-k)

S(t,s) = s—((I=kla+kt),a<s<t,
ST s— (k4 (1—k)b), t <s < b.

COROLLARY 6. In the case of T =7 in Corollary 4, we have

1 & r—a b—t R
(1010 = 5, 3 S0906) k|22 () + {=5r0)] + 522 S 4 1),

where g(t) =h(t+ 1) —h(t) on [a,b—1] and

_[s—((1—kla+kt),a<s<t—1,
8(t,5) = {s—(kH—(l—k)b), t<s<b—1.
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COROLLARY 7. In the case of k=0 in Corollary 4, we have

=5 a/Sts As—|—b a/f (3.3)

) s—a,a<s <,
S(t’s)_{s—b,tgsgb.

where

REMARK 1. The equality (3.3) is the Montgomery identity on time scales, which
can be found in [7, Lemma 3.1] and it was also studied continuous, discrete and quan-
tum calculus cases there.

3.2. Weighted Ostrowski type inequality on time scales

THEOREM 6. Let 0 < k<1, g:[a,b] — [0,o0) be rd continuous and positive and
h:la,b] — R be differentiable such that h*(t) = g(t) on [a,b]. Let a,b,s,t €T, a<b
and f : |a,b] — R be differentiable. Then for all s € [a,b], we have

[e0ar e
a7 P ea H/g

I{(l—k)f(t)—i—k

- [ sistotsas
<m | " 1S(t.5) s, (3.4)
where S [ h(s) = ((1 —k)h(a) + kh(1)), a < s <1,
(t,5) = { h(s) — (kh(e) + (1 — R)R(B)), £ <5 < b
and

Proof. The proof of the Theorem 6 can be done easily from Lemma 1. [

COROLLARY 8. In the case of T =R in Theorem 6, we have

Jag(t)

M dt j; (t)d
Pewa T e H/g i~ [t

H(l—k)f(t)—kk

b
<M/ 1S(1,5)|ds,

where g(t) =W (t) on |[a,b],

h(s)— (L —k)h(a) +kh(t)), a<s<t,
S(t,5) = { h(s)— (kh(t) + (1 — (D)), t <5 < b
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and

M= sup |f(1)| <o

a<t<b

COROLLARY 9. In the case of T =7 in Theorem 6, we have

Se)  Te) ||
(=70 +k [ fla@) + =) | b 3 (s zg Fs+1)
el zet) |

b—1
<M Y 18(t,5)]

where g(t) =h(t+1) —h(t) on [a,b],

s _ Jh(s) = (1 —k)h(a)+kh(r)),a< s <t—1,
(”5)—{h(s)—(kh(z)+(1—k)h(b)),zgsgb—l
and

M= sup |Af(r)] <eo.

a<t<b—1

COROLLARY 10. Let f:[a,b] = R. g>1, a=q¢", and b= q" with m <n in
Theorem 6. Then,

q* 7 o(t)d, "
{(1 R0 +k [f‘f";g(”d‘f’ﬂan Lo £0 qtf(b)} } [ eta

Jmedg” " [ () dyt
- [ sstands
n—1

where
S(l S) — h(qk) (( ) ( m) +kh(l)), qm < qk <t,
D7 hlg) — (kh(0) + (1 -Dh(g), 1 < " < g"
and
_ S~ 1)
a qmiL:Eq" (g—1)g* <

COROLLARY 11. Inthe case of h(t)=t in Theorem 6, we have

fla)+ gt - 5 [ riotonas

—a
b—a

(1—k>f(>+k[

g% lha((1— K)a+ ki, @) + hae, (1 — K)a+ ko)
ha(t ke + (1— k)b) + ho(b, ke + (1 — K)b)]
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forall k €(0,1] such that (1 —k)a+kt and kt + (1 — k)b are in T, where

= o ] <=

u<t<h

COROLLARY 12. In the case of T =R in Corollary 11, we have

a

M (2k* =2k +1) [(a—1)>+ (b—1)?

=004k ;=2 @ + =2 p0)]| — 1 [t

—a
where

M= sup |f/(1)| <o

a<t<b

COROLLARY 13. In the case of T =7 in Corollary 11, we have

(=0 )+k[b Zf(“”f:;f(b)} —%aii:f(wl)
<[ (-232) s o (- 252) o (5]
where

M= sup |Af(1)] <ee.

a<t<b—1

COROLLARY 14. In the case of k=0 in Corollary 11, we have

1 b
'f(t)—b_a/a f(o(s))As| < _a[hQ(t,a)—th(Lb)L 3.5)
where
= sup ’fA ’

a<t<b

REMARK 2. Theinequality (3.5) is the Ostrowski inequality on time scales, which
can be found in [7, Theorem 3.5] and it was also studied continuous, discrete and quan-
tum calculus cases there.
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3.3. Weighted trapezoid type inequality on time scales
THEOREM 7. Let 0 < k< 1, g: [a,b] — [0,00) continuous and positive and h :

[a,b] — R be differentiable such that h®(t) = g(t) on [a,b]. Let a,b,s,t €T, a<b
and f : [a,b] — R be differentiable. Then for all s € [a,b], we have

(1=K)(f2(b) — f*(a)

)~ f@ ~ (ol
Do il f s ]/ “l
k(o)) - sto e r(a) - LD oo
M+NZ> ab (/abS(t,s) |As> At (3.6)
where
h(s)— ((1 —k)h(a) +kh(r)), a< s <t,

S(t,5) = {h(s) — (kh(t)+ (1 = K)h(b)), 1 < s < b,

and
M = sup )f )<ooandN sup )f )‘<oo.
a<t<b a<t<b

Proof. We have

e e o
+m/abg(5)f(6(s))m+ m/abS(I,s)fA(s)As (3.7)
and
(1=k)f(o(1)) (3.8)
- H o o)+ fgg; f(a(b))]

1 b
AI/ g(s ))As + g(t)At/a S(t,5) f2(0(s))As. (3.9)



WEIGHTED OSTROWSKI, TRAPEZOID AND GRUSS TYPE INEQUALITIES 391

Adding (3.7) and (3.9), we get
(L=k) (f(t)+ f(o(1)))

_ | JagAr .
= klffg(t)At (f(a)+ f(o(a)))+

1P g(t) A
I g(r)Ar

[ 46 (o) + o) as

(f(b) +f(6(b)))]

1
+ b
Ja 8()At
1

b
A A
+ oo [ S (£6)+e) s (3.10

Multiplying (3.10) by f(z), using Theorem 3 and integrating the result identity on
[a,b], we have

(1=k)(f*(b) = f*(a))
_ [f(“}g;tii /fA (/g As)At
b;’ t()iib” [ o (/g As)At

fﬁ)g(t{A(f) /abg(s) (f(a(s)+ f(0°(5))) As

o PO ([[s09 (o own)aa o

From (3.11) and using the relations

/ath(t) (/atg(S)As) At :f(b)/ahg(s)As—/ahg(t)f(c(t))At

and
[0 ([ eons)ai=—r@ [ s+ [ e
we obtain
(1-B(FB) - £(a)
1(b)~ f(@)
s (t)t+k ]/
+E(f(0(@) () ~ F(o(b)f /

' A(’)(/th,S f S—|—f o(s) )As)At

Therefore, (3.6) can be established. [
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COROLLARY 15. In the case of T =R in Theorem 7, we have

LO=1a) [0 =f@
5 e [ s

g#ﬁ)w/ah (/ab|S(t,s)|ds) dr,

(1—k)

where

and

COROLLARY 16. In the case of T =7 in Theorem 7, we have

(1=k)(f*(b) = f(a))

h—1 b1 Zg(s)f(s—i—l)
> g(s) > g(s) e

S=a S=a

n [(kl)f(b)f(a)+kf(b+1)f(a+1)] b=l

— f(q) b=l
(a1 — b+ (@) — LD o (s 2)

1
g(s) s=a

S=a

b—1
Sgag(s) t=a S=a
where
s [ h(s)—((1—k)h(a)+kh(t)),a<s<t—1,
(15) = h(s) — (kh(e) + (1 — )R(B)), t <5 <b—1
and

M= sup |Af(t)|<o and N= sup [Af(t+1)|<eoo.

a<t<b—1 a<t<b—1
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COROLLARY 17. Inthe case of h(t) =t in Theorem 7, we have

(L= k)(f2(b) ~ f*(a)

< /b K)a+ kt,a) + ha(t, (1 — K)a + k)
—|—h2(t kt—|—( —k)b) + hy(b,kt + (1 — k)b)] At

Sforall k €[0,1] such that (1 —k)a+ kt and kt + (1 — k)b are in T, where

M = sup

a<t<b

f()‘<ooandN sup ‘f ))<oo.

a<t<b

COROLLARY 18. In the case of T =R in Corollary 17, we have
1 b)— b
S0-000) - Pa@)+ k- 0= pa

2
<MT(b—a)2 (2k% —2k+1)

where

M = sup }f’(t)| < oo

a<t<b

REMARK 3. If we set k=0 in Corollary 18, we get exactly [27, Theorem 1(a)].

COROLLARY 19. In the case of T =7 in Corollary 17, we have

fb)—fa) flb+1)—
b—a Tk b—

f(b) = fla)
b—a

(L=K)(f(b) = fA(@) + | (k1)

b1
fla+ l)] zf(s"' N

Q

+k(fla+1)f(b) = f(b+1)f(a)) -

. M(M3—|— N)

[(b—a)*(2k* — 2k + 1) + k* — 4k + 2]

where
M= sup |Af(t)| <o and N= sup [Af(t+1)|<eoo.

a<t<b—1 a<t<b—1
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3.4. Weighted Griiss type inequality on time scales

THEOREM 8. Let 0 < k<1, g: [a,b] — [0,00) continuous and positive and h :
[a,b] — R be differentiable such that h®(t) = g(t) on [a,b]. Let a,b,s,t €T, a<b
and p,q: la,b] — R be differentiable. Then for all s € |a,b], we have

’Z(I—k (/ngAt></bqt tAt)
ALl Lo )
o0 |( [ so) ater+ (s o] o
_K/ q(t)At) (/ 2(t)p(o(t) At)—i—(/ p(t)At) (/abg(t)q(c(t))At)H

b
S/a (Plg(t)|+Qlp(2) (/ StsIAs)At (3.12)

where

h(s)— ((1 —k)h(a) +kh(r)), a< s <t,
S(t,5) = {h(s) — (kh(t)+ (1 = K)h(b)), 1 < s < b,

P = sup pA(t)’ <eo and Q= sup qA(t)‘ < oo,

a<t<b a<t<b
Proof. We have

Jag(s)As f, 8(s)As
1—k =—k|“4—— b
(1=k)p(z) [f:g(I)Atp Pelar B0 L )]

1 b
m/ag(spc;s /Sts SAs  (3.13)

and

fig)as o fPelns
ffga)m"() 17 () P )]

; f”gzzw [ ssratoopast

(1—k)Q(t)=—k[

1 b N
I g(t)Az/a S(t,5)q" (s)As. (3.14)
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Multiplying (3.13) by ¢(z) and (3.14) by p(z), adding and then integrating the result
from a to b, we have

i [ ([ Lo susern)o

(3.15)

From (3.15), we get

o ([fsom) ([ s
+k/b{ )| ([ ) (/tbg ) )

B S A
K/q At) (/g A’) (/p At)( 4(c ))Az)”
o ([ st ot e |
</ab<"<”/b's”|\l’ | as 1ol [ 50,510 )At
< [ eawr+ ot ([ istslas) &

This completes the proof of the inequality (3.12). [

COROLLARY 20. In the case of T =R in Theorem 8, we have

=0 ([ star) ([ atowirar)
sk [ fao) | ([ etras) o+ ([ st01as) pio)]
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oo ([ stous) e ([t a0
—K/ﬂ q(l)dt) (/ g(t)p tdt>+</ pt)dt) (/u g(t)q(t)dt)”
< [ laty+ ol ([ Ist.51as) ar

where

h(s) — (1 K)h(a) + kh(t)), a < s <1,
S(t,5) = {h(s) — (kh(t)+ (1 = K)h(b)), 1 < s < b,

P= sup |p'(t)] <eo and Q= sup |q'(1)] <ee.

a<t<b a<t<b

COROLLARY 21. In the case of T =7 in Theorem 8, we have

b—1 b—1
—k) (Zg(t)> (Zq(t)p(t)>
b—1 t—1 b-1
+k ; {fl(’) KZW)) pla)+ (Z g(S)) p(b)]
t—1 b—1
(Z g(S)) qla)+ (E g(S)) q(b)] }
b—1 b1 b1 b-1
— [(Z q(f)) (Z g(t)p(r+ 1)) + (Z p(l)) (Z g(1)q(r + 1))

b—1
ZP\q )|+ Q|p(r) <2|st>

+p(t)

where

s | h(s) = (1 =k)h(a)+kh(t)),a< s <t—1,
(t5) = {h(s) — (kh(t) + (1 —K)h(b)), t <s < b—1,

P= sup [Ap(t)|<e and Q= sup [Aq(t)| < -ee.
a<t<b—1 a<t<b—1



WEIGHTED OSTROWSKI, TRAPEZOID AND GRUSS TYPE INEQUALITIES 397

COROLLARY 22. Inthe case of h(t) =t in Theorem 8, we have

20060 ([ avron)

k[ a0 @p(@) + (0~ 0p(0)] +p0) [~ a)a(a) + (- a(®)]} &

_{<[7ﬁnm)([7MGU»N>+<[fm”N)([f“GODN)H

b
< [ (Pla)]+ QIpO]) Ia((1 = Ra+kt.a) + halr, (1 ~K)a+ )
Fho(t,kt + (1= K)b) + ho(b, kt + (1 — k)b)| At
Sforall k € [0,1] such that (1 —k)a+ kt and kt + (1 — k)b are in T, where

pA(t)| <eo and Q= sup qA(t)‘ < oo,

a<t<b

P = sup

a<t<b

COROLLARY 23. In the case of T =R in Corollary 22, we have

20060 ([ a0po)

k[ a0~ (@) + (5~ 0p(B)] 4 p0) [~ a)ala) + (6~ )a(®)]}

([ war) ([ atrar)

a—t)? —1)?
< [ Platol - elpto) (a2 ks )| LI LEZ ),

where
P= sup |p'(t)] <o and Q= sup |q'(1)] <ee.

a<t<b a<t<b

REMARK 4. If we set k =0 in Corollary 23, we get exactly [27, Theorem 2(b)].

COROLLARY 24. In the case of T =7 in Corollary 22, we have

2(1=k)( (Zq )
b—
FES g0l a)p(a) + (- 0p(6)] + p(0) [0~ algta) + (b~}
b—1 b—1 b—1 b—1
- [(Zq@) <2p<t+1>> + (zpo)) (zqml)) ‘

bil (Plg@)|+Q|p@)]) l(2k2—2k+1) (z—?)z +(2k—1) (t—#) + (b%ay] ;

t=a
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where

P= sup [Ap(t)]<e and Q= sup |Aq(t)] <-oo.

a<t<b—1 a<t<b—1
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