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Abstract. In this paper, the authors study the multi-commutators T A1 ,···,Ak generalized by the
Calderón-Zygmund operator T and the (mi +1) -th remainders of Taylor series of the functions
Ai whose mi -th derivatives belong to BMO spaces for mi � 0 and i = 1,2, · · · ,k . The bound-
edness from the weighted central Morrey space Bp(w) to the weighted central BMO space
CMO(w) for these multi-commutators was derived. As corollary, the Lp -boundedness for the
multi-commutators has been obtained.

1. Introduction

Let T be a non-convolution type singular integral operator with a standard Cal-
derón-Zygmund kernel K(x,y) defined on R

n ×R
n \ {x = y} , this means that, for any

f ∈ L2(Rn) with compact support and for x �∈ supp( f ) , T f (x) =
∫
Rn K(x,y) f (y)dy ,

with

|K(x,y)| � C
|x− y|n (1.1)

and, for all 2|x− z|� |y− z| ,

|K(x,y)−K(z,y)|+ |K(y,x)−K(y,z)| � C
|x− z|ε
|y− z|n+ε , (1.2)

with some positive constants C and 0 < ε � 1. We note that, if the singular integral
operator T is bounded on L2(Rn) , then T is called a (non-convolution type) Calderón-
Zygmund operator. It’s well-known that a Calderón-Zygmund operator is bounded
on Lp(Rn) , 1 < p < ∞ , and is of weak (1,1) boundedness. The commutator of a
Calderón-Zygmund operator T and a BMO function b , [b,T ]( f ) = bT ( f )− T (b f ) ,
was first studied by Coifman, Rochberg and Weiss [2] who proved that ‖[b,T ]( f )‖Lp �
C‖b‖BMO‖ f‖Lp for all 1 < p < ∞ .

We define the following multilinear commutator generalized by the Calderón-
Zygmund operator T and the function A ,

TA( f )(x) :=
∫

Rn

Rm+1(A;x,y)
|x− y|m K(x,y) f (y)dy, (1.3)
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where Rm+1(A;x,y) denotes the (m+1)-th remainder of Taylor series of A at x about
y , more precisely,

Rm+1(A;x,y) = A(x)− ∑
|γ|�m

1
γ!

DγA(y)(x− y)γ ,

and Dγ (A)∈ BMO(Rn) for all multi-indices |γ|= m � 0. It’s clear that, in case m = 0,
TA( f ) = [A,T ]( f ) is the classical commutator mentioned above.

Since L∞ is properly contained in BMO , we see that in general the kernel of
the operator TA fails to satisfy the standard kernel estimates (1.1) and (1.2), and one
can not get the Lp -boundedness for TA from the standard Calderón-Zygmund theory.
In 2002, Lu and Yan proved in [5] that if TA is bounded on L2(Rn) with the bound
C∑|γ|=m ‖DγA‖BMO , then TA is bounded from L∞(Rn) to BMO(Rn) with the same
bound, which in turn implies that TA is bounded on Lp(Rn) for 2 � p < ∞ .

One aim of the paper is to derive the weighted CMO estimates for the operator
TA , which imply the endpoint estimates for the operator TA and so generalize the Lu-
Yan’s results above. In fact, we consider the following more general multi-commutator

T
−→
A generalized by the Calderón-Zygmund operator T and the functions A1, · · · ,Ak ,

T
−→
A ( f )(x) :=

∫
Rn

K(x,y)
k

∏
j=1

Rmj+1(Aj;x,y)
|x− y|mj

f (y)dy (1.4)

where Rmj+1(Aj;x,y) denotes the (mj + 1)-th remainder of Taylor series of Aj at x
about y , and Dγ(Aj)∈BMO(Rn) for all multi-indices |γ|= mj � 0, and j = 1,2, · · · ,k .

In particular if m1 = m2 = · · · = mk = 0, we write T
−→
A as T

−→
A

0 , i.e.

T
−→
A

0 ( f )(x) :=
∫

Rn
K(x,y)

[
k

∏
j=1

[Aj(x)−Aj(y)]

]
f (y)dy (1.5)

which was introduced by Pérez and Trujillo-González [6] in 2002 who proved that the

operator T
−→
A

0 is bounded on Lp(w) for w ∈ Ap and 1 < p < ∞ whenever all Aj ∈
BMO(Rn) . Recently in [7] the authors proved that T

−→
A

0 is bounded on central Morrey
spaces if each Aj belong to CMO spaces, j = 1,2, · · · ,k .

For the multi-indices γ = (γ1,γ2, · · · ,γn) , we will always use notations |γ| = γ1 +
γ2 + · · ·+ γn , γ! = γ1!γ2! · · ·γn! , and xγ = xγ1

1 xγ2
2 · · ·xγn

n , and Dγ = ∂ |γ|
∂ γ1x1∂ γ2x2···∂ γn xn

. For

a cube Q and a locally integrable function f , let fQ = 1
|Q|
∫
Q f (x)dx and the sharp

maximal function

M#( f )(x) = sup
x∈Q

1
|Q|

∫
Q
| f (y)− fQ|dy.

A function f is said to belong to BMO(Rn) if M#( f ) ∈ L∞(Rn) , and the norm is
defined by ‖ f‖BMO = ‖M#( f )‖L∞ .

Denote by Q(x,r) the cube in R
n with side length r and center point x and

with sides parallel to the axes. For a non-negative weight functions w , we denote
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the weighted central BMO space by CMO(w) , which is the space of those functions
f ∈ Lloc(Rn) such that

‖ f‖CMO(w) := sup
r�1

1
w(Q(0,r))

∫
Q(0,r)

| f (x)− fQ(0,r)|w(x)dx < ∞.

It is easy to see that

‖ f‖CMO(w) ≈ sup
r�1

inf
c∈R

1
w(Q(0,r))

∫
Q
| f (x)− c|w(x)dx.

We remark that the CMO space is the dual space of the atomic space associated with
the Beurling algebra, which is in some sense a local version of BMO at origin. But,
they have quite different properties, for example, there is no analogy of the famous
John-Nirenberg inequality of BMO for the CMO space, see [1] and [7] for the details.

Let 1 < p < ∞ and w be a non-negative weight function, we define the weighted
central Morrey space Bp(w) by

‖ f‖Bp(w) := sup
r�1

(
1

w(Q(0,r))

∫
Q(0,r)

| f (y)|pw(y)dy

) 1
p

< ∞.

As is easily seen, the spaces CMO(w) and Bp(w) reflect local regularity of the
function more precisely than the Lebesgue space. We also denote by CṀO(w) and
Ḃp(w) the homogeneous versions of the weighted central bounded mean oscillation
space CMO(w) and the weighted central Morrey space Bp(w) , which can be defined
by taking the supremum over r > 0 in the definitions above instead of r � 1.

Now we state our main theorems as follows:

THEOREM 1.1. Let mj � 1 and Dγ (Aj) ∈ BMO(Rn) for multi-indices |γ| = mj

and j = 1,2, · · · ,k , and let w ∈ A1 , a Muchenhoupt weight. Suppose that T
−→
A is

bounded on Lp0(Rn) with the bound C∏k
j=1 ∑|γ|=mj

‖DγAj‖BMO for some 1 < p0 < ∞ .

Then the operator T
−→
A is bounded from Bp(w) to CMO(w) , and bounded from Ḃp(w)

to CṀO(w) for any p with p0 < p < ∞ . Moreover,

∥∥∥T −→
A ( f )

∥∥∥
CMO(w)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Bp(w) (1.6)

and ∥∥∥T −→
A ( f )

∥∥∥
CṀO(w)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Ḃp(w) (1.7)

with the absolute positive constant C .
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COROLLARY 1.2. With the same conditions of Theorem 1.1 for w = 1 , then the

multi-commutator T
−→
A is bounded from L∞(Rn) to BMO(Rn) , and

∥∥∥T −→
A ( f )

∥∥∥
BMO(Rn)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖L∞(Rn) (1.8)

with the absolute positive constant C . Moreover, the multi-commutator T
−→
A is bounded

on Lp(Rn) for any p0 � p < ∞ , and

∥∥∥T −→
A ( f )

∥∥∥
Lp(Rn)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Lp(Rn) (1.9)

with the absolute positive constant C .

We remark that Cohen and Gosselin [3] have proved the Lp0(Rn)-boundedness

for the multi-commutator T
−→
A in the special case k(x,y) = Ω(x− y)/|x− y|n with

the three conditions: (1) Ω ∈ Lip(Sn−1) , (2) Ω is homogeneous of degree zero, (3)∫
Sn−1 Ω(x)xαdx = 0 for |α| = m . By means of the ”T1” theorem, S. Hofmann [4] ex-

tended Cohen-Gosselin’s result and obtained the weighted Lp(w)-boundedness for the

multi-commutator T
−→
A with the same conditions as in [3] and w ∈ Ap . But for gen-

eral kernel k(x,y) , the Lp0(Rn)-boundedness for the multi-commutator T
−→
A remains

unknown. Here we point out that the results of Corollary 1.2 above have extended the
related works of Lu and Yan in [5] in which only the case k = 1 had been considered.

In Theorem 1.1, we assume that all mj � 1 for the multi-commutator T
−→
A ( f ) of

form (1.4). For the cases that some mj = 0, we may equivalently study the following
multi-commutator

T

−→
A ,

−→
B ( f )(x) :=

∫
Rn

K(x,y)

[
k

∏
j=1

Rmj+1(Aj;x,y)
|x− y|mj

][
l

∏
i=1

[Bi(x)−Bi(y)]

]
f (y)dy (1.10)

We will deduce the following weighted CMO estimates and Lp -boundedness for

the operator T
−→
A ,

−→
B . For convenience, we denote by Cl

i the family of all subsets σ =
{σ1,σ2, · · · ,σi} of i different elements of {1,2, · · · , l} , and let σ ′ = {1,2, · · · , l}\σ and−→
Bσ = {Bσ1 ,Bσ2 , · · · ,Bσi} .

THEOREM 1.3. Let Dγ (Aj) ∈ BMO(Rn) for multi-indices |γ| = mj and mj � 1 ,

j = 1,2, · · · ,k . Suppose that T
−→
A is bounded on Lp0(Rn) for some 1 < p0 < ∞ with

the bound C∏k
j=1 ∑|γ|=mj

‖DγAj‖BMO . If w ∈ A1 and Bi ∈ BMO(Rn) , i = 1,2, · · · , l ,
then the operators T

−→
A ,

−→
B of form (1.10) have the property that
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∥∥∥T−→
A ,

−→
B ( f )

∥∥∥
CMO(w)

�C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO

l

∏
i=1

‖Bi‖BMO‖ f‖Bp(w)

+C
l

∏
i=1

‖Bi‖BMO

∥∥∥T −→
A ( f )

∥∥∥
Bp(w)

+C
l−1

∑
i=1

∑
σ∈Cl

i

∏
j∈σ ′

‖Bj‖BMO

∥∥∥T−→
A ,

−→
Bσ ( f )

∥∥∥
Bp(w)

(1.11)

with the absolute positive constant C .

COROLLARY 1.4. With the same conditions as in Theorem 1.3, then the operators

T
−→
A ,

−→
B of form (1.10) are bounded from Lp(Rn) to Lp(Rn) for any p with p0 � p < ∞ ,

moreover,∥∥∥T−→
A ,

−→
B ( f )

∥∥∥
Lp(Rn)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO

l

∏
i=1

‖Bi‖BMO‖ f‖
Lp(Rn) (1.12)

with the absolute positive constant C .

From Corollary 1.4 one can obtain the Lp boundedness (1 < p < ∞) for the mul-

tilinear commutator T
−→
B

0 for any Calderón-Zygmund operator T and the BMO func-

tions
−→
B , which was showed by Pérez and Trujillo-González [6].

The paper is organized as follows: in the next section we will give the proofs of
Theorem 1.1 and Corollary 1.2; and in Section 3, we will prove Theorem 1.3 Corollary
1.4. In this paper we always use the letter C to denote a positive constant which is
independent of the main parameters, but it may vary from line to line.

2. The proofs of Theorem 1.1 and Corollary 1.2

Before giving the proof of the theorem, we need first recall some useful notations
and lemmas. The non-negative locally integrable function w belongs to the Mucken-
houpt weight class, denoted by w ∈ Ap , if for any cube Q ⊂ R

n ,

1
|Q|

∫
Q

w(x)dx

(
1
|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

< ∞, 1 < p < ∞,

and
1
|Q|

∫
Q

w(x)dx � C inf
x∈Q

w(x), p = 1.

One knows that Ap ⊂ Aq if 1 � p < q < ∞ , and that w ∈ Ap for some 1 < p < q if
w ∈ Aq with q > 1.
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LEMMA 2.1. [3] Let m � 1 be integer, and A be a function on R
n with m-th

order derivatives in Lq(Rn) for some q > n. Then

|Rm(A;x,y)| � Cm,n|x− y|m ∑
|γ|=m

(
1

|Q̃(x,y)|
∫

Q̃(x,y)
|DγA(z)|qdz

) 1
q

(2.1)

where Q̃(x,y) is the cube centered at x with edges parallel to the axes and having
diameter 5

√
n|x− y| .

LEMMA 2.2. Let w be an Ap weight with 1 < p < ∞ , and assume f ∈ Bp(w)
and g ∈ BMO(Rn) . Then there exists 1 < s < ∞ , for any cubes Q, such that

1
|Q|

∫
Q
| f (x)g(x)|dx � C‖ f‖Bp(w)

(
1
|Q|

∫
Q
|g(x)|sdx

)1/s

(2.2)

with the constant C > 0 independent of f , g and Q.

Proof. Recall that w∈Ap implies w∈Ap−ε for some small ε with 1 < p−ε < p .
We let s = p

ε and q = p
p−1−ε , and so 1

p + 1
q + 1

s = 1. By the Hölder inequality and the
Ap−ε weight property of w , we can deduce that

1
|Q|

∫
Q
| f (x)g(x)|dx =

1
|Q|

∫
Q
| f (x)|w(x)

1
p |g(x)|w(x)−

1
p dx

�
(

1
|Q|

∫
Q
| f (x)|pw(x)dx

) 1
p
(

1
|Q|

∫
Q
|g(x)|sdx

) 1
s
(

1
|Q|

∫
Q

w(x)−
q
p dx

) 1
q

� C

(
1

w(Q)

∫
Q
| f (x)|pw(x)dx

) 1
p
(

1
|Q|

∫
Q
|g(x)|sdx

) 1
s

� C‖ f‖Bp(w)

(
1
|Q|

∫
Q
|g(x)|sdx

) 1
s

which yields the lemma.

Now we give the proof of Theorem 1.1. Our proof depends on a little technical.

The spirit of the estimates for the operator T
−→
A is treated on the local parts and the

nonlocal parts respectively. Without loss generality, we let k = 2, i.e.,
−→
A = (A,B) , and

just consider the following multi-commutator

TA,B( f )(x) :=
∫

Rn

Rm1+1(A;x,y)Rm2+1(B;x,y)
|x− y|m1+m2

K(x,y) f (y)dy

for the case m1,m2 = 1,2,3, · · · .
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It is sufficient to prove that there exists an absolute constant C > 0 independent of
f and Q , such that

1
w(Q)

∫
Q

∣∣TA,B( f )(x)−C0
∣∣w(x)dx

� C

⎛⎜⎝ ∑
|γ|=m1
|β |=m2

‖DγA‖BMO‖Dβ B‖BMO

⎞⎟⎠‖ f‖Bp(w)

holds for any cube Q = Q(0,r0) with r0 � 1, where C0 is a real number which will be
determined later.

Let AQ(x) = A(x)− ∑
|γ|=m1

1
γ!(D

γA)Q xγ and BQ(x) = B(x)− ∑
|β |=m2

1
β !(D

β B)Q xβ ,

then it’s easy to deduce that

Rm1+1(A;x,y) = Rm1+1(AQ;x,y), Rm2+1(B;x,y) = Rm2+1(BQ;x,y) (2.3)

and

DγAQ = DγA− (DγA)Q, Dβ BQ = Dβ B− (DβB)Q (2.4)

for all |γ| = m1 and |β | = m2 , respectively. One also has

Rm1+1(AQ;x,y) = Rm1(A
Q;x,y)− ∑

|γ|=m1

1
γ!

DγAQ(y)(x− y)γ ,

Rm2+1(BQ;x,y) = Rm2(B
Q;x,y)− ∑

|β |=m2

1
β !

Dβ BQ(y)(x− y)β .

(2.5)

Fix the cube Q = Q(0,r0) , let Q̃ = 10
√

nQ and write f = f1 + f2 with f1 = f χQ̃
and f2 = f χ

Rn\Q̃ , where χE denotes the characteristic function of set E , then we can

write that TA,B( f )(x) = TA,B( f1)(x)+TA,B( f2)(x) . Take x0 ∈ ∂ (2Q) , a boundary point
of 2Q , we have

1
w(Q)

∫
Q

∣∣TA,B( f )(x)−TA,B( f2)(x0)
∣∣w(x)dx

� 1
w(Q)

∫
Q

∣∣TA,B( f1)(x)
∣∣w(x)dx

+
1

w(Q)

∫
Q

∣∣∣TAQBQ
( f2)(x)−TA,B( f2)(x0)

∣∣∣w(x)dx

=: I1 + I2

(2.6)
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For 1 < p0 < p < ∞ we let 1
p0

= 1
p + 1

q , then by the Hölder inequality, the Lp0 -

boundedness of TA,B and the properties of A1 weight it follows that

I1 � 1
w(Q)

(∫
Rn

|TA,B f1(x)|p0dx

) 1
p0
(

1
|Q|

∫
Q

w(x)p0
′
dx

) 1
p0

′
|Q|

1
p0

′

� C
1

w(Q)

(∫
Rn

| f1(x)|p0dx

) 1
p0
(

1
|Q|

∫
Q

w(x)dx

)
|Q|

1
p0

′

� C

(
1

|Q̃|
∫

Q̃
| f (x)|p0dx

) 1
p0

� C

(
1

|Q̃|
∫

Q̃
| f (x)|pw(x)dx

) 1
p
(

1

|Q̃|
∫

Q̃
w(x)−

q
p0 w(x)dx

) 1
q

� C

(
1

w(Q̃)

∫
Q̃
| f (x)|pw(x)dx

) 1
p

� C ‖ f ‖Bp(w)

with the constant C controlled by ∑ |γ|=m1
|β |=m2

‖DγA‖BMO‖Dβ B‖BMO .

For I2 , we will give the pointwise estimates of TA,B( f2)(x)− TA,B( f2)(x0) for
x ∈ Q and x0 ∈ ∂ (2Q) . Using the inequalities (2.3) and (2.5), we can write

TA,B( f2)(x)−TA,B( f2)(x0)

=
∫

Rn

Rm1+1(AQ;x,y)
|x− y|m1

Rm2+1(BQ;x,y)
|x− y|m2

K(x,y) f2(y)dy

−
∫

Rn

Rm1+1(AQ;x0,y)
|x0− y|m1

Rm2+1(BQ;x0,y)
|x0 − y|m2

K(x0,y) f2(y)dy

=
∫

Rn

[
K(x,y)

|x− y|m1+m2
− K(x0,y)

|x0− y|m1+m2

]
Rm1(A

Q;x,y)Rm2(B
Q;x,y) f2(y)dy

+
∫

Rn

K(x0,y)
|x0− y|m1+m2

[
Rm1(A

Q;x,y)Rm2(B
Q;x,y)

−Rm1(A
Q;x0,y)Rm2(B

Q;x0,y)
]

f2(y)dy

− ∑
|γ|=m1

1
γ!

∫
Rn

[
(x− y)γK(x,y)
|x− y|m1+m2

− (x0− y)γK(x0,y)
|x0− y|m1+m2

]
×Rm2(B

Q;x,y)Dγ AQ(y) f2(y)dy

+ ∑
|γ|=m1

1
γ!

∫
Rn

[
Rm2(B

Q;x,y)−Rm2(B
Q;x0,y)

]
× (x0− y)γK(x0,y)

|x0 − y|m1+m2
DγAQ(y) f2(y)dy
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− ∑
|β |=m2

1
β !

∫
Rn

[
(x− y)βK(x,y)
|x− y|m1+m2

− (x0 − y)βK(x0,y)
|x0 − y|m1+m2

]
×Rm1(A

Q;x,y)Dβ BQ(y) f2(y)dy

+ ∑
|β |=m2

1
β !

∫
Rn

[
Rm1(A

Q;x,y)−Rm1(A
Q;x0,y)

]
× (x0− y)β K(x0,y)

|x0− y|m1+m2
Dβ BQ(y) f2(y)dy

+ ∑
|γ|=m1
|β |=m2

1
γ!β !

∫
Rn

[
(x− y)γ+βK(x,y)

|x− y|m1+m2
− (x0 − y)γ+β K(x0,y)

|x0− y|m1+m2

]

×DγAQ(y)Dβ BQ(y) f2(y)dy

=: J1 + J2 + J3 + J4 + J5 + J6 + J7

Before continuing the proof, it’s worthy to point out that, by Lemma 2.1, the in-
equality (2.4) and the following inequality

|bQ1 −bQ2 | �C log(|Q2|/|Q1|)‖b‖BMO for any cubes Q1 ⊂ Q2,

we have that, if x ∈ 2Q and y ∈ 2kQ̃\2k−1Q̃ , k = 1,2, · · · , and m1 � 1, then

Rm1(A
Q;x,y) � C|x− y|m1 ∑

|γ|=m1

(‖DγA‖BMO + |(DγA)Q̃(x,y) − (DγA)Q|)

� Ck|x− y|m1 ∑
|γ|=m1

‖DγA‖BMO
(2.7)

and similarly,
Rm2(B

Q;x,y) � Ck|x− y|m2 ∑
|β |=m2

‖Dβ B‖BMO (2.8)

for x ∈ 2Q and y ∈ 2kQ̃\2k−1Q̃ , k = 1,2, · · · , and m2 � 1.
Note that |x− y| ≈ |x0 − y| for x ∈ Q , x0 ∈ ∂ (2Q) and y ∈ R

n\Q̃ , we obtain by
the conditions on the kernel K that∣∣∣∣ K(x,y)

|x− y|m1+m2
− K(x0,y)

|x0− y|m1+m2

∣∣∣∣� C|x− x0|ε
|x0− y|m1+m2+n+ε (2.9)

for some ε > 0. Hence, by the inequality (2.9), and the inequalities (2.7) and (2.8), one
has

J1 � C
∫

Rn

|x− x0|ε
|x0− y|m1+m2+n+ε |Rm1(A

Q;x,y)||Rm2(B
Q;x,y)|| f2(y)|dy

� C ∑
|γ|=m1
|β |=m2

‖DγA‖BMO‖Dβ B‖BMO

∞

∑
k=1

k2
∫

2kQ̃\2k−1Q̃

|x− x0|ε
|x0− y|n+ε | f (y)|dy
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Noting, by Lemma 2.2 in case g = 1,∫
2kQ̃\2k−1Q̃

|x− x0|ε
|x0− y|n+ε | f (y)|dy � Crε

0

(2kr0)n+ε

∫
2kQ̃

| f (y)|dy � C
2kε ‖ f‖Bp(w)

and thus

J1 � C ∑
|γ|=m1
|β |=m2

‖DγA‖BMO‖DβB‖BMO

∞

∑
k=1

k2

2kε ‖ f‖Bp(w)

� C ∑
|γ|=m1
|β |=m2

‖DγA‖BMO‖DβB‖BMO‖ f‖Bp(w)

To estimate J2 , we note

J2 �
∫

Rn

K(x0,y)
|x0− y|m1+m2

f2(y)

[(
Rm1(A

Q;x,y)−Rm1(A
Q;x0,y)

)
Rm2(B

Q;x,y)

+ (Rm2(B
Q;x,y)−Rm2(B

Q;x0,y))Rm1(A
Q;x0,y)

]
dy

=
∫

Rn

K(x0,y)
|x0− y|m1+m2

f2(y)
[
Rm1(A

Q;x,y)−Rm1(A
Q;x0,y)

]
Rm2(B

Q;x,y)dy

+
∫

Rn

K(x0,y)
|x0− y|m1+m2

f2(y)
[
Rm2(B

Q;x,y)−Rm2(B
Q;x0,y)

]
Rm1(A

Q;x0,y)dy

=: J21 + J22.

We will need the following inequality

Rm(F;x,y)−Rm(F ;x0,y) = Rm(F ;x,x0)+ ∑
0<|β |<m

1
β !

Rm−|β |(Dβ F ;x0,y)(x− x0)β

(2.10)
for any function F and the integer m � 1. In fact, for any integer m � 1,

Rm(F ;x,y) = F(x)− ∑
|γ|<m

1
γ!

DγF(y)(x− y)γ

= F(x)− ∑
|γ|<m

1
γ!

DγF(y) ∑
α+β=γ

γ!
α!β !

(x0− y)α(x− x0)β

= F(x)− ∑
|β |<m

1
β !

(x− x0)β ∑
|α |<m−|β |

1
α!

Dα(Dβ F)(y)(x0 − y)α

= F(x)− ∑
|β |<m

1
β !

[
Dβ F(x0)−Rm−|β |(Dβ F ;x0,y)

]
(x− x0)β

= Rm(F ;x,x0)+ ∑
|β |<m

1
β !

Rm−|β |(Dβ F ;x0,y)(x− x0)β ,
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which yields the equality (2.10). Using equality (2.10), Lemma 2.1 and the inequality
(2.7) we have that if x ∈ Q , x0 ∈ ∂ (2Q) and y ∈ 2kQ̃\2k−1Q̃ , k = 1,2, · · · , and the
integer m1 � 1, then

|Rm1(A
Q;x,y)−Rm1(A

Q;x0,y)|
� |Rm1(A

Q;x,x0)|+ ∑
0<|β |<m1

1
β !

|Rm1−|β |(Dβ AQ;x0,y)(x− x0)β |

� C ∑
|γ|=m1

|x− x0|m1‖DγA‖BMO

+Ck ∑
0<|β |<m1

∑
|γ|=m1

|x− x0||β ||x0− y|m1−|β |‖DγA‖BMO

� Ck|x− x0| ∑
|γ|=m1

|x0 − y|m1−1‖DγA‖BMO.

This and the inequality (2.8), and the fact |x− y| ∼ |x0− y| for x ∈ Q , x0 ∈ ∂ (2Q) and
y �∈ Q̃ , and Lemma 2.2 imply that

J21 � C ∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k
∫

2kQ̃\2k−1Q̃

|K(x0,y)|
|x0− y|m1

| f2(y)|

× ∣∣Rm1(A
Q;x,y)−Rm1(A

Q;x0,y)
∣∣dy

� C ∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k2
∫

2kQ̃\2k−1Q̃
∑

|γ|=m1

|x− x0|
|x0− y|n+1 ‖DγA‖BMO| f2(y)|dy

� C ∑
|β |=m2

‖Dβ B‖BMO ∑
|γ|=m1

‖DγA‖BMO

∞

∑
k=1

k2

2k

1

|2kQ̃|
∫

2kQ̃
| f2(y)|dy

� C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w).

Similarly one has the same estimates for J22 and so

J2 � |J21|+ |J22| � C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w).

For J3 , by the conditions on the kernel k and the fact that |x− y| ≈ |x0 − y| for
x ∈ Q , x0 ∈ ∂ (2Q) and y ∈ R

n\Q̃ , we have for |γ| = m1 ,∣∣∣∣ (x− y)γK(x,y)
|x− y|m1+m2

− (x0 − y)γK(x0,y)
|x0− y|m1+m2

∣∣∣∣� C|x− x0|ε
|x0− y|m2+n+ε

for some ε > 0. This together with the inequality (2.8) and Lemma 2.2 gives that

J3 � C ∑
|γ|=m1

∫
Rn

|x− x0|ε
|x0− y|m2+n+ε |Rm2(B

Q;x,y)||Dγ AQ(y)|| f2(y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k
∫

2kQ̃\2k−1Q̃

|x− x0|ε
|x0− y|n+ε |DγAQ(y)|| f (y)|dy
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� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k
2kε

1

|2kQ̃|
∫

2kQ̃
|DγAQ(y)|| f (y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

∞

∑
k=1

k
2kε

(
1

|2kQ̃|
∫

2kQ̃
|DγAQ(y)|sdy

) 1
s

� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

∞

∑
k=1

k
2kε

(
‖DγA‖BMO + |(DγA)2kQ̃ − (DγA)Q|

)
� C ∑

|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

∞

∑
k=1

k2

2kε ‖DγA‖BMO

� C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w).

Using the inequality (2.10) and size condition on K with the similar argument as
J21 , and using Lemma 2.2, we obtain that

J4 � C ∑
|β |=m2

‖Dβ B‖BMO ∑
|γ|=m1

∞

∑
k=1

k
∫

2kQ̃\2k−1Q̃

|x− x0|
|x0− y|n+1 |DγAQ(y)|| f (y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k
2k

1

|2kQ̃|
∫

2kQ̃
|DγAQ(y)|| f (y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

‖Dβ B‖BMO

∞

∑
k=1

k
2k ‖ f‖Bp(w)

(
1

|2kQ̃|
∫

2kQ̃
|DγAQ(y)|sdy

)1/s

� C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

In a similar way to J3 and J4 , one has

J5 + J6 � C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

At last for J7 , we choose 1 < s1,s2 < ∞ satisfying 1
s1

+ 1
s2

= 1
s , where s appears

in Lemma 2.2, then the conditions on kernel K , Lemma 2.2 and the Hölder inequality
follow that

J7 � C ∑
|γ|=m1

∑
|β |=m2

∞

∑
k=1

∫
2kQ̃\2k−1Q̃

|x− x0|ε
|x0− y|n+ε |DγAQ(y)||Dβ BQ(y)|| f2(y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

∞

∑
k=1

1
2kε

1

|2kQ̃|
∫

2kQ̃
|DγAQ(y)||Dβ BQ(y)|| f (y)|dy

� C ∑
|γ|=m1

∑
|β |=m2

∞

∑
k=1

1
2kε

(
1

|2kQ̃|
∫

2kQ̃
|DγA(y)− (DγA)Q̃|s1dy

) 1
s1
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×
(

1

|2kQ̃|
∫

2kQ̃
|Dβ B(y)− (DβB)Q̃|s2dy

) 1
s2

‖ f‖Bp(w)

� C ∑
|γ|=m1

∑
|β |=m2

∞

∑
k=1

k2

2kε ‖DγA‖BMO‖Dβ B‖BMO‖ f‖Bp(w)

� C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

Combining the estimates of Ji , i = 1,2, · · · ,7, then we get

I2 � 1
w(Q)

∫
Q

7

∑
i=1

|Ji|w(x)dx � C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖DβB‖BMO‖ f‖Bp(w)

Moreover, we have proved that

1
w(Q)

∫
Q

∣∣TA,B( f )(x)−TA,B( f2)(x0)
∣∣w(x)dx � |I1|+ |I2|

� C ∑
|γ|=m1

‖DγA‖BMO ∑
|β |=m2

‖Dβ B‖BMO‖ f‖Bp(w)

with the constant C > 0 independent of f and Q , which implies the desired inequality
(1.6) in Theorem 1.1. The inequality (1.7) can be deduced by the same arguments
above. The proof of the theorem is complete. �

The proof Corollary 1.2. Carefully repeating the proof above, we actually obtain
that

1
|Q|

∫
Q
|T

−→
A f (x)−T

−→
A f (x0)|dx � C

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖L∞(Rn)

for any cube Q ⊂ R
n and some point x0 ∈ ∂ (2Q) . This implies the desired inequality

(1.8) of the corollary.
Moreover, using the inequality (1.8) and the interpolation theorem, we can easily

see the Lp -boundedness of the multi-commutators T
−→
A and the inequality (1.9) for

p0 � p < ∞ . �

3. The proofs of Theorem 1.3 and Corollary 1.4

The following lemma will be used in this section.

LEMMA 3.1. If w ∈ Ap , 1 � p < ∞ , then for F ∈ BMO and 1 < s < ∞ we have(
1

w(Q)

∫
Q
|F(x)−FQ|sw(x)dx

)1/s

� C‖F‖BMO

with the constant C independent of the cube Q.
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Proof. We note that the Ap weight w satisfies the reverse Hölder inequality,

(
1
|Q|

∫
Q

w(x)t dx

)1/t

� C
|Q|

∫
Q

w(x)dx

with some 1 < t < ∞ and for all cube Q . From this and the Hölder inequality, we can
see that, for any function F , 1 < s < ∞ and any cube Q ,(

1
w(Q)

∫
Q
|F(x)−FQ|sw(x)dx

)1/s

� C

(
1
|Q|

∫
Q
|F(x)−FQ|st′dx

)1/(st′)

� C‖F‖BMO

with the constant C > 0 independent of F and Q , where 1
t + 1

t′ = 1. �

We are ready to give the proof of Theorem 1.3. For l = 1, the multi-commutator

T
−→
A ,

−→
B reduces to the following form

T( f )(x) =
∫

Rn
K(x,y)(B(x)−B(y))

k

∏
j=1

Rmj+1(Aj;x,y)
|x− y|mj

f (y)dy = [B,T
−→
A ]( f )(x)

where T
−→
A ( f ) is the multi-commutator of form (1.4) for all mj � 1. For any fixed

r � 1, denote Q(0,r) simply by Q , and Q̃ = 10
√

nQ . We write

f (x) = f (x)χQ̃ + f (x)
(
1− χQ̃

)
=: f1(x)+ f2(x).

Recall the notation BQ(x) = B(x)− BQ and take a point x0 ∈ ∂ (2Q) , we have

T( f )(x) = BQ(x)T
−→
A ( f )(x)−T

−→
A (BQ f )(x) , and by the boundedness for T

−→
A we get

1
w(Q)

∫
Q
|T( f )(x)−T

−→
A (BQ f2)(x0)|w(x)dx

� 1
w(Q)

∫
Q
|BQ(x)T

−→
A ( f )(x)|w(x)dx+

1
w(Q)

∫
Q
|T

−→
A (BQ f1)(x)|w(x)dx

+
1

w(Q)

∫
Q
|T

−→
A (BQ f2)(x)−T

−→
A (BQ f2)(x0)|w(x)dx

=: V1 +V2 +V3

For 1 < p0 < p < ∞ , then applying the Hölder inequality, the Lp0 -boundedness

of T
−→
A , and the properties of A1 weight, we get from Lemma 3.1 that

V1 +V2 � C‖B‖BMO

⎛⎝‖T
−→
A ( f )‖Bp(w) +

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Bp(w)

⎞⎠ .
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Repeating the proof of Theorem 1.1, and noting by Lemma 2.2 that for any locally
integrable function g ,

1

|2kQ̃|
∫

2kQ̃
|g(x)BQ(x) f2(x)|dx

� C

(
1

|2kQ̃|
∫

2kQ̃
|g(x)BQ(x)|sdx

) 1
s

‖ f‖Bp(w)

� Ck

(
1

|2kQ̃|
∫

2kQ̃
|g(x)|2sdx

) 1
2s

‖B‖BMO‖ f‖Bp(w)

(3.1)

with some 1 < s < ∞ , we thus use the same argument in the estimates of I2 in last
section to obtain that

|T
−→
A (BQ f2)(x)−T

−→
A (BQ f2)(x0)| � C

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖B‖BMO‖ f‖Bp(w)

which implies

V3 � C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖B‖BMO‖ f‖Bp(w) (3.2)

Hence we have deduced that

1
w(Q)

∫
Q
|T( f )(x)−T

−→
A (BQ f2)(x0)|w(x)dx

� C‖B‖BMO

⎛⎝‖T
−→
A ( f )‖Bp(w) +

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Bp(w)

⎞⎠ (3.3)

which implies the desired inequality (1.11) when l = 1.
Next we consider the case that l > 1 and all mj � 1. Without loss of generality,

by induction principle we may only consider the case l = 2, i.e.

T

−→
A ,

−→
B ( f )(x) =

∫
Rn

K(x,y)
k

∏
j=1

Rmj+1(Aj;x,y)
|x− y|mj

2

∏
i=1

(Bi(x)−Bi(y)) f (y)dy

Since Bi(x)−Bi(y) = BQ
i (x)−BQ

i (y) , we can decompose T
−→
A ,

−→
B into four parts as

follows:

T

−→
A ,

−→
B ( f )(x) = −BQ

1 (x)BQ
2 (x)T

−→
A ( f )(x)+BQ

2 (x) [B1,T
−→
A ]( f )(x)

+BQ
1 (x) [B2,T

−→
A ]( f )(x)+T

−→
A
(
BQ

1 BQ
2 f
)

(x)

=: T1 f (x)+T2 f (x)+T3 f (x)+T4 f (x).

(3.4)
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Letting 1
p + 1

q + 1
t = 1 for some 1 < q,t < ∞ and the assumption 1 < p < ∞ , and

applying the Hölder inequality and Lemma 3.1, we obtain that

1
w(Q)

∫
Q
|T1( f )(x)|w(x)dx �

(
1

w(Q)

∫
Q
|B1(x)−B1Q |qwdx

) 1
q

×
(

1
w(Q)

∫
Q
|B2(x)−B2Q |twdx

) 1
t
(

1
w(Q)

∫
Q
|T

−→
A ( f )(x)|pwdx

) 1
p

� C‖B1‖BMO‖B2‖BMO‖T
−→
A f‖Bp(w).

(3.5)

and similarly,

1
w(Q)

∫
Q
|T2 f (x)+T3 f (x)|w(x)dx

� C‖B1‖BMO‖[B2,T
−→
A ] f‖Bp(w) +C‖B2‖BMO‖[B1,T

−→
A ] f‖Bp(w)

(3.6)

Take 1
p + 1

q + 1
t = 1

p0
for some 1 < q,t < ∞ , then we have

1
w(Q)

∫
Q
|T4 f1(x)|w(x)dx �

(
1

w(Q)

∫
Q

∣∣∣T −→
A
(
BQ

1 BQ
2 f1
)

(x)
∣∣∣p0

wdx

) 1
p0

� C

(
1

w(Q)

∫
Q̃

∣∣∣BQ
1 BQ

2 f1(x)
∣∣∣p0

wdx

) 1
p0

� C‖B1‖BMO‖B2‖BMO‖ f‖Bp(w).

(3.7)

Choose a point x0 ∈ ∂ (2Q) and recall the proof of the estimates (3.2), we have

|T4( f2)(x)−T4( f2)(x0)| =
∣∣∣T −→

A
(
BQ

1 BQ
2 f2
)

(x)−T
−→
A
(
BQ

1 BQ
2 f2
)

(x0)
∣∣∣

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖B1‖BMO‖B2‖BMO‖ f‖Bp(w)

(3.8)

Combing the inequalities (3.4), (3.5), (3.6), (3.7) and (3.8), we gain that

1
w(Q)

∫
Q

∣∣∣T−→
A ,

−→
B ( f )(x)−T4( f2)(x0)

∣∣∣w(x)dx

� C‖B1‖BMO‖B2‖BMO

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO‖ f‖Bp(w)

+C‖B1‖BMO‖[B2,T
−→
A ] f‖Bp(w) +C‖B2‖BMO‖[B1,T

−→
A ] f‖Bp(w)

+C‖B1‖BMO‖B2‖BMO‖T
−→
A f‖Bp(w)

(3.9)

This and the induction principle give the inequality (1.11). The proof of Theorem 1.3
is complete.
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We now turn to the proof of Corollary 1.4. If we check the proof of Theorem 1.3,
we in fact get for any x ∈ R

n that

M�
(

T

−→
A ,

−→
B ( f )

)
(x) �C

k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO

l

∏
i=1

‖Bi‖BMOM( f )(x)

+C
l

∏
i=1

‖Bi‖BMOM
(
T

−→
A ( f )

)
(x)

+C
l−1

∑
i=1

∑
σ∈Cl

i

∏
j∈σ ′

‖Bj‖BMOM
(
T

−→
A ,

−→
Bσ ( f )

)
(x)

(3.10)

Applying the Stein-Fefferman’s inequality

‖ f‖Lp(Rn) � ‖M( f )‖Lp(Rn) � C‖M�( f )‖Lp(Rn) (3.11)

and the well-known inequality ‖M( f )‖Lp(Rn) � C‖ f‖Lp(Rn) whenever 1 < p < ∞ ,
where M( f ) denotes the Hardy-Littlewood maximal function of f , we can then de-
duce that∥∥∥T−→

A ,
−→
B ( f )

∥∥∥
Lp(Rn)

� C
∥∥∥M�

(
T

−→
A ,

−→
B ( f )

)∥∥∥
Lp(Rn)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO

l

∏
i=1

‖Bi‖BMO‖M( f )‖Lp(Rn)

+C
l

∏
i=1

‖Bi‖BMO

∥∥∥M(T −→
A ( f )

)∥∥∥
Lp(Rn)

+C
l−1

∑
i=1

∑
σ∈Cl

i

∏
j∈σ ′

‖Bj‖BMO

∥∥∥M(T

−→
A ,

−→
Bσ ( f )

)∥∥∥
Lp(Rn)

� C
k

∏
j=1

∑
|γ|=mj

‖DγAj‖BMO

l

∏
i=1

‖Bi‖BMO‖ f‖Lp(Rn)

+C
l−1

∑
i=1

∑
σ∈Cl

i

∏
j∈σ ′

‖Bj‖BMO

∥∥∥T−→
A ,

−→
Bσ ( f )

∥∥∥
Lp(Rn)

where in the last inequality we have used the Lp -boundedness for the operator T
−→
A

for p0 � p < ∞ by Corollary 1.2. Finally, we make use of induction on l , we can

derive the Lp -boundedness for the operator T
−→
A ,

−→
B and the inequality (1.12). The proof

is finished. �

Acknowledgement. This work was supported partly by National Natural Science
Foundation of China under grant #11171306 and #11071065, and sponsored by the
Scientific Project of Zhejiang Provincial Science Technology Department under grant
#2011C33012.



672 X. TAO AND Y. WU

RE F ER EN C ES

[1] A. BEURLING, Construction and analysis of some convolution algebras, Ann. Inst. Fourier Grenoble
14 (1964), 1–32.

[2] R. COIFMAN, R. ROCHBERG AND G. WEISS, Factorization theorems for Hardy spaces in several
variables, Annals of Mathematics 103 (1976), 611–635.

[3] J. COHEN AND J. GOSSELIN, A BMO estimate for multilinear singular integral operators, Illinois J.
Math. 30 (1986) 3, 445–465.

[4] S. HOFMANN, On some nonstandard Calderón-Zygmund operators, Studia Math. 109 (1994) 2, 105–
131.

[5] S.-Z. LU AND D.-Y. YAN, Lp boundedness of multilinear oscillatory singular integrals with Calderón-
Zygmund kernel, Science in China (Ser. A) 45 (2002) 2, 196–213.
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