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LOGARITHMIC CONVEXITY OF GINI MEANS

JIAO-LIAN ZHAO, QIU-MING LUO, BAI-NI GUO AND FENG QI

(Communicated by G. Toader)

Abstract. In the paper, alternative proofs for the monotonicity and logarithmic convexity of Gini
means and related functions are presented by using new approaches and techniques.

1. Introduction

Recall from [7] that Gini means are defined as

G(r,s;x,y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
xs + ys

xr + yr

)1/(s−r)

, r �= s;

exp

(
xr lnx+ yr lny

xr + yr

)
, r = s;

(1)

where x and y are positive variables and r and s are real variables. They are also called
sum mean values.

There has been a lot of literature such as [3, 4, 5, 6, 12, 13, 15, 16, 17, 24, 25, 26]
devoted to studying inequalities and properties of Gini means.

The aim of this paper is to provide alternative proofs for the monotonicity and
logarithmic convexity of Gini means G(r,s;x,y) and to establish some new properties
of functions involving Gini means.

Our main results can be stated as the following theorems.

THEOREM 1. Gini means G(r,s;x,y) are

1. increasing with respect to both r ∈ (−∞,∞) and s ∈ (−∞,∞);

2. logarithmically convex with respect to both r and s if (r,s) ∈ (−∞,0)×(−∞,0);

3. logarithmically concave with respect to both r and s if (r,s) ∈ (0,∞)× (0,∞) .
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THEOREM 2. Let
Hr,s;x,y(t) = G(r+ t,s+ t;x,y) (2)

and
Kr,s;x,y(t) = Hr,s;x,y(t)Hr,s;x,y(−t) (3)

for t ∈ R . Then

1. Gini means Hr,s;x,y(t) are

(a) increasing on (−∞,∞) ,

(b) logarithmically convex on
(−∞,− r+s

2

)
,

(c) logarithmically concave on
(− r+s

2 ,∞
)
;

2. The function Kr,s;x,y(t) is

(a) increasing on (−∞,0) and decreasing on (0,∞) for r+ s > 0 ,

(b) decreasing on (−∞,0) and increasing on (0,∞) for s+ r < 0 .

THEOREM 3. The function [Hr,s;x,y(t)]t is logarithmically convex

1. on
(− s+r

2 ,0
)

for s+ r > 0 ,

2. on
(
0,− s+r

2

)
for s+ r < 0 .

In next section, we will prove these theorems systematically. In the third section,
we will simply summarize and review recent developments and applications on this
topic by several remarks.

2. Proofs of theorems

In this section we pay our attentions on proving our three theorems.

Proof of Theorem 1. It is easy to see that

lnG(r,s;x,y) =

⎧⎪⎪⎨
⎪⎪⎩

1
s− r

∫ s

r

xu lnx+ yu lny
xu + yu du, r �= s,

xr lnx+ yr lny
xr + yr , r = s.

(4)

Since
d
du

[
xu lnx+ yu lny

xu + yu

]
=

xuyu(lnx− lny)2

(xu + yu)2 > 0 (5)

and
d2

du2

[
xu lnx+ yu lny

xu + yu

]
= −xuyu(xu − yu)(lnx− lny)3

(xu + yu)3 � 0, u � 0, (6)

then the integrand in (4) is increasing with respect to u ∈ (−∞,∞) , convex with respect
to u ∈ (−∞,0) , and concave with respect to u ∈ (0,∞) . Recall from [23, Lemma 1]
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that if f (t) is differentiable and increasing on an interval I then the integral arithmetic
mean of f (t) ,

φ(r,s) =

⎧⎨
⎩

1
s− r

∫ s

r
f (t)dt, r �= s,

f (r), r = s,
(7)

is also increasing with r and s on I , and that if f (t) is twice differentiable and con-
vex on I then φ(r,s) is also convex with r and s on I . Consequently, Gini means
G(r,s;x,y) with respect to both r and s are increasing on (−∞,∞) , logarithmically con-
vex if (r,s)∈ (−∞,0)×(−∞,0) , and logarithmically concave if (r,s)∈ (0,∞)×(0,∞) .
The proof of Theorem 1 is complete. �

First proof of Theorem 2. Taking the logarithm of Hr,s;x,y(t) and differentiating
consecutively yield

lnHr,s;x,y(t) =
1

s− r

[
ln

(
xs+t + ys+t)− ln

(
xr+t + yr+t)],

[
lnHr,s;x,y(t)

]′ = 1
s− r

(
xs+t lnx+ ys+t lny

xs+t + ys+t − xr+t lnx+ yr+t lny
xr+t + yr+t

)
, (8)

[
lnHr,s;x,y(t)

]′′ = 1
s− r

[
xs+tys+t(lnx− lny)2

(xs+t + ys+t)2 − xr+t yr+t(lnx− lny)2

(xr+t + yr+t)2

]
. (9)

By virtue of (5), it follows that
[
lnHr,s;x,y(t)

]′ � 0 which means that Gini means
Hr,s;x,y(t) is increasing on (−∞,∞) .

With the aid of (6), it may be obtained that the function

fx,y(u) =
xuyu(lnx− lny)2

(xu + yu)2 (10)

is increasing on (−∞,0) and decreasing on (0,∞) . Note that the function fx,y(u) is
even on (−∞,∞) .

Let
Fx,y(t) = fx,y(s+ t)− fx,y(r+ t). (11)

If s+ t > r + t > 0, that is, t > −r > −s , since fx,y(u) is decreasing on (0,∞) , then
Fx,y(t) � 0. Similarly, if r + t < s + t < 0, i.e., t < −s < −r , then Fx,y(t) � 0. If
r+ t < 0 < s+ t and 0 <−(r+ t) < s+ t , equivalently, t >− r+s

2 , since fx,y(u) is even
on (−∞,∞) and decreasing on (0,∞) , then Fx,y(t) � 0; Similarly, if t < − r+s

2 , then
Fx,y(t) � 0. This implies

[
lnHr,s;x,y(t)

]′′ � 0, t ≶ − r+ s
2

for all r,s,x,y by a recourse to symmetric properties

G(r,s;x,y) = G(s,r;x,y) = G(r,s;y,x).
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Taking the logarithm on both sides of (3) and differentiating give

[
lnKr,s;x,y(t)

]′ = H ′
r,s;x,y(t)

Hr,s;x,y(t)
− H ′

r,s;x,y(−t)
Hr,s;x,y(−t)

, (12)

where

H ′
r,s;x,y(−t) =

dHr,s;x,y(u)
du

∣∣∣∣
u=−t

.

The logarithmic convexity of Hr,s;x,y(t) implies that the function
H′

r,s;x,y
Hr,s;x,y

(t) is increasing

on
(−∞,− r+s

2

)
and decreasing on

(− r+s
2 ,0

)
. A careful computation verifies that

H ′
r,s;x,y(t)

Hr,s;x,y(t)
=

H ′
r,s;x,y(−t− (s+ r))

Hr,s;x,y(−t− (s+ r))

for t ∈ (−∞,∞) . Consequently, the function

Q(t) =
H ′

r,s;x,y(t − (s+ r)/2)
Hr,s;x,y(t − (s+ r)/2)

is increasing on (−∞,0) , decreasing on (0,∞) , and even on (−∞,∞) . Utilization of the
approach applied to the function fx,y defined by (10) yields that Q(t +(s+r))−Q(t) is
positive on

(−∞,− s+r
2

)
and negative on

(− s+r
2 ,∞

)
for s+r > 0, and that it is negative

on
(−∞,− s+r

2

)
and positive on

(− s+r
2 ,∞

)
for s+ r < 0, which is equivalent to

Q

(
t +

s+ r
2

)
−Q

(
t− s+ r

2

)
=

H ′
r,s;x,y(t)

Hr,s;x,y(t)
− H ′

r,s;x,y(t− (s+ r))
Hr,s;x,y(t− (s+ r))

(13)

being positive on (−∞,0) and negative on (0,∞) for s+ r > 0, and being negative on
(−∞,0) and positive on (0,∞) for s+ r < 0. Since

Kr,s;x,y(t) =
xyHr,s;x,y(t)

Hr,s;x,y(t− (s+ r))
, (14)

then the function in (13) equals
[
lnKr,s;x,y(t)

]′
, which implies that the function Kr,s;x,y(t)

is increasing on (−∞,0) and decreasing on (0,∞) for s+ r > 0, and it is decreasing
on (−∞,0) and increasing on (0,∞) for s+ r < 0. The proof of Theorem 2 is com-
plete. �
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Second proof of Theorem 2. Basing on the first proof of Theorem 2, the deriva-
tives (8), (9), and (12) can be rewritten as

[lnHr,s;x,y(t)]′ =
(
xsyr − xrys

)
(lnx− lny)

s− r
xtyt

(xs+t + ys+t)(xr+t + yr+t)
,

[lnHr,s;x,y(t)]′′ =
(
xsyr − xrys

)(
xs+r+2t − ys+r+2t

)
s− r

× xtyt(lnx− lny)2

(xs+t + ys+t)2(xr+t + yr+t)2 ,

[lnKr,s;x,y(t)]′ = −
(
xsyr − xrys

)(
xs+r − ys+r

)(
x2t − y2t

)
(lnx− lny)

s− r

× xtyt

(xtys + xsyt)(xt yr + xryt)(xs+t + ys+t)(xr+t + yr+t)
.

Theorem 2 is thus proved. �

Second proof of the monotonicity of Kr,s;x,y(t) . Due to homogeneity in x and y ,
we can assume that y = 1. Then we have

Kr,s;x,y(t) =
(

xr+t +1
xs+t +1

· x
r−t +1

xs−t +1

)1/(r−s)

=
[
x2r + xr(xt + x−t)+1
x2s + xs(xt + x−t)+1

]1/(r−s)

=
{

x2r + xr−s[x2s + xs(xt + x−t)+1]+1− xr+s− xr−s

x2s + xs(xt + x−t)+1

}1/(r−s)

=
[
xr−s +

(xr+s −1)(xr−s−1)
x2s + xs(xt + x−t)+1

]1/(r−s)

.

The denominator in square brackets increases for t > 0, and the numerator is positive
for (r+ s)(r− s) > 0 and negative otherwise, so the expression decreases if and only if
r+ s > 0.

The property follows from the log-convexity of H and its symmetry with respect
to − r+s

2 , as showed in [27, Theorem 2.3] and [31, Theorem 7]. �

Proof of Theorem 3. A direct calculation yields[
t lnHr,s;x,y(t)

]′′ = 2
[
lnHr,s;x,y(t)

]′ + t
[
lnHr,s;x,y(t)

]′′
. (15)

By Theorem 2, it follows that
[
lnHr,s;x,y(t)

]′
> 0 on (−∞,∞) ,

[
lnHr,s;x,y(t)

]′′
> 0

on
(−∞,− s+r

2

)
and

[
lnHr,s;x,y(t)

]′′
< 0 on

(− s+r
2 ,∞

)
. Therefore, if s + r < 0 then[

t lnHr,s;x,y(t)
]′′

> 0, and so t lnHr,s;x,y(t) is convex on
(
0,− s+r

2

)
; if s + r > 0 then[

t lnHr,s;x,y(t)
]′′

> 0, and so t lnHr,s;x,y(t) is convex on
(− s+r

2 ,0
)
. The proof of Theo-

rem 3 is complete. �
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3. Remarks

After proving our three theorems, we give several remarks on them for simply
summarizing and reviewing recent developments and applications on this topic.

REMARK 1. In this paper we provide from new viewpoints alternative proofs for
the monotonicity of Gini means G(r,s;x,y) , although other proofs have been supplied
in [7, 28], to the best of our knowledge.

REMARK 2. The log-convexity of some functions which are more general than
Gini means has been demonstrated in, for example, [28, 29, 30, 31, 32]. This can also
be deduced from Schur-convexity of Gini means, which was proved in [25] by using
the conclusion that for functions of the form

g(x)−g(y)
x− y

(16)

Schur-convexity and convexity are equivalent to each other, as showed in [14, pp. 273–
274], see also [18, p. 46, Section 4.3.1].

REMARK 3. The logarithmic convexity of Hr,s;x,y(t) for (r,s) = (1,0) have been
proved in [1], see also [31, Theorem 6]. Since the graph of lnHr,s can be obtained
from the graph of lnH1,0 by an affine change of variables, so the logarithmic convexity
of Hr,s;x,y(t) follows. This is also an alternative proof of the logarithmic convexity of
Hr,s;x,y(t) .

REMARK 4. From [27, Property 1.2 and Theorem 2.1] for a = x and b = y , the
logarithmic convexity of Hr,s;x,y(t) can also be derived. This is the last alternative proof
we find as possible as we can.

REMARK 5. Our approaches and techniques in this paper can be used to study
similar properties of extended mean values E(r,s;x,y) and other means, see, for ex-
ample, [2, 8, 11, 19, 20]. It is much worthwhile to mentioning that these have been
applied in [9, 10, 22, 33] to establish inequalities for bounding the ratio of two gamma
functions in the theory of special functions, see also [18] and plenty of references cited
therein.

REMARK 6. This paper is a slightly revised and corrected version of the preprint
[21].
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