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MORE INEQUALITIES FOR POSITIVE LINEAR MAPS

R. SHARMA AND A. THAKUR

(Communicated by N. Elezović)

Abstract. We derive inequalities for the norm of the variance of matrices. It is shown that unital
linear maps on 2× 2 matrices preserve the commutativity properties of matrices. This feature
allows us to generalize several inequalities for such maps. We show by way of an example that
this technique cannot be extended to the case of n×n , n � 3 , matrices.

1. Introduction

Let M (n) be the C∗−algebra of all n×n complex matrices and let Φ : M (n) →
M (k) be a positive linear map. For an element A of M (n) the variance of Φ(A) is
defined as [1, pp. 74]

Var(Φ(A)) = Φ(A∗A)−Φ(A)∗ Φ(A) . (1.1)

The Var(Φ(A)) will be abbreviated by VarA , whenever there is no danger of confusion.
Kadison’s inequality [2] says that if A is Hermitian, then VarA� 0. The complementary
Bhatia-Davis [3] inequality asserts that for m � A � M,

0 � VarA = Φ
(
A2)−Φ(A)2 � (MI−Φ(A))(Φ(A)−mI) �

(
M−m

2

)2

I. (1.2)

In this paper we assume that ”�” denotes the Loewner order relation among Hermitian
matrices. If A is normal, Choi’s generalization [4] says that VarA � 0. Bhatia and
Sharma [5] have proved

Var(Φ(A)) � �(A)2 I, (1.3)

for all positive unital maps Φ. Here

� (A) = inf
z∈C

‖A− zI‖ (1.4)

is the distance of A from scalar matrices zI, z ∈ C. In the special case when A is nor-
mal, �(A) = rA , where rA is the radius of the smallest disc containing the spectrum of
A. The inequality (1.3) implies several norm estimates for positive linear maps between
finite dimensional C∗−algebras, see Theorems 2.1–2.2, below.
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The second inequality (1.2) can be written as

Φ
(
A2)� (m+M)Φ(A)−mMI. (1.5)

A more generalized inequality says that if f is a convex function on [m,M] , then [1,
pp. 56]

Φ( f (A)) � L(Φ(A)) , (1.6)

where L is a linear interpolant

L(t) =
1

M−m
{(t−m) f (M)+ (M− t) f (m)} . (1.7)

The upper bound for Φ(Ar) in terms of Φ(A)r follows as a special case of (1.6),
r = 2,3, .... But the lower bounds such as Φ

(
A3
)

� Φ(A)3 and Φ
(
A4
)

� Φ(A)4 are
not always true. For instance, the well known Choi’s example shows that Φ

(
A4
)

�

Φ(A)4 , for Φ the compression map projecting the 3×3 matrix onto its leading 2×2

submatrix and A =

⎡
⎣ 1 0 1

0 0 1
1 1 1

⎤
⎦ . For a reference see [4, pp. 568]. Bhatia and Sharma [5]

have shown that in fact such inequalities are true for maps Φ : M (2) → M (k) , [5]

f (Φ(A)) � Φ( f (A)) , (1.8)

where f is a convex function on an open interval containing the eigenvalues of a Her-
mitian element A of M(2). In this paper we show that a similar type of situation arises
in other standard inequalities. The crucial point here is that the unital linear maps of
two commuting matrices in M (2) are commuting (Lemma 2.3, below). We use this
Lemma and derive in the subsequent theorems the several inequalities for such maps.
In this way M(2) is the exceptional case which is non commutative, but still the same
strong properties as for the commutative case M(1) holds. For example, Bourin and Ri-
card [6] have recently proved a non-commutative version of the Chebychev’s inequality
which says that for a positive definite matrix A

|Φ(Ar)Φ(As)| � Φ
(
Ar+s) , (1.9)

where 0� r � s , |Φ(Ar)Φ(As)|=
(

Φ(As)Φ(Ar)2 Φ(As)
) 1

2
and Ar, r∈R, is meant in

the sense of spectral calculus. We show that for maps on M (2) the lower bound in (1.9)
can be replaced by Φ(As)Φ(Ar) , and also prove a complementary bound (Theorem 2.7
, below). An example of a linear map on M (3) is given to show that the complementary
inequality is not always true (Remark 2.8 and Example 2.9, below).



MORE INEQUALITIES FOR POSITIVE LINEAR MAPS 3

2. Main results

THEOREM 2.1. Let Φ : M (n) → M (k) be a positive unital linear map. Then

‖VarA‖ =
∥∥Φ(A∗A)−Φ(A)∗ Φ(A)

∥∥� �(A)2 (2.1)

for all A ∈ M (n) .

Proof. For 0 �C � kI we have ‖C‖� k. So, (1.3) implies (2.1) when A is normal.
If A is arbitrary (not necessarily normal) then VarA � 0 provided Φ is a 2-positive map
and (2.1) follows at once from (1.3). If Φ is just positive then we know that ‖Φ‖ = 1
and [5]

Φ(A∗A)−Φ(A)∗ Φ(A) � ‖A‖2 I. (2.2)

For any operator X we have X∗X � ‖X‖2 I. Therefore,

Φ(A)∗ Φ(A) � ‖Φ(A)‖2 I � ‖A‖2 I. (2.3)

So,
Φ(A)∗ Φ(A)−Φ(A∗A) � ‖Φ(A)‖2 I � ‖A‖2 I. (2.4)

If X is Hermitian and ±X � kI then ‖X‖ � k . We find from (2.2) and (2.4) that∥∥Φ(A∗A)−Φ(A)∗ Φ(A)
∥∥� ‖A‖2 . (2.5)

On replacing A by A− zI in (2.5) we conclude that∥∥Φ(A∗A)−Φ(A)∗ Φ(A)
∥∥� inf

z∈C
‖A− zI‖2 = �(A)2 . � (2.6)

THEOREM 2.2. Let the singular values si (A) of the variance of a matrix A ∈
M (n) be arranged in the decreasing order. Then, for k = 1,2, ...,n

k
Π
i=1

si (A) � �(A)2k (2.7)

and
k

∑
i=1

si (A) � k� (A)2 . (2.8)

Let ||| · ||| denote a unitarily invariant norm on M (n) . Then for any matrix A in M (n)

|||VarA||| � �(A)2 |||I|||. (2.9)

Proof. Let X and Y be Hermitian with respective singular values si (X) and
si (Y ) , i = 1,2, ...,n. We know if ±X � Y then {si (X)} is weak-log majorized by
{si (Y )} . The inequality (2.7) then follows from (2.2) and (2.4). The weak-log ma-
jorization implies majorization, [7]. So (2.8) follows from (2.7). Also if (2.8) holds
then by Fan dominance principle (2.9) also holds, [8, Lemma 2.1]. �

When n = 2 the situation is rather simple and more special results can be derived.
Many of them depend on the preservation of commutativity proved in the following
lemma.
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LEMMA 2.3. Let Φ : M (2) → M (k) be a linear and unital map. Let A and B be
Hermitian matrices in M(2) . Then AB = BA implies Φ(A)Φ(B) = Φ(B)Φ(A) .

Proof. Let λi and μi be the eigenvalues of A and B respectively, i = 1,2. By the
spectral theorem,

A = λ1P1 + λ2P2, (2.10)

B = μ1P1 + μ2P2, (2.11)

P1 and P2 are corresponding projections with

P1 +P2 = I. (2.12)

Apply Φ to (2.12)
Φ(P1)+ Φ(P2) = I. (2.13)

Therefore, Φ(P1) and Φ(P2) = I −Φ(P1) commute. On applying Φ to (2.10) and
(2.11), we respectively get

Φ(A) = λ1Φ(P1)+ λ2Φ(P2) (2.14)

and
Φ(B) = μ1Φ(P1)+ μ2Φ(P2) . (2.15)

A simple computation shows that Φ(A) and Φ(B) commute. �

The Lemma 2.3 shows that unital linear maps on 2× 2 matrices preserve com-
mutativity property of matrices. We use this fact to derive several inequalities for such
maps. This technique however cannot be extended to the case of n×n, n � 3, matrices.

For example, if A =

⎡
⎣ 4 2 1

2 2 0
1 0 2

⎤
⎦ , B = A2 and Φ is a compression map that takes A to its

top left 2×2 submatrix, then AB = BA but Φ(A)Φ(B) �= Φ(B)Φ(A) .
Let A and B be Hermitian with spectral resolution (2.10) and (2.11) , respectively.

Then, we say that the spectra of A and B are similarly ordered if λ1 � λ2 and μ1 � μ2

or λ1 � λ2 and μ1 � μ2. The spectra are oppositely ordered if λ1 � λ2 and μ1 � μ2 or
λ1 � λ2 and μ1 � μ2. We now prove Chebyshev’s inequality for 2×2 matrices.

THEOREM 2.4. Let Φ : M (2)→M (k) be a positive unital linear map. Let A and
B be commuting Hermitian matrices in M (2) . If the spectra of A and B are similarly
ordered. Then

Φ(AB) � Φ(A)Φ(B) . (2.16)

If the spectra A and B are oppositely ordered. Then

Φ(AB) � Φ(A)Φ(B) . (2.17)

Proof. Let A and B be commuting Hermitian matrices with eigenvalues λi, i =
1,2 and μi, i = 1,2 respectively. The spectral theorem implies

Φ(AB) = λ1μ1Φ(P1)+ λ2μ2Φ(P2) . (2.18)
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Since Φ(P1) and Φ(P2) commute, we find from (2.14), (2.15) and (2.18) that

Φ(AB)−Φ(A)Φ(B) = (λ2−λ1) (μ2− μ1)Φ(P1)Φ(P2) . (2.19)

From (2.19) we conclude that the inequality (2.16) holds when (λ2−λ1) (μ2− μ1) � 0
and reverses its order when (λ2−λ1)(μ2− μ1) � 0. �

COROLLARY 2.5. Let A be a positive definite matrix and let Φ be as in Theorem
2.4. If r and s are real numbers such that rs > 0, then

Φ
(
Ar+s)� Φ(Ar)Φ(As) . (2.20)

If rs < 0, the reverse inequality holds. Also,

Φ(A logA) � Φ(A)Φ(logA) (2.21)

and
Φ
(
A−1 logA

)
� Φ

(
A−1)Φ(logA) . (2.22)

Proof. It is clear that the spectra of Ar and As are similarly ordered when rs > 0,
and oppositely ordered when rs < 0. Therefore, the assertions for inequality (2.20)
follow from Theorem 2.4. Since A and logA have similarly ordered spectra, (2.21)
follows from (2.16). Likewise, (2.17) implies (2.22). �

COROLLARY 2.6.. Let the spectra of commuting positive definite matrices A1,
A2, ...,An be similarly ordered. Then, for a positive unital linear map Φ : M (2) →
M (k)

Φ
(

n
Π
i=1

Ai

)
�

n
Π
i=1

Φ(Ai) . (2.23)

Proof. The proof follows by the principle of the mathematical induction. By The-
orem 2.4, the inequality (2.23) holds good for n = 2. Assume that (2.23) is true for
n = k. It is clear that the matrices A1A2...Ak and Ak+1 are similarly ordered positive
definite matrices. Therefore,

Φ
(

k+1
Π
i=1

Ai

)
� Φ

(
k
Π
i=1

Ai

)
Φ(Ak+1) �

k+1
Π
i=1

Φ(Ai) .

This proves the inequality (2.23). �
Let A be a positive definite matrix in M (2) . Let Φ be a positive linear map. Then,

by Kadison inequality (1.1), we have

Φ
(
A

r+s
2

)2
� Φ

(
Ar+s) . (2.24)

We show that this inequality can be strengthened for positive unital linear maps Φ :
M (2) → M (k) .



6 R. SHARMA AND A. THAKUR

THEOREM 2.7. For a positive unital linear map Φ : M (2) → M (k) and positive
definite matrix A in M (2) , we have

Φ
(
A

r+s
2

)2
� Φ(Ar)Φ(As) � Φ

(
Ar+s) . (2.25)

Proof. The proof follows by the spectral calculus for Hermitian operators. Since
A ∈ M(2) is positive definite, the first inequality in (2.25) is equivalent to(

λ
r+s
2

1 Φ(P1)+ λ
r+s
2

2 Φ(P2)
)2

� (λ r
1Φ(P1)+ λ r

2Φ(P2)) (λ s
1Φ(P1)+ λ s

2Φ(P2)) .

(2.26)
Since Φ(P1) and Φ(P2) commute, the inequality (2.26) holds if and only if(

λ
r
2
1 λ

s
2
2 −λ

s
2
1 λ

r
2
2

)2
Φ(P1)Φ(P2) � 0.

This proves the first inequality in (2.25). The second inequality in (2.25) follows from
Corollary 2.5. �

REMARK 2.8. As mentioned earlier, Bourin and Ricard [6] have proved that for
Φ : M (n) → M (k) and 0 � r � s,

|Φ(Ar)Φ(As)| � Φ
(
Ar+s) . (2.27)

We give an example to show that

Φ
(
A

r+s
2

)2
� |Φ(Ar)Φ(As)| . (2.28)

EXAMPLE 2.9. Let

A =

⎡
⎣ 1 −1 0
−1 2 1
0 1 1

⎤
⎦

and

Φ(A) =
[

1 −1
−1 2

]
, Φ
(
A2)=

[
2 −3
−3 6

]
, Φ
(
A3)=

[
5 −9
−9 18

]
.

Therefore,

Φ
(
A2)2 =

[
13 −24
−24 45

]
and

∣∣Φ(A)Φ
(
A3)∣∣= [ 725 −1413

−1413 2754

] 1
2

=
[

12.42185 −23.894302
−23.894302 4.723253

]
.

We note that (1,1) entry of | Φ(A)Φ
(
A3
) | − Φ

(
A2
)2

is negative. So in general it is

not true that
∣∣Φ(A)Φ

(
A3
)∣∣� Φ

(
A2
)2

.
It is well known that the Grüss inequality is a complementary inequality to Cheby-

shev’s inequality. We prove another complementary bound for Chebyshev’s inequality
which contains the Kantorovich inequality as one of its special case.



MORE INEQUALITIES FOR POSITIVE LINEAR MAPS 7

THEOREM 2.10. Let Φ : M (2) → M (k) be a positive unital linear map. Let A
and B be two commuting positive definite matrices with respective eigenvalues λi and
μi , i = 1,2. Then, for λ1 � λ2 and μ1 � μ2(√

λ1μ2 +
√

λ2μ1√
λ1μ1 +

√
λ2μ2

)2

Φ(A)Φ(B) � Φ(AB) �
(√

λ1μ1 +
√

λ2μ2√
λ1μ2 +

√
λ2μ1

)2

Φ(A)Φ(B) .

(2.29)

Proof. From (2.14), (2.15) and (2.18), we find that

Φ(AB)−Φ(A)Φ(B) =
μ2− μ1

λ2−λ1
(λ2−Φ(A)) (Φ(A)−λ1) (2.30)

and

Φ(B) =
μ2− μ1

λ2−λ1
Φ(A)+

μ1λ2−λ1μ2

λ2−λ1
. (2.31)

Combine (2.30) and (2.31), we get

Φ(AB)=
μ2 − μ1

λ2 −λ1
(λ2−Φ(A))(Φ(A)−λ1)+

Φ(A)
λ2−λ1

((μ2− μ1)Φ(A)+ μ1λ2−λ1μ2) .

(2.32)
So the second inequality in (2.29) holds if and only if

(λ2−Φ(A))(Φ(A)−λ1)+ Φ(A)
[

Φ(A)+
μ1λ2−λ1μ2

μ2− μ1

]

� α2Φ(A)
(

Φ(A)+
μ1λ2−λ1μ2

μ2− μ1

)
(2.33)

where

α =

√
λ1μ1 +

√
λ2μ2√

λ1μ2 +
√

λ2μ1
. (2.34)

On simplification we see that (2.33) holds if and only if

Φ(A)2 +
[(

1− 1
α2

)
μ1λ2−λ1μ2

μ2− μ1
− λ1 + λ2

α2

]
Φ(A)+

λ1λ2

α2 � 0. (2.35)

Also,
λ1 + λ2

α2 −
(

1− 1
α2

)
μ1λ2−λ1μ2

μ2− μ1
= 2

√
λ1λ2

α
. (2.36)

So (2.35) holds if and only if

(
Φ(A)−

√
λ1λ2

α

)2

� 0.

This proves the claim of the theorem.
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To prove the first inequality in (2.29) we note that if the spectra of A and B are
oppositely ordered,

Φ(B) = μ2Φ(P1)+ μ1Φ(P2) ,

Φ(AB) = λ1μ2Φ(P1)+ λ2μ1Φ(P2) (2.37)

and Φ(A) is given by (2.14). We then have

Φ(AB)−Φ(A)Φ(B) =
μ1− μ2

λ2−λ1
(λ2−Φ(A)) (Φ(A)−λ1) (2.38)

and

Φ(B) =
λ2μ2−λ1μ1

λ2−λ1
− μ2− μ1

λ2−λ1
Φ(A) . (2.39)

From (2.38) and (2.39) we see that first inequality in (2.29) holds if and only if

(Φ(A)−λ1)(Φ(A)−λ2)+ Φ(A)
[

λ2μ2 −λ1μ1

μ2 − μ1
−Φ(A)

]

� 1
α2 Φ(A)

[
λ2μ2 −λ1μ1

μ2 − μ1
−Φ(A)

]
. (2.40)

A simple calculation shows that (2.40) is true. �

REMARK 2.11. We must indicate here that if Φ : M (2) → M (n) is a positive
unital linear map then for two commuting Hermitian matrices A and B the following
Schwarz’s type inequalities hold:

Φ
(
A2)Φ

(
B2)� Φ(AB)2 , (2.41)

Φ
(
A2)Φ

(
B2)−Φ(AB)2 � (λ1μ2−λ2μ1)

2

4
(2.42)

and

Φ
(
A2)Φ

(
B2)� (λ1μ2 + λ2μ1)

2

4λ1λ2μ1μ2
Φ(AB)2 , (2.43)

where λi and μi are the eigenvalues of A and B respectively, i = 1,2. If in addition A
and B are positive definite, then for 0 � r � 2

Φ
(
A2)Φ

(
B2)� Φ

(
ArB2−r)Φ

(
A2−rBr) . (2.44)

The reverse inequality holds when r lies outside (0,2) . Also

Φ
(
ArB2−r)Φ

(
A2−rBr)� Φ(AB)2 (2.45)

for every real r .
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