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REFINEMENTS AND SHARPNESS OF SOME

NEW HUYGENS TYPE INEQUALITIES
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Abstract. In the article, some Huygens inequalities involving trigonometric and hyperbolic func-
tions are refined and sharpened.

1. Introduction

The famous Huygens inequality[7] for the sine and tangent functions states that
for x ∈ (

0, π
2

)
2sinx+ tanx > 3x. (1.1)

The hyperbolic counterpart of (1.1) was established in [6] as follows: For x > 0

2sinhx+ tanhx > 3x. (1.2)

The inequalities (1.1) and (1.2) were respectively refined in [6, Theorem 2.6] as

2
sinx
x

+
tanx

x
> 2

x
sinx

+
x

tanx
> 3, 0 < x <

π
2

, (1.3)

and

2
sinhx

x
+

tanhx
x

> 2
x

sinhx
+

x
tanhx

> 3, x �= 0. (1.4)

In [4] the inequality (1.2) was improved as

2
sinhx

x
+

tanhx
x

> 3+
3
20

x4− 3
56

x6, x > 0. (1.5)

In [9], Wilker proved (
sinx
x

)2

+
tanx

x
> 2. (1.6)

and proposed that there exists a largest constant c such that(
sinx
x

)2

+
tanx

x
> 2+ cx3 tanx, (1.7)
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holds for 0 < x < π
2 .

In [8], the best constant c in (1.7) was found and it was proved that

2+
8
45

x3 tanx >

(
sinx
x

)2

+
tanx

x
> 2+

(
2
π

)4

x3 tanx, (1.8)

for 0 < x < π
2 . The constants 8

45 and
(

2
π
)4

in the inequality (1.8) are the best possible.
Recently the inequalities (1.3) and (1.4) were respectively refined in [5] as

2
sinx
x

+
tanx

x
>

sinx
x

+2
tan(x/2)

x/2
> 2

x
sinx

+
x

tanx
> 3. (1.9)

and

2
sinhx

x
+

tanhx
x

>
sinhx

x
+2

tanh(x/2)
x/2

> 2
x

sinhx
+

x
tanhx

> 3. (1.10)

Inspired by (1.8), Jiang et al. [15] first proved

3+
1
60

x3 sinx < 2
x

sinx
+

x
tanx

< 3+
8π −24

π3 x3 sinx. (1.11)

for 0 < |x| < π
2 . The constants 1

60 and 8π−24
π3 in (1.11) are the best possible.

Recently, Chen and Sándor [14] proved that

3+
3
20

x3 tanx < 2

(
sinx
x

)
+

tanx
x

< 3+
(

2
π

)4

x3 tanx.

for 0 < |x| < π
2 . The constants 3

20 and
( 2

π
)4

are the best possible.
The aim of this paper is to refine and sharpen some of the above-mentioned Huy-

gens type inequalities in (1.9) and (1.10).

2. Some Lemmas

In order to attain our aim, we need several lemmas below.

LEMMA 2.1. The Bernoulli numbers B2n for n ∈ N have the property

(−1)n−1B2n = |B2n|, (2.1)

where the Bernoulli numbers Bi for i � 0 are defined by

x
ex −1

=
∞

∑
i=0

Bi

n!
xi = 1− x

2
+

∞

∑
i=1

B2i
x2i

(2i)!
, |x| < 2π . (2.2)
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Proof. In [2, p. 16 and p. 56], it is listed that for q � 1

ζ (2q) = (−1)q−1 (2π)2q

(2q)!
B2q

2
, (2.3)

where ζ is the Riemann zeta function defined by

ζ (s) =
∞

∑
n=1

1
ns .

In [16, p.18, theorem 3.4], the following formula was given

∞

∑
n=1

1
n2q =

22q−1π2q|B2q|
(2q)!

. (2.4)

From (2.3) and (2.4), the formula (2.1) follows. �

LEMMA 2.2. [12, 13] Let B2n be the even-indexed Bernoulli numbers. Then

2(2n)!
(2π)2n

1
1−2−2n < |B2n| < 2(2n)!

(2π)2n

1
1−21−2n ,n = 1,2,3, · · · .

LEMMA 2.3. For 0 < |x| < π , we have

x
sinx

= 1+
∞

∑
n=1

2
(
22n−1−1

)|B2n|
(2n)!

x2n. (2.5)

Proof. This is an easy consequence of combining the equality

1
sinx

= cscx =
1
x

+
∞

∑
n=1

(−1)n−12
(
22n−1−1

)
B2n

(2n)!
x2n−1, |x| < π . (2.6)

see [1, p. 75, 4.3.68], with Lemma 2.1. �

LEMMA 2.4. ([1, p. 75, 4.3.70]) For 0 < |x| < π ,

cotx =
1
x
−

∞

∑
n=1

22n|B2n|
(2n)!

x2n−1. (2.7)

LEMMA 2.5. For 0 < |x| < π ,

1

sin2 x
=

1
x2 +

∞

∑
n=1

22n(2n−1)|B2n|
(2n)!

x2(n−1). (2.8)

Proof. Since
1

sin2 x
= csc2 x = − d

dx
(cotx),

the formula (2.8) follows from differentiating (2.7). �
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LEMMA 2.6. For 0 < |x| < π ,

cosx

sin2 x
=

1
x2 −

∞

∑
n=1

2(2n−1)
(
22n−1−1

)|B2n|
(2n)!

x2(n−1). (2.9)

Proof. This follows from differentiating on both sides of (2.6) and using (2.1). �

LEMMA 2.7. [17, 3, 11] Let an and bn(n = 0,1,2, · · ·) be real numbers, and let
the power series A(t) = ∑∞

n=0 antn and B(t) = ∑∞
n=0 bntn be convergent for |t| < R.

If bn > 0 for n = 0,1,2, · · · , and if an
bn

is strictly increasing (or decreasing) for n =

0,1,2, · · · , then the function A(t)
B(t) is strictly increasing (or decreasing) on (0,R) .

3. Main results

Now we are in a position to state and prove our main results.

THEOREM 1. For 0 < |x| < π
2 , we have

3+
1
40

x3 sinx <
sinx
x

+2
tanx/2
x/2

< 3+
80−24π

π4 x3 sinx. (3.1)

The constants 1
40 and 80−24π

π4 in (3.1) are the best possible.

Proof. Let

f (x) =
sinx
x +2 tanx/2

x/2 −3

x3 sinx

=
sin2 x+4(1− cosx)−3xsinx

x4 sin2 x

=
1
x4

(
1+

4

sin2 x
− 4cosx

sin2 x
− 3x

sinx

)

for x ∈ (
0, π

2

)
. By virtue of (2.5), (2.8), and (2.9), we have

f (x) =
1
x4

[
1+

4
x2 +

∞

∑
n=1

4(2n−1)22n

(2n)!
|B2n|x2n−2

− 4
x2 +

∞

∑
n=1

8
(
22n−1−1

)
(2n−1)

(2n)!
|B2n|x2n−2

−3−
∞

∑
n=1

6(22n−1)
(2n)!

|B2n|x2n

]

=
1
x4

[
∞

∑
n=1

8(2n−1)(22n−1)
(2n)!

|B2n|x2n−2−
∞

∑
n=1

6(22n−1−1)
(2n)!

|B2n|x2n−2

]
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=
1
x4

[
∞

∑
n=2

8(2n−1)(22n−1)
(2n)!

|B2n|x2n−2−
∞

∑
n=1

6(22n−1−1)
(2n)!

|B2n|x2n

]

=
1
x4

[
∞

∑
n=1

8(2n+1)(22n+2−1)
(2n)!

|B2n+2|x2n−
∞

∑
n=1

6(22n−1−1)
(2n)!

|B2n|x2n

]

=
∞

∑
n=2

[
8(2n+1)(22n+2−1)

(2n+2)!
|B2n+2|− 6(22n−1−1)

(2n)!
|B2n|

]
x2n−4.

Let an = 8(2n+1)(22n+2−1)
(2n+2)! |B2n+2|− 6(22n−1−1)

(2n)! |B2n| for n � 2.

By a simple computation, we have a2 = 1
40 .

Furthermore, when n � 3, From Lemma 2.2 one can get

an =
8(2n+1)(22n+2−1)

(2n+2)!
|B2n+2|− 6(22n−1−1)

(2n)!
|B2n|

>
8(2n+1)(22n+2−1)

(2n+2)!
2(2n+2)!
(2π)2n+2

1
1−2−2n−2

− 6(22n−1−1)
(2n)!

2(2n)!
(2π)2n

1
1−21−2n

=
2

π2n

[
8(2n+1)

π2 −3

]
> 0.

So the function f (x) is strictly increasing on
(
0, π

2

)
. Moreover, it is easy to obtain

lim
x→0+

f (x) = a2 =
1
40

and lim
x→(π/2)−

f (x) =
80−24π

π4 .

The proof of Theorem 1 is complete. �

REMARK 3.1. Since f (x) is an odd function we conclude that Theorem 1 holds
for all x which satisfy 0 < |x| < π

2 .

THEOREM 2. For x �= 0 , we have

3+
3
20

x3 tanhx < 2
sinhx

x
+

tanhx
x

< 3+
3
20

x3 sinhx. (3.2)

The constant 3
20 is the best possible.

Proof. Without loss of generality, we assume that x > 0.
We firstly prove the first inequality of (3.2).
Consider the function F(x) defined by

F(x) =
2sinhx

x + tanhx
x −3

x3 tanhx
=

sinh2x+ sinhx−3xcoshx
x4 sinhx

.
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and let
f (x) = sinh2x+ sinhx−3xcoshx and g(x) = x4 sinhx.

From the power series expansions

sinhx =
∞

∑
n=0

x2n+1

(2n+1)!
and coshx =

∞

∑
n=0

x2n

(2n)!
, (3.3)

it follows that

f (x) = sinh2x+ sinhx−3xcoshx

=
∞

∑
n=0

22n+1x2n+1

(2n+1)!
+

∞

∑
n=0

x2n+1

(2n+1)!
−

∞

∑
n=0

3x2n+1

(2n)!

=
∞

∑
n=2

(
22n+1−6n−2

)
x2n+1

(2n+1)!

�
∞

∑
n=2

anx
2n+1

and

g(x) =
∞

∑
n=0

x2n+5

(2n+1)!

=
∞

∑
n=2

4n(n−1)
(
4n2−1

)
x2n+1

(2n+1)!

�
∞

∑
n=2

bnx
2n+1.

It is easy to see that the quotient

cn =
an

bn
=

22n+1−6n−2

4n(n−1)
(
4n2−1

)
satisfies

cn+1− cn =

(
6n2−17n+1

)
4n +18n2 +23n−1

2n(2n+3)
(
4n2−1

)
(n2−1)

> 0

for n � 2. This means that the sequence cn is increasing. By Lemma 2.7, the function
F(x) is increasing on (0,∞) . Moreover, it is not difficult to obtain limx→0+ F(x) =
c2 = 3

20 . Therefore, the first inequality in (3.2) holds.
Finally, we prove the second inequality of (3.2).
Define a function G(x) by

G(x) =
2sinhx

x + tanhx
x −3

x3 sinhx
=

sinh2x+ sinhx−3xcoshx
x4 sinhxcoshx
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And let

f (x) = sinh2x+ sinhx−3xcoshx and g(x) = x4 sinhxcoshx.

By using (3.3) one get

f (x) = sinh2x+ sinhx−3xcoshx

=
∞

∑
n=0

22n+1x2n+1

(2n+1)!
+

∞

∑
n=0

x2n+1

(2n+1)!
−

∞

∑
n=0

3x2n+1

(2n)!

=
∞

∑
n=2

(
22n+1−6n−2

)
x2n+1

(2n+1)!

�
∞

∑
n=2

anx
2n+1

and

g(x) =
∞

∑
n=0

22nx2n+5

(2n+1)!

=
∞

∑
n=2

4n(n−1)
(
4n2−1

)
22n−4x2n+1

(2n+1)!

�
∞

∑
n=2

bnx
2n+1.

Let

cn =
an

bn
=

22n+1−6n−2

4n(n−1)
(
4n2−1

)
22n−4

satisfies c2 = 3
20 . Furthermore, when n � 2, by a simple computation, we have

cn+1− cn = −2[8(4n+1)4n− (18n3 +69n2 +65n+8)]
n(2n+3)

(
4n2−1

)
(n2 −1)4n

,

for n � 2.
Since

8(4n+1)4n− (18n3 +69n2 +65n+8)

> 32n2(4n+1)− (18n3+69n2 +65n+8)

= 110n3−37n2−65n−8

= 110n(n−2)2+403n(n−2)+301(n−2)+594> 0.

This means that the sequence cn is decreasing. By Lemma 2.7, the function G(x)
is decreasing on (0,+∞) . Moreover, it is not difficult to obtain limx→0+ G(x) = c2 =
3
20 .

This completes the proof of Theorem 2 . �

REMARK 3.2. Since F(x) and G(x) both are odd function, we conclude that The-
orem 2 holds for all x �= 0.
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[7] J. SÁNDOR AND M. BENCZE, On Huygens’ trigonometric inequality, RGMIA Res. Rep. Coll. 8
(2005), no. 3, Art. 14.

[8] J. S. SUMNER, A. A. JAGERS, M. VOWE, AND J. ANGLESIO, Inequalities involving trigonometric
functions, Amer. Math. Monthly 98 (1991), no. 3, 264–267.

[9] J. B. WILKER, Problem E 3306, Amer. Math. Monthly 96 (1989), no. 1, 55.
[10] S.-H. WU AND H. M. SRIVASTAVA, A further refinement of Wilker’s inequality, Integral Transforms

Spec. Funct. 19 (2008), no. 10, 757–765.
[11] S. PONNUSAMY AND M. VUORINEN, Asymptotic expansions and inequalities for hypergeometric

functions, Mathematika, 44(1997), no. 2, 278–301.
[12] C. DANIELLO, On Some Inequalities for the Bernoulli Numbers, Rend. Circ. Mat. Palermo 43(1994),

329–332.
[13] H. ALZER, Sharp bounds for the Bernoulli Numbers, Arch. Math. 74 (2000), 207–211.
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inequalities, RGMIA Research Report Collection, 15(2012), Article 11, 11 pp.
[15] WEI-DONG JIANG, QIU-MING LUO AND FENG QI, Refinements and Sharpening of some Huygens

and Wilker type inequalities, Integral Transforms Spec. Funct. (in press).
[16] W. SCHARLAU, H. OPOLKA, from Fermat to Minkowski: Lectures on the Theory of Numbers and Its

Historical Development, Springer-Verlag New York Inc., 1985.
[17] M. BIERNACKI, J. KRZYZ, On the monotonicity of certain functionals in the theory of analytic func-

tions, Ann. Univ. Mariae. Curie-Sklodowska 2 (1955), 134–145.

(Received January 23, 2012) Yun Hua
Department of Information Engineering

Weihai Vocational College
Weihai City, Shandong Province

264210, China
e-mail: xxgcxhy@163.com

Journal of Mathematical Inequalities
www.ele-math.com
jmi@ele-math.com


